관측 가능성 API는 Kubernetes 커스텀 리소스를 사용하며 로깅 및 모니터링 리소스를 프로비저닝하고 관리하기 위해 Kubernetes 리소스 모델 (KRM)을 사용합니다.
관측 가능성 API를 사용하여 지정된 조직 또는 맞춤 프로젝트에서 관측 가능성 서비스의 수명 주기를 관리합니다. 관측 가능성 서비스의 수명 주기에는 설치, 업그레이드, 제거와 같은 작업이 포함됩니다. 관리하려는 Observability 서비스에 따라 커스텀 리소스를 프로젝트에 배포해야 합니다.
프로비저닝된 프로젝트에는 로깅, 모니터링, 알림과 같은 많은 관측 가능성 서비스를 자동으로 사용할 수 있습니다.
다음은 project-1 프로젝트의 특정 서비스에서 로그를 수집하는 LoggingTarget 커스텀 리소스의 예시입니다.
# Configures a log scraping jobapiVersion:logging.gdc.goog/v1kind:LoggingTargetmetadata:# Choose a namespace that matches the namespace of the workload podsnamespace:project-1name:my-service-logging-targetspec:# Choose a matching pattern that identifies the pods for this job# Optional# Relationship between different selectors: 'AND'selector:# The clusters to collect logs from.# The default configuration is to collect logs from all clusters.# The relationship between different clusters is an 'OR' relationship.# For example, the value '["admin", "system"]' indicates to consider# the admin cluster 'OR' the system cluster.# OptionalmatchClusters:-cluster-1-cluster-2# The pod name prefixes to collect logs from.# The Observability platform scrapes all pods with names# that start with the specified prefixes.# The values must contain '[a-z0-9-]' characters only.# The relationship between different list elements is an 'OR' relationship.# OptionalmatchPodNames:-pod-1-pod-2# The container name prefixes to collect logs from.# The Observability platform scrapes all containers with names# that start with the specified prefixes.# The values must contain '[a-z0-9-]' characters only.# The relationship between different list elements is an 'OR' relationship.# OptionalmatchContainerNames:-container-1-container-2# Choose the predefined parser for log entries.# Use parsers to map the log output to labels and extract fields.# Specify the log format.# Optional# Options: klog_text, klog_json, klogr, gdch_json, jsonparser:klog_text# Specify an access level for log entries.# The default value is 'ao'.# Optional# Options: ao, pa, iologAccessLevel:ao# Specify a service name to be applied as a label# For user workloads consider this field as a workload name# RequiredserviceName:service-name# The additional static fields to apply to log entries.# The field is a key-value pair, where the field name is the key and# the field value is the value.# OptionaladditionalFields:app:workload2key:value
모니터링 그룹
다음은 project-1 프로젝트의 워크로드에서 측정항목을 수집하는 MonitoringTarget 커스텀 리소스의 예시입니다.
apiVersion:monitoring.gdc.goog/v1kind:MonitoringTargetmetadata:# Choose the same namespace as the workload podsnamespace:project-1name:stringspec:# Choose matching pattern that identifies pods for this job# Optional# Relationship between different selectors: ANDselector:# Choose clusters to consider for this job# Optional# List# Default: All clusters applicable to this project.# Relationship between different list elements: ORmatchClusters:-string# Choose pod-labels to consider for this job# Optional: Map of key-value pairs.# Default: No filtering by label.# Relationship between different pairs: ANDmatchLabels:key1:value1# Choose annotations to consider for this job# Optional: Map of key-value pairs# Default: No filtering by annotation# Relationship between different pairs: ANDmatchAnnotations:key1:value1# Configure the endpoint exposed for this jobpodMetricsEndpoints:# Choose port either via static value or annotation# Optional# Annotation takes priority# Default: static port 80port:value:integerannotation:string# Choose path either via static value or annotation# Optional# Annotation takes priority# Default: static path /metricspath:value:stringannotation:string# Choose scheme either via static value (http or https) or annotation# Optional# Annotation takes priority# Default: static scheme httpscheme:value:stringannotation:string# Choose the frequency to scrape the metrics endpoint defined in podMetricsEndpoints# Optional# Default: 60sscrapeInterval:string# Dynamically rewrite the label set of a target before it gets scraped.# https://prometheus.io/docs/prometheus/latest/configuration/configuration/#relabel_config# Optional# Default: No filtering by labelmetricsRelabelings:-sourceLabels:-stringseparator:stringregex:stringaction:stringtargetLabel:stringreplacement:string
관측 가능성 그룹
다음은 platform-obs 프로젝트 네임스페이스에서 대시보드의 스토리지 크기를 업데이트하는 ObservabilityPipeline 커스텀 리소스의 예시입니다.
