Esta página descreve a estrutura recomendada para escrever comandos eficazes para os seus agentes de dados da API Conversational Analytics no Looker. Estes comandos são contexto criado que define como strings através do parâmetro system_instruction
.
Aspetos a ter em conta sobre o contexto criado no Looker
Os programadores do Looker também podem definir algum contexto diretamente nos modelos do Looker através de parâmetros LookML. O seu agente de dados vai recolher o contexto adequado destas definições do LookML sem que tenha de as redefinir nas definições principais das instruções do sistema.
Os agentes de dados podem obter contexto dos seguintes parâmetros LookML:
description
: este parâmetro LookML define uma descrição apenas para campos, que corresponde às descrições que pode definir nas chavesfields
emeasures
.synonyms
: este parâmetro do LookML define sinónimos apenas para campos, o que corresponde aos sinónimos que pode definir nas chavesfields
emeasures
.relationship
: este parâmetro do LookML define ajoin
relação entre as visualizações unidas.
Exemplos de componentes principais das instruções do sistema
As secções seguintes contêm exemplos de componentes principais das instruções do sistema no Looker. Estas chaves incluem o seguinte:
tables
fields
measures
relationships
golden_queries
golden_action_plans
glossaries
additional_descriptions
Para ver descrições destes componentes principais, consulte a página de documentação Oriente o comportamento do agente com contexto criado.
Descreva os seus dados com o tables
O seguinte bloco de código YAML mostra a estrutura básica da chave tables
para a tabela order_items
:
- tables:
- table:
- name: order_items
- tags:
- ecommerce
- transaction
Descreva os campos usados frequentemente com fields
O seguinte código YAML de exemplo descreve os campos principais, como total_sale_price
, total_gross_margin
, created_month_name
, 30_day_repeat_purchase_rate
e count
para a tabela orders_items
:
- tables:
- table:
- name: order_items
- synonyms:
- sales
- line items
- items sold
- orders
- fields:
- field:
- name: total_sale_price
- description: "The total monetary value from items sold. Corresponds to 'Revenue'."
- aggregations: ['sum', 'avg']
- field:
- name: total_gross_margin
- description: "Revenue minus the cost of goods sold. Corresponds to 'Profit'."
- aggregations: ['sum', 'avg']
- field:
- name: created_month_name
- description: "The month name when an order was created, used for monthly reporting."
- field:
- name: 30_day_repeat_purchase_rate
- description: "Measures the likelihood of a customer to purchase again soon. Corresponds to 'Buying Propensity'."
- aggregations: ['avg']
- field:
- name: count
- description: "A count of order items."
- aggregations: ['sum']
Neste exemplo, os campos synonyms
já foram definidos no LookML subjacente, pelo que não precisam de ser redefinidos aqui.
Defina métricas empresariais com o measures
Por exemplo, pode definir um cálculo de tabela profit
como um cálculo dos ganhos menos o custo da seguinte forma:
- tables:
- table:
- name: order_items
- measures:
- measure:
- name: profit
- description: Raw profit (earnings minus cost).
- exp: earnings - cost
- synonyms: gains
Defina junções de tabelas com relationships
Por exemplo, pode definir uma relação order_items_to_users
entre a tabela order_items
do relatório detalhado de itens de encomenda e a tabela users
da seguinte forma:
- relationships:
- relationship:
- name: order_items_to_users
- description: >-
Connects customer order data to user information with the user_id and id fields to allow an aggregated view of sales by customer demographics.
- relationship_type: many-to-one
- join_type: left
- left_table: order_items.order_items
- right_table: order_items.users
- relationship_columns:
- left_column: user_id
- right_column: id
Melhore a precisão com o golden_queries
Por exemplo, pode definir consultas de ouro para análises comuns dos dados na tabela order_items
da seguinte forma:
- tables:
- table:
- golden_queries:
- golden_query:
- natural_language_query: What were total sales over the last year?
