Uso delle etichette per l'organizzazione delle risorse

Questo documento spiega come utilizzare le etichette per organizzare le risorse del batch.

Le etichette sono coppie chiave/valore applicate alle risorse per raggrupparle e descriverle. Batch dispone di etichette predefinite, che vengono applicate automaticamente alle risorse, e di etichette personalizzate, che puoi definire e applicare durante la creazione di un job.

Le etichette ti consentono di filtrare i risultati degli elenchi di risorse e dei report del fatturazione Cloud. Ad esempio, puoi utilizzare le etichette per:

  • Chiarisci e organizza l'elenco dei job del progetto.

  • Distingui gli elementi eseguibili di un job utilizzando le etichette per descrivere il tipo di container o script specificato.

  • Analizza i costi filtrando i report di Fatturazione Cloud in base alle risorse create da job batch o specifici.

Per ulteriori informazioni sulle etichette, consulta anche la documentazione di Compute Engine relativa alle etichette.

Prima di iniziare

  1. Se non hai mai utilizzato Batch, consulta la guida introduttiva all'utilizzo di Batch e attivalo completando i prerequisiti per progetti e utenti.
  2. Per ottenere le autorizzazioni necessarie per creare un job, chiedi all'amministratore di concederti i seguenti ruoli IAM:

    Per saperne di più sulla concessione dei ruoli, consulta Gestire l'accesso a progetti, cartelle e organizzazioni.

    Potresti anche riuscire a ottenere le autorizzazioni richieste tramite i ruoli personalizzati o altri ruoli predefiniti.

Limitazioni

Oltre ai requisiti per le etichette specificati nella documentazione di Compute Engine, l'applicazione di etichette a un job batch e alle relative risorse presenta le seguenti limitazioni:

  • Batch supporta solo le etichette per le risorse create con Batch e dei seguenti tipi:

  • Dopo aver tenuto conto delle etichette predefinite che Batch applica automaticamente a un job, puoi definire i seguenti importi di etichette personalizzate:

    • Puoi definire un massimo di 63 etichette personalizzate da applicare al job e ai relativi elementi eseguibili.

    • Puoi definire un massimo di 61 etichette personalizzate da applicare a ogni GPU, disco permanente e VM creata per il job.

  • L'elaborazione collettiva supporta solo la definizione di etichette personalizzate con nomi univoci. Ciò ha le seguenti conseguenze:

    • Il tentativo di sostituire un'etichetta predefinita causa errori.

    • La definizione di un'etichetta personalizzata duplicata sostituisce l'etichetta personalizzata esistente.

  • Batch supporta la definizione di etichette solo durante la creazione di un job.

    • Le etichette per i job e i runnable non possono essere aggiunte, aggiornate o rimosse.

    • Sebbene sia possibile utilizzare Compute Engine per aggiungere, aggiornare o rimuovere le etichette per i dischi permanenti e le VM create per i job, questa operazione non è consigliata. Il periodo di tempo in cui esistono le risorse per un job non può essere stimato in modo affidabile e eventuali modifiche potrebbero non funzionare correttamente con Batch.

  • Per utilizzare le etichette per filtrare l'elenco dei job, devi visualizzare