# Configure observability pipelineapiVersion:observability.gdc.goog/v1kind:ObservabilityPipelinemetadata:# Don't change the namespace or name.namespace:platform-obsname:observability-configspec:...monitoring:grafana:storageSize:1Gi# Configure the new storage size for dashboards in the project....
[[["이해하기 쉬움","easyToUnderstand","thumb-up"],["문제가 해결됨","solvedMyProblem","thumb-up"],["기타","otherUp","thumb-up"]],[["이해하기 어려움","hardToUnderstand","thumb-down"],["잘못된 정보 또는 샘플 코드","incorrectInformationOrSampleCode","thumb-down"],["필요한 정보/샘플이 없음","missingTheInformationSamplesINeed","thumb-down"],["번역 문제","translationIssue","thumb-down"],["기타","otherDown","thumb-down"]],["최종 업데이트: 2025-09-04(UTC)"],[[["\u003cp\u003eThe Observability API utilizes Kubernetes custom resources and the Kubernetes Resource Model (KRM) for managing logging and monitoring resources.\u003c/p\u003e\n"],["\u003cp\u003eProvisioned projects automatically have several Observability services available, which users cannot create or delete directly.\u003c/p\u003e\n"],["\u003cp\u003eThe recommended method for interacting with the Observability API is through the \u003ccode\u003egdcloud\u003c/code\u003e CLI provided by GDC.\u003c/p\u003e\n"],["\u003cp\u003eThe primary API endpoint for Observability services is \u003ccode\u003ehttps://[ADMIN_CLUSTER_KUBERNETES_API_ENDPOINT]/apis/observability.gdc.goog/v1alpha1\u003c/code\u003e, with similar endpoints for monitoring and logging.\u003c/p\u003e\n"],["\u003cp\u003eYou can use \u003ccode\u003ekubectl proxy\u003c/code\u003e to access the API discovery document locally, enabling you to explore and interact with the API's structure and capabilities.\u003c/p\u003e\n"]]],[],null,["# Observability API overview\n\nThe Observability API uses Kubernetes custom resources and relies on the Kubernetes Resource Model (KRM) for provisioning and managing logging and monitoring resources.\n\nUse the Observability API to manage the lifecycle of Observability services in a given organization or custom project. The lifecycle of Observability services includes operations such as install, upgrade, and uninstall. You must deploy a custom resource to your project according to the Observability service you want to manage.\n\nMany Observability services are available automatically for a provisioned project, for example, logging, monitoring, and alerting.\n\nService endpoint\n----------------\n\nThe following URLs are the API endpoints for the Observability KRM API:\n\n- **Logging group:**\n\n https://\u003cvar translate=\"no\"\u003eMANAGEMENT_API_SERVER_ENDPOINT\u003c/var\u003e/apis/logging.gdc.goog/v1\n\n- **Monitoring group:**\n\n https://\u003cvar translate=\"no\"\u003eMANAGEMENT_API_SERVER_ENDPOINT\u003c/var\u003e/apis/monitoring.gdc.goog/v1\n\n- **Observability group:**\n\n https://\u003cvar translate=\"no\"\u003eMANAGEMENT_API_SERVER_ENDPOINT\u003c/var\u003e/apis/observability.gdc.goog/v1\n\nReplace \u003cvar translate=\"no\"\u003eMANAGEMENT_API_SERVER_ENDPOINT\u003c/var\u003e with the endpoint of the Management API server.\n\nDiscovery document\n------------------\n\nUse the `kubectl proxy --port=8001` command to open a proxy to the API server on your local machine. From there, you can access the discovery document at one of the following URLs:\n\n- `http://127.0.0.1:8001/apis/logging.gdc.goog/v1`\n- `http://127.0.0.1:8001/apis/monitoring.gdc.goog/v1`\n- `http://127.0.0.1:8001/apis/observability.gdc.goog/v1`\n\nExample resources\n-----------------\n\nThis section contains example resources that use the Observability KRM API.\n\n### Logging group\n\nThe following is an example of a `LoggingTarget` custom resource to collect logs from specific services on the `project-1` project: \n\n # Configures a log scraping job\n apiVersion: logging.gdc.goog/v1\n kind: LoggingTarget\n metadata:\n # Choose a namespace that matches the namespace of the workload pods\n namespace: project-1\n name: my-service-logging-target\n spec:\n # Choose a matching pattern that identifies the pods for this job\n # Optional\n # Relationship between different selectors: 'AND'\n selector:\n # The clusters to collect logs from.\n # The default configuration is to collect logs from all clusters.\n # The relationship between different clusters is an 'OR' relationship.