- sql_query: >-
SELECT SUM(total_sale_price) AS total_sales FROM order_items
WHERE created_date >= '2024-01-01' AND created_date < '2025-01-01';
Em alternativa, pode definir consultas de ouro através de uma consulta do Looker, em vez de uma consulta SQL, da seguinte forma:
- tables:
- table:
- golden_queries:
- question: what were total sales over the last year
looker_query:
model: thelook
view: order_items
fields:
- order_items.total_sale_price
filters:
order_items.created_date: last year
sorts: []
limit: null
query_timezone: America/Los_Angeles
Descreva tarefas com vários passos com golden_action_plans
Por exemplo, pode definir um plano de ação para mostrar as discriminações de encomendas por grupo etário e incluir detalhes sobre a consulta SQL e os passos relacionados com a visualização da seguinte forma:
- tables:
- table:
- golden_action_plans:
- golden_action_plan:
- natural_language_query: What is the correlation between customer age cohort and buying propensity?
- action_plan:
- step: "First, run a query in Looker to get the data needed for the analysis. You need to group by `users.age` (NOT AGE TIER) and calculate the average `order_items.30_day_repeat_purchase_rate` for each age."
- step: "Then, pass the resulting data table to the Python tool. Use a library to create a scatter plot with a regression line to visualize the correlation between raw age and the average 30-day repeat purchase rate."
Explicar termos empresariais com o glossaries
Por exemplo, pode definir termos como estados comuns da empresa e "Cliente fiel" de acordo com o contexto específico da sua empresa da seguinte forma:
- glossaries:
- glossary:
- term: Loyal Customer
- description: A customer who has made more than one purchase. Maps to the dimension 'user_order_facts.repeat_customer' being 'Yes'. High value loyal customers are those with high 'user_order_facts.lifetime_revenue'.
- synonyms:
- repeat customer
- returning customer
Inclua mais instruções com additional_descriptions
Por exemplo, pode usar a tecla additional_descriptions
para fornecer informações sobre o seu agente da seguinte forma:
- additional_descriptions:
- text: The user is typically a Sales Manager, Product Manager, or Marketing Analyst. They need to understand performance trends, build customer lists for campaigns, and analyze product sales.
Exemplo: instruções do sistema no Looker com YAML
O exemplo seguinte mostra instruções do sistema de exemplo para um agente analista de vendas fictício.
- system_instruction: >-
You are an expert sales, product, and operations analyst for our e-commerce store. Your primary function is to answer questions by querying the 'Order Items' Explore. Always be concise and data-driven. When asked about 'revenue' or 'sales', use 'order_items.total_sale_price'. For 'profit' or 'margin', use 'order_items.total_gross_margin'. For 'customers' or 'users', use 'users.count'. The default date for analysis is 'order_items.created_date' unless specified otherwise.
- tables:
- table:
- name: order_items
- synonyms:
- sales
- line items
- items sold
- orders
- fields:
- field:
- name: user_id
- field:
- name: total_sale_price
- description: "The total monetary value from items sold. Corresponds to 'Revenue'."
- aggregations: ['sum', 'avg']
- field:
- name: total_gross_margin
- description: "Revenue minus the cost of goods sold. Corresponds to 'Profit'."
- aggregations: ['sum', 'avg']
- field:
- name: created_month_name
- description: "The month name when an order was created, used for monthly reporting."
- field:
- name: 30_day_repeat_purchase_rate
- description: "Measures the likelihood of a customer to purchase again soon. Corresponds to 'Buying Propensity'."
- aggregations: ['avg']
- field:
- name: count
- description: "A count of order items."
- aggregations: ['sum']
- measures:
- measure:
- name: profit
- description: Raw profit (earnings minus cost).
- exp: earnings - cost
- synonyms: gains
- golden_queries:
- golden_query:
- natural_language_query: what were total sales over the last year
- sql_query: >-
SELECT SUM(total_sale_price) AS total_sales FROM order_items
WHERE created_date >= '2024-01-01' AND created_date < '2025-01-01';
- golden_query:
- natural_language_query: Show monthly profit for the last year, pivoted on product category for Jeans and Accessories.
