Usar o CeleryKubernetesExecutor

Cloud Composer 3 | Cloud Composer 2 | Cloud Composer 1

Nesta página, explicamos como ativar o CeleryKubernetesExecutor no Cloud Composer e como usar o KubernetesExecutor nas suas DAGs.

Sobre o CeleryKubernetesExecutor

CeleryKubernetesExecutor é um tipo de executor que pode usar CeleryExecutor e KubernetesExecutor ao mesmo tempo. O Airflow seleciona o executor com base na fila que você define para a tarefa. Em um DAG, é possível executar algumas tarefas com o CeleryExecutor e outras com o KubernetesExecutor:

  • O CeleryExecutor é otimizado para execução rápida e escalonável de tarefas.
  • O KubernetesExecutor foi projetado para executar tarefas que consomem muitos recursos e executar tarefas isoladamente.

CeleryKubernetesExecutor no Cloud Composer

O CeleryKubernetesExecutor no Cloud Composer permite o uso do KubernetesExecutor para suas tarefas. Não é possível usar o KubernetesExecutor no Cloud Composer separadamente do CeleryKubernetesExecutor.

O Cloud Composer executa tarefas que você executa com o KubernetesExecutor no cluster do ambiente, no mesmo namespace com os workers do Airflow. Essas tarefas têm as mesmas vinculações que os workers do Airflow e podem acessar recursos no seu projeto.

As tarefas executadas com o KubernetesExecutor usam o modelo de preços do Cloud Composer, já que os pods com essas tarefas são executados no cluster do ambiente. As SKUs de computação do Cloud Composer (para CPU, memória e armazenamento) se aplicam a esses pods.

Recomendamos executar tarefas com o CeleryExecutor quando:

  • O tempo de inicialização da tarefa é importante.
  • As tarefas não exigem isolamento de execução e não consomem muitos recursos.

Recomendamos executar tarefas com o KubernetesExecutor quando:

  • As tarefas exigem isolamento de execução. Por exemplo, para que as tarefas não concorram por memória e CPU, já que elas são executadas nos próprios pods.
  • As tarefas consomem muitos recursos, e você quer controlar os recursos de CPU e memória disponíveis.

KubernetesExecutor em comparação com KubernetesPodOperator

Executar tarefas com o KubernetesExecutor é semelhante a executar tarefas usando o KubernetesPodOperator. As tarefas são executadas em pods, fornecendo isolamento de tarefas no nível do pod e melhor gerenciamento de recursos.

No entanto, há algumas diferenças importantes:

  • O KubernetesExecutor executa tarefas apenas no namespace versionado do Cloud Composer do seu ambiente. Não é possível mudar esse namespace no Cloud Composer. É possível especificar um namespace em que o KubernetesPodOperator executa tarefas de pod.
  • O KubernetesExecutor pode usar qualquer operador integrado do Airflow. O KubernetesPodOperator executa apenas um script fornecido definido pelo ponto de entrada do contêiner.
  • O KubernetesExecutor usa a imagem padrão do Docker do Cloud Composer com as mesmas substituições de opção de configuração do Python e do Airflow, variáveis de ambiente e pacotes PyPI definidos no seu ambiente do Cloud Composer.

Sobre as imagens do Docker

Por padrão, o KubernetesExecutor inicia tarefas usando a mesma imagem do Docker que o Cloud Composer usa para workers do Celery. Esta é a imagem do Cloud Composer para seu ambiente, com todas as mudanças especificadas, como pacotes PyPI personalizados ou variáveis de ambiente.

Antes de começar

  • É possível usar o CeleryKubernetesExecutor no Cloud Composer 3.

  • Não é possível usar nenhum executor, exceto o CeleryKubernetesExecutor, no Cloud Composer 3. Isso significa que você pode executar tarefas usando CeleryExecutor, KubernetesExecutor ou ambos em um DAG, mas não é possível configurar o ambiente para usar apenas KubernetesExecutor ou CeleryExecutor.

Configurar o CeleryKubernetesExecutor

Talvez você queira substituir as opções de configuração do Airflow relacionadas ao KubernetesExecutor:

  • [kubernetes]worker_pods_creation_batch_size

    Essa opção define o número de chamadas de criação de pods de worker do Kubernetes por ciclo de agendamento. O valor padrão é 1, então apenas um pod é iniciado por batimento cardíaco do agendador. Se você usa o KubernetesExecutor com frequência, recomendamos aumentar esse valor.

