Procesar datos de forma masiva con Dataflow
En esta página se muestran ejemplos de cómo usar Dataflow para realizar operaciones de Firestore en bloque en una pipeline de Apache Beam. Apache Beam admite un conector para Firestore. Puedes usar este conector para ejecutar operaciones por lotes y en tiempo real en Dataflow.
Recomendamos usar Dataflow y Apache Beam para cargas de trabajo de procesamiento de datos a gran escala.
El conector de Firestore para Apache Beam está disponible en Java. Para obtener más información sobre el conector de Firestore, consulta el SDK de Apache Beam para Java.
Antes de empezar
Antes de leer esta página, debes familiarizarte con el modelo de programación de Apache Beam.
Para ejecutar las muestras, debes habilitar la API de Dataflow:
Roles required to enable APIs
To enable APIs, you need the Service Usage Admin IAM
role (roles/serviceusage.serviceUsageAdmin
), which
contains the serviceusage.services.enable
permission. Learn how to grant
roles.
Ejemplos de flujos de procesamiento de Firestore
En los ejemplos de abajo se muestra una canalización que escribe datos y otra que lee y filtra datos. Puedes usar estas muestras como punto de partida para tus propias canalizaciones.
Ejecutar los flujos de procesamiento de ejemplo
El código fuente de los ejemplos está disponible en el repositorio de GitHub googleapis/java-firestore. Para ejecutar estas muestras, descarga el código fuente y consulta el archivo README.
Ejemplo de flujo de procesamiento Write
En el siguiente ejemplo se crean documentos en la colección cities-beam-sample
:
public class ExampleFirestoreBeamWrite { private static final FirestoreOptions FIRESTORE_OPTIONS = FirestoreOptions.getDefaultInstance(); public static void main(String[] args) { runWrite(args, "cities-beam-sample"); } public static void runWrite(String[] args, String collectionId) { // create pipeline options from the passed in arguments PipelineOptions options = PipelineOptionsFactory.fromArgs(args).withValidation().as(PipelineOptions.class); Pipeline pipeline = Pipeline.create(options); RpcQosOptions rpcQosOptions = RpcQosOptions.newBuilder() .withHintMaxNumWorkers(options.as(DataflowPipelineOptions.class).getMaxNumWorkers()) .build(); // create some writes Write write1 = Write.newBuilder() .setUpdate( Document.newBuilder() // resolves to // projects/<projectId>/databases/<databaseId>/documents/<collectionId>/NYC .setName(createDocumentName(collectionId, "NYC")) .putFields("name", Value.newBuilder().setStringValue("New York City").build()) .putFields("state", Value.newBuilder().setStringValue("New York").build()) .putFields("country", Value.newBuilder().setStringValue("USA").build())) .build(); Write write2 = Write.newBuilder() .setUpdate( Document.newBuilder() // resolves to // projects/<projectId>/databases/<databaseId>/documents/<collectionId>/TOK .setName(createDocumentName(collectionId, "TOK")) .putFields("name", Value.newBuilder().setStringValue("Tokyo").build()) .putFields("country", Value.newBuilder().setStringValue("Japan").build()) .putFields("capital", Value.newBuilder().setBooleanValue(true).build())) .build(); // batch write the data pipeline .apply(Create.of(write1, write2)) .apply(FirestoreIO.v1().write().batchWrite().withRpcQosOptions(rpcQosOptions).build()); // run the pipeline pipeline.run().waitUntilFinish(); } private static String createDocumentName(String collectionId, String cityDocId) { String documentPath = String.format( "projects/%s/databases/%s/documents", FIRESTORE_OPTIONS.getProjectId(), FIRESTORE_OPTIONS.getDatabaseId()); return documentPath + "/" + collectionId + "/" + cityDocId; } }
En el ejemplo se usan los siguientes argumentos para configurar y ejecutar una canalización:
GOOGLE_CLOUD_PROJECT=project-id REGION=region TEMP_LOCATION=gs://temp-bucket/temp/ NUM_WORKERS=number-workers MAX_NUM_WORKERS=max-number-workers
Ejemplo de flujo de procesamiento Read
La siguiente canalización de ejemplo lee documentos de la colección cities-beam-sample
, aplica un filtro a los documentos en los que el campo country
tiene el valor USA
y devuelve los nombres de los documentos que coinciden.