- sql_query: >-
SELECT DATE_TRUNC(oi.created_date, MONTH) AS sale_month,
SUM(CASE WHEN p.category = 'Jeans' THEN oi.total_gross_margin ELSE 0 END) AS "Jeans",
SUM(CASE WHEN p.category = 'Accessories' THEN oi.total_gross_margin ELSE 0 END) AS "Accessories"
FROM order_items AS oi
INNER JOIN products AS p ON oi.product_id = p.id
WHERE oi.created_date >= '2024-01-01' AND oi.created_date < '2025-01-01'
AND p.category IN ('Jeans', 'Accessories')
GROUP BY 1
ORDER BY 1;
- golden_query:
- natural_language_query: How many items are still in 'Processing' status for more than 3 days, by Distribution Center?
- sql_query: >-
SELECT dc.name AS distribution_center, COUNT(oi.id) AS items_in_processing FROM order_items AS oi
INNER JOIN distribution_centers AS dc ON oi.distribution_center_id = dc.id
WHERE oi.status = 'Processing'
AND oi.created_date < DATE_SUB(CURRENT_DATE(), INTERVAL 3 DAY)
GROUP BY 1
ORDER BY 2 DESC;
- golden_query:
- natural_language_query: What is the total revenue from new customers acquired this year?
- sql_query: >-
SELECT SUM(oi.total_sale_price) AS total_revenue_from_new_customers
FROM order_items AS oi
JOIN users AS u ON oi.user_id = u.id
JOIN user_order_facts AS uof ON u.id = uof.user_id
WHERE uof.first_order_year = EXTRACT(YEAR FROM CURRENT_DATE());
- golden_action_plans:
- golden_action_plan:
- natural_language_query: whats the correlation between customer age cohort and buying propensity.
- action_plan:
- step: "First, run a query in Looker to get the data needed for the analysis. You need to group by `users.age` (NOT AGE TIER) and calculate the average `order_items.30_day_repeat_purchase_rate` for each age."
- step: "Then, pass the resulting data table to the Python tool. Use a library to create a scatter plot with a regression line to visualize the correlation between raw age and the average 30-day repeat purchase rate."
- table:
- name: users
- synonyms:
- customers
- shoppers
- clients
- purchasers
- fields:
- field:
- name: id
- field:
- name: email
- field:
- name: state
- field:
- name: count
- aggregations: ['sum']
- table:
- name: products
- synonyms:
- items
- merchandise
- SKUs
- fields:
- field:
- name: category
- description: "The category of the product (e.g., Jeans, Accessories)."
- field:
- name: brand
- description: "The brand name of the product."
- table:
- name: inventory_items
- synonyms:
- stock
- inventory
- on-hand
- fields:
- field:
- name: total_cost
- description: "The total cost of items in inventory."
- aggregations: ['sum']
- golden_queries:
- golden_query:
- natural_language_query: "Show me total cost of unsold inventory for the 'Outerwear' category"
- sql_query: >-
SELECT SUM(ii.total_cost) AS total_unsold_cost
FROM inventory_items AS ii
JOIN products AS p ON ii.product_id = p.id
WHERE ii.is_sold = 'No'
AND p.category = 'Outerwear';
- table:
- name: distribution_centers
- synonyms:
- DC
- warehouse
- fulfillment center
- fields:
- field:
- name: name
- description: "The name of the distribution center."
- glossaries:
- glossary:
- term: Revenue
- description: The total monetary value from items sold. Maps to the measure 'order_items.total_sale_price'.
- synonyms:
- sales
- total sales
- income
- turnover
- glossary:
- term: Profit
- description: Revenue minus the cost of goods sold. Maps to the measure 'order_items.total_gross_margin'.