  • [kubernetes]worker_pods_pending_timeout

    Essa opção define, em segundos, por quanto tempo um worker pode permanecer no estado Pending (o pod está sendo criado) antes de ser considerado com falha. O valor padrão é 5 minutos.

Executar tarefas com KubernetesExecutor ou CeleryExecutor

É possível executar tarefas usando o CeleryExecutor, o KubernetesExecutor ou ambos em um DAG:

  • Para executar uma tarefa com o KubernetesExecutor, especifique o valor kubernetes no parâmetro queue de uma tarefa.
  • Para executar uma tarefa com o CeleryExecutor, omita o parâmetro queue.

O exemplo a seguir executa a tarefa task-kubernetes usando o KubernetesExecutor e a tarefa task-celery usando o CeleryExecutor:

import datetime
import airflow
from airflow.operators.python_operator import PythonOperator

with airflow.DAG(
  "composer_sample_celery_kubernetes",
  start_date=datetime.datetime(2022, 1, 1),
  schedule_interval="@daily") as dag:

  def kubernetes_example():
      print("This task runs using KubernetesExecutor")

  def celery_example():
      print("This task runs using CeleryExecutor")

  # To run with KubernetesExecutor, set queue to kubernetes
  task_kubernetes = PythonOperator(
    task_id='task-kubernetes',
    python_callable=kubernetes_example,
    dag=dag,
    queue='kubernetes')

  # To run with CeleryExecutor, omit the queue argument
  task_celery = PythonOperator(
    task_id='task-celery',
    python_callable=celery_example,
    dag=dag)

  task_kubernetes >> task_celery

Executar comandos da CLI do Airflow relacionados ao KubernetesExecutor

É possível executar vários comandos da CLI do Airflow relacionados ao KubernetesExecutor usando gcloud.

Personalizar a especificação do pod de worker

É possível personalizar a especificação do pod de worker transmitindo-a no parâmetro executor_config de uma tarefa. Você pode usar isso para definir requisitos personalizados de CPU e memória.

É possível substituir toda a especificação do pod de worker usada para executar uma tarefa. Para extrair a especificação do pod de uma tarefa usada pelo KubernetesExecutor, execute o comando CLI kubernetes generate-dag-yaml do Airflow.

Para mais informações sobre como personalizar a especificação de pods de worker, consulte a documentação do Airflow.

O Cloud Composer 3 oferece suporte aos seguintes valores para requisitos de recursos:

Recurso Mínimo Máximo Etapa
CPU 0,25 32 Valores de intervalo: 0,25, 0,5, 1, 2, 4, 6, 8, 10, ..., 32. Os valores solicitados são arredondados para o valor de etapa aceito mais próximo (por exemplo, de 5 para 6).
Memória 2G (GB) 128 GB Valores de incremento: 2, 3, 4, 5, ..., 128. Os valores solicitados são arredondados para o valor de etapa compatível mais próximo (por exemplo, de 3,5 G para 4G).
Armazenamento - 100 GB Qualquer valor Se mais de 100 GB forem solicitados, apenas 100 GB serão fornecidos.

Para mais informações sobre unidades de recursos no Kubernetes, consulte Unidades de recursos no Kubernetes.

O exemplo a seguir demonstra uma tarefa que usa a especificação de pod de worker personalizado:

PythonOperator(
    task_id='custom-spec-example',
    python_callable=f,
    dag=dag,
    queue='kubernetes',
    executor_config={
        'pod_override': k8s.V1Pod(
            spec=k8s.V1PodSpec(
                containers=[
                    k8s.V1Container(
                        name='base',
                        resources=k8s.V1ResourceRequirements(requests={
                            'cpu': '0.5',
                            'memory': '2G',
                        })
                    ),
                ],
            ),
        )
    },
)

Conferir registros de tarefas

Os registros de tarefas executadas pelo KubernetesExecutor estão disponíveis na guia Logs, junto com os registros de tarefas executadas pelo CeleryExecutor:

  1. No console do Google Cloud, acesse a página Ambientes.

    Acessar "Ambientes"

  2. Na lista de ambientes, clique no nome do seu ambiente. A página Detalhes do ambiente é aberta.

  3. Acesse a guia Registros.

  4. Acesse Todos os registros > Registros do Airflow > Workers.

  5. Os workers com o nome airflow-k8s-worker executam tarefas do KubernetesExecutor. Para procurar registros de uma tarefa específica, use um ID de DAG ou de tarefa como uma palavra-chave na pesquisa.

A seguir