\n # For example, the value '[\"admin\", \"system\"]' indicates to consider\n # the admin cluster 'OR' the system cluster.\n # Optional\n matchClusters:\n - cluster-1\n - cluster-2\n\n # The pod name prefixes to collect logs from.\n # The Observability platform scrapes all pods with names\n # that start with the specified prefixes.\n # The values must contain '[a-z0-9-]' characters only.\n # The relationship between different list elements is an 'OR' relationship.\n # Optional\n matchPodNames:\n - pod-1\n - pod-2\n\n # The container name prefixes to collect logs from.\n # The Observability platform scrapes all containers with names\n # that start with the specified prefixes.\n # The values must contain '[a-z0-9-]' characters only.\n # The relationship between different list elements is an 'OR' relationship.\n # Optional\n matchContainerNames:\n - container-1\n - container-2\n\n # Choose the predefined parser for log entries.\n # Use parsers to map the log output to labels and extract fields.\n # Specify the log format.\n # Optional\n # Options: klog_text, klog_json, klogr, gdch_json, json\n parser: klog_text\n\n # Specify an access level for log entries.\n # The default value is 'ao'.\n # Optional\n # Options: ao, pa, io\n logAccessLevel: ao\n\n # Specify a service name to be applied as a label\n # For user workloads consider this field as a workload name\n # Required\n serviceName: service-name\n\n # The additional static fields to apply to log entries.\n # The field is a key-value pair, where the field name is the key and\n # the field value is the value.\n # Optional\n additionalFields:\n app: workload2\n key: value\n\n### Monitoring group\n\nThe following is an example of a `MonitoringTarget` custom resource to collect metrics from workloads on the `project-1` project: \n\n apiVersion: monitoring.gdc.goog/v1\n kind: MonitoringTarget\n metadata:\n # Choose the same namespace as the workload pods\n namespace: project-1\n name: string\n spec:\n # Choose matching pattern that identifies pods for this job\n # Optional\n # Relationship between different selectors: AND\n selector:\n # Choose clusters to consider for this job\n # Optional\n # List\n # Default: All clusters applicable to this project.\n # Relationship between different list elements: OR\n matchClusters:\n - string\n\n # Choose pod-labels to consider for this job\n # Optional: Map of key-value pairs.\n # Default: No filtering by label.\n # Relationship between different pairs: AND\n matchLabels:\n key1: value1\n\n # Choose annotations to consider for this job\n # Optional: Map of key-value pairs\n # Default: No filtering by annotation\n # Relationship between different pairs: AND\n matchAnnotations:\n key1: value1\n\n # Configure the endpoint exposed for this job\n podMetricsEndpoints:\n # Choose port either via static value or annotation\n # Optional\n # Annotation takes priority\n # Default: static port 80\n port:\n value: integer\n annotation: string\n\n # Choose path either via static value or annotation\n # Optional\n # Annotation takes priority\n # Default: static path /metrics\n path:\n value: string\n annotation: string\n\n # Choose scheme either via static value (http or https) or annotation\n # Optional\n # Annotation takes priority\n # Default: static scheme http\n scheme:\n value: string\n annotation: string\n\n # Choose the frequency to scrape the metrics endpoint defined in podMetricsEndpoints\n # Optional\n # Default: 60s\n scrapeInterval: string\n\n # Dynamically rewrite the label set of a target before it gets scraped.\n # https://prometheus.io/docs/prometheus/latest/configuration/configuration/#relabel_config\n # Optional\n # Default: No filtering by label\n metricsRelabelings:\n - sourceLabels:\n - string\n separator: string\n regex: string\n action: string\n targetLabel: string\n replacement: string\n\n### Observability group\n\nThe following is an example of the `ObservabilityPipeline` custom resource to update the storage size for dashboards in the `platform-obs` project namespace: \n\n # Configure observability pipeline\n apiVersion: observability.gdc.goog/v1\n kind: ObservabilityPipeline\n metadata:\n # Don't change the namespace or name.\n namespace: platform-obs\n name: observability-config\n spec:\n ...\n monitoring:\n grafana:\n storageSize: 1Gi # Configure the new storage size for dashboards in the project.\n ..."]]