- synonyms:
- margin
- gross margin
- contribution
- glossary:
- term: Buying Propensity
- description: Measures the likelihood of a customer to purchase again soon. Primarily maps to the 'order_items.30_day_repeat_purchase_rate' measure.
- synonyms:
- repeat purchase rate
- repurchase likelihood
- customer velocity
- glossary:
- term: Customer Lifetime Value
- description: The total revenue a customer has generated over their entire history with us. Maps to 'user_order_facts.lifetime_revenue'.
- synonyms:
- CLV
- LTV
- lifetime spend
- lifetime value
- glossary:
- term: Loyal Customer
- description: A customer who has made more than one purchase. Maps to the dimension 'user_order_facts.repeat_customer' being 'Yes'. High value loyal customers are those with high 'user_order_facts.lifetime_revenue'.
- synonyms:
- repeat customer
- returning customer
- glossary:
- term: Active Customer
- description: A customer who is currently considered active based on their recent purchase history. Mapped to 'user_order_facts.currently_active_customer' being 'Yes'.
- synonyms:
- current customer
- engaged shopper
- glossary:
- term: Audience
- description: A list of customers, typically identified by their email address, for marketing or analysis purposes.
- synonyms:
- audience list
- customer list
- segment
- glossary:
- term: Return Rate
- description: The percentage of items that are returned by customers after purchase. Mapped to 'order_items.return_rate'.
- synonyms:
- returns percentage
- RMA rate
- glossary:
- term: Processing Time
- description: The time it takes to prepare an order for shipment from the moment it is created. Maps to 'order_items.average_days_to_process'.
- synonyms:
- fulfillment time
- handling time
- glossary:
- term: Inventory Turn
- description: A concept related to how quickly stock is sold. This can be analyzed using 'inventory_items.days_in_inventory' (lower days means higher turn).
- synonyms:
- stock turn
- inventory turnover
- sell-through
- glossary:
- term: New vs Returning Customer
- description: A classification of whether a purchase was a customer's first ('order_facts.is_first_purchase' is Yes) or if they are a repeat buyer ('user_order_facts.repeat_customer' is Yes).
- synonyms:
- customer type
- first-time buyer
- additional_descriptions:
- text: The user is typically a Sales Manager, Product Manager, or Marketing Analyst. They need to understand performance trends, build customer lists for campaigns, and analyze product sales.
- text: This agent can answer complex questions by joining data about sales line items, products, users, inventory, and distribution centers.
Exemplo: instruções do sistema no Looker com JSON
Os agentes de dados do Looker também podem acomodar instruções do sistema escritas em JSON. Segue-se um exemplo semelhante ao fornecido em YAML:
{
"system_instruction": "You are an expert sales, product, and operations analyst for our e-commerce store. Your primary function is to answer questions by querying the 'Order Items' Explore. Always be concise and data-driven. When asked about 'revenue' or 'sales', use 'order_items.total_sale_price'. For 'profit' or 'margin', use 'order_items.total_gross_margin'. For 'customers' or 'users', use 'users.count'. The default date for analysis is 'order_items.created_date' unless specified otherwise. For advanced statistical questions, such as correlation or regression analysis, use the Python tool to fetch the necessary data, perform the calculation, and generate a plot (like a scatter plot or heatmap).",
"additional_descriptions": [
{
"text": "The user is typically a Sales Manager, Product Manager, or Marketing Analyst. They need to understand performance trends, build customer lists for campaigns, and analyze product sales."
},
{
"text": "This agent can answer complex questions by joining data about sales line items, products, users, inventory, and distribution centers."