public class ExampleFirestoreBeamRead { public static void main(String[] args) { runRead(args, "cities-beam-sample"); } public static void runRead(String[] args, String collectionId) { FirestoreOptions firestoreOptions = FirestoreOptions.getDefaultInstance(); PipelineOptions options = PipelineOptionsFactory.fromArgs(args).withValidation().as(PipelineOptions.class); Pipeline pipeline = Pipeline.create(options); RpcQosOptions rpcQosOptions = RpcQosOptions.newBuilder() .withHintMaxNumWorkers(options.as(DataflowPipelineOptions.class).getMaxNumWorkers()) .build(); pipeline .apply(Create.of(collectionId)) .apply( new FilterDocumentsQuery( firestoreOptions.getProjectId(), firestoreOptions.getDatabaseId())) .apply(FirestoreIO.v1().read().runQuery().withRpcQosOptions(rpcQosOptions).build()) .apply( ParDo.of( // transform each document to its name new DoFn<RunQueryResponse, String>() { @ProcessElement public void processElement(ProcessContext c) { c.output(Objects.requireNonNull(c.element()).getDocument().getName()); } })) .apply( ParDo.of( // print the document name new DoFn<String, Void>() { @ProcessElement public void processElement(ProcessContext c) { System.out.println(c.element()); } })); pipeline.run().waitUntilFinish(); } private static final class FilterDocumentsQuery extends PTransform<PCollection<String>, PCollection<RunQueryRequest>> { private final String projectId; private final String databaseId; public FilterDocumentsQuery(String projectId, String databaseId) { this.projectId = projectId; this.databaseId = databaseId; } @Override public PCollection<RunQueryRequest> expand(PCollection<String> input) { return input.apply( ParDo.of( new DoFn<String, RunQueryRequest>() { @ProcessElement public void processElement(ProcessContext c) { // select from collection "cities-collection-<uuid>" StructuredQuery.CollectionSelector collection = StructuredQuery.CollectionSelector.newBuilder() .setCollectionId(Objects.requireNonNull(c.element())) .build(); // filter where country is equal to USA StructuredQuery.Filter countryFilter = StructuredQuery.Filter.newBuilder() .setFieldFilter( StructuredQuery.FieldFilter.newBuilder() .setField( StructuredQuery.FieldReference.newBuilder() .setFieldPath("country") .build()) .setValue(Value.newBuilder().setStringValue("USA").build()) .setOp(StructuredQuery.FieldFilter.Operator.EQUAL)) .buildPartial(); RunQueryRequest runQueryRequest = RunQueryRequest.newBuilder() .setParent(DocumentRootName.format(projectId, databaseId)) .setStructuredQuery( StructuredQuery.newBuilder() .addFrom(collection) .setWhere(countryFilter) .build()) .build(); c.output(runQueryRequest); } })); } } }
En el ejemplo se usan los siguientes argumentos para configurar y ejecutar una canalización:
GOOGLE_CLOUD_PROJECT=project-id REGION=region TEMP_LOCATION=gs://temp-bucket/temp/ NUM_WORKERS=number-workers MAX_NUM_WORKERS=max-number-workers
Precios
Ejecutar una carga de trabajo de Firestore en Dataflow conlleva costes por el uso de Firestore y de Dataflow. El uso de Dataflow se factura por los recursos que usan tus tareas. Para obtener más información, consulta la página de precios de Dataflow. Para consultar los precios de Firestore, visita la página de precios.
Siguientes pasos
- Consulta otro ejemplo de flujo de procesamiento en el artículo Usar Firestore y Apache Beam para procesar datos.
- Para obtener más información sobre Dataflow y Apache Beam, consulta la documentación de Dataflow.