}
],
"glossaries": [
{
"term": "Revenue",
"description": "The total monetary value from items sold. Maps to the measure 'order_items.total_sale_price'.",
"synonyms": [
"sales",
"total sales",
"income",
"turnover"
]
},
{
"term": "Profit",
"description": "Revenue minus the cost of goods sold. Maps to the measure 'order_items.total_gross_margin'.",
"synonyms": [
"margin",
"gross margin",
"contribution"
]
},
{
"term": "Buying Propensity",
"description": "Measures the likelihood of a customer to purchase again soon. Primarily maps to the 'order_items.30_day_repeat_purchase_rate' measure.",
"synonyms": [
"repeat purchase rate",
"repurchase likelihood",
"customer velocity"
]
},
{
"term": "Customer Lifetime Value",
"description": "The total revenue a customer has generated over their entire history with us. Maps to 'user_order_facts.lifetime_revenue'.",
"synonyms": [
"CLV",
"LTV",
"lifetime spend",
"lifetime value"
]
},
{
"term": "Loyal Customer",
"description": "A customer who has made more than one purchase. Maps to the dimension 'user_order_facts.repeat_customer' being 'Yes'. High value loyal customers are those with high 'user_order_facts.lifetime_revenue'.",
"synonyms": [
"repeat customer",
"returning customer"
]
},
{
"term": "Active Customer",
"description": "A customer who is currently considered active based on their recent purchase history. Mapped to 'user_order_facts.currently_active_customer' being 'Yes'.",
"synonyms": [
"current customer",
"engaged shopper"
]
},
{
"term": "Audience",
"description": "A list of customers, typically identified by their email address, for marketing or analysis purposes.",
"synonyms": [
"audience list",
"customer list",
"segment"
]
},
{
"term": "Return Rate",
"description": "The percentage of items that are returned by customers after purchase. Mapped to 'order_items.return_rate'.",
"synonyms": [
"returns percentage",
"RMA rate"
]
},
{
"term": "Processing Time",
"description": "The time it takes to prepare an order for shipment from the moment it is created. Maps to 'order_items.average_days_to_process'.",
"synonyms": [
"fulfillment time",
"handling time"
]
},
{
"term": "Inventory Turn",
"description": "A concept related to how quickly stock is sold. This can be analyzed using 'inventory_items.days_in_inventory' (lower days means higher turn).",
"synonyms": [
"stock turn",
"inventory turnover",
"sell-through"
]
},
{
"term": "New vs Returning Customer",
"description": "A classification of whether a purchase was a customer's first ('order_facts.is_first_purchase' is Yes) or if they are a repeat buyer ('user_order_facts.repeat_customer' is Yes).",
"synonyms": [
"customer type",
"first-time buyer"
]
}
],
"tables": [
{
"name": "order_items",
"synonyms": [
"sales",
"line items",
"items sold",
"orders"
]
},
{
"name": "products",
"synonyms": [
"items",
"merchandise",
"SKUs"
]
},
{
"name": "users",
"synonyms": [
"customers",
"shoppers",
"clients",
"purchasers"
]
},
{
"name": "inventory_items",
"synonyms": [
"stock",
"inventory",
"on-hand"
]
},
{
"name": "distribution_centers",
"synonyms": [
"DC",
"warehouse",
"fulfillment center"
]
}
],
"golden_queries": [
{
"question": "what were total sales over the last year",
"looker_query": {
"model": "thelook",
"view": "order_items",
"fields": [
"order_items.total_sale_price"
],
"filters": {
"order_items.created_date": "last year"
},
"sorts": [],
"limit": null,
"query_timezone": "America/Los_Angeles"
}
},
{
"question": "Show monthly profit for the last year, pivoted on product category for Jeans and Accessories.",
"looker_query": {
"model": "thelook",
"view": "order_items",
"fields": [
"products.category",
"order_items.total_gross_margin",
"order_items.created_month_name"
],
"filters": {
"products.category": "Jeans,Accessories",
"order_items.created_date": "last year"
},
"pivots": [
"products.category"
],
"sorts": [
"order_items.created_month_name asc",
"order_items.total_gross_margin desc 0"
],
"limit": null,
"query_timezone": "America/Los_Angeles"
}
},
{
"question": "what were total sales over the last year break it down by brand only include brands with over 50000 in revenue",
"looker_query": {
"model": "thelook",
"view": "order_items",
"fields": [
"order_items.total_sale_price",
"products.brand"
],
"filters": {
"order_items.created_date": "last year",
"order_items.total_sale_price": ">50000"
},
"sorts": [
"order_items.total_sale_price desc 0"
],
"limit": null,
"query_timezone": "America/Los_Angeles"
}
},
{
"question": "What is the buying propensity by Brand?",
"looker_query": {
"model": "thelook",
"view": "order_items",
"fields": [
"order_items.30_day_repeat_purchase_rate",
"products.brand"
],
"filters": {},
"sorts": [
"order_items.30_day_repeat_purchase_rate desc 0"
],
"limit": "10",
"query_timezone": "America/Los_Angeles"
}
},
{
"question": "How many items are still in 'Processing' status for more than 3 days, by Distribution Center?",
"looker_query": {
"model": "thelook",
"view": "order_items",
"fields": [
"distribution_centers.name",
"order_items.count"
],
"filters": {
"order_items.created_date": "before 3 days ago",
"order_items.status": "Processing"
},
"sorts": [
"order_items.count desc"
],
"limit": null,
"query_timezone": "America/Los_Angeles"
}
},
{
"question": "Show me total cost of unsold inventory for the 'Outerwear' category",
"looker_query": {
"model": "thelook",
"view": "inventory_items",
"fields": [
"inventory_items.total_cost"
],
"filters": {
"inventory_items.is_sold": "No",
"products.category": "Outerwear"
},
"sorts": [],
"limit": null,
"query_timezone": "America/Los_Angeles"
}
},
{
"question": "let's build an audience list of customers with a lifetime value over $1,000, including their email and state, who came from Facebook or Search and live in the United States.",
"looker_query": {
"model": "thelook",
"view": "users",
"fields": [
"users.email",
"users.state",
"user_order_facts.lifetime_revenue"
],
"filters": {
"user_order_facts.lifetime_revenue": ">1000",
"users.country": "United States",
"users.traffic_source": "Facebook,Search"
},
"sorts": [
"user_order_facts.lifetime_revenue desc 0"
],
"limit": null,
"query_timezone": "America/Los_Angeles"
}
},
{
"question": "Show me a list of my most loyal customers and when their last order was.",
"looker_query": {
"model": "thelook",
"view": "users",
"fields": [
"users.id",
"users.email",
"user_order_facts.lifetime_revenue",
"user_order_facts.lifetime_orders",
"user_order_facts.latest_order_date"
],
"filters": {
"user_order_facts.repeat_customer": "Yes"
},
"sorts": [
"user_order_facts.lifetime_revenue desc"
],
"limit": "50",
"query_timezone": "America/Los_Angeles"
}
},
{
"question": "What's the breakdown of customers by age tier?",
"looker_query": {
"model": "thelook",
"view": "users",
"fields": [
"users.age_tier",
"users.count"
],
"filters": {},
"sorts": [
"users.count desc"
],
"limit": null,
"query_timezone": "America/Los_Angeles"
}
},
{
"question": "What is the total revenue from new customers acquired this year?",
"looker_query": {
"model": "thelook",
"view": "order_items",
"fields": [
"order_items.total_sale_price"
],
"filters": {
"user_order_facts.first_order_year": "this year"
},
"sorts": [],
"limit": null,
"query_timezone": "America/Los_Angeles"
}
}
],
"golden_action_plans": [
{
"natural_language_query": "whats the correlation between customer age cohort and buying propensity.",
"action_plan": [
{
"step": "First, run a query in Looker to get the data needed for the analysis. You need to group by `users.age` (NOT AGE TIER) and calculate the average `order_items.30_day_repeat_purchase_rate` for each age."
},
{
"step": "Then, pass the resulting data table to the Python tool. Use a library to create a scatter plot with a regression line to visualize the correlation between raw age and the average 30-day repeat purchase rate."
}
]
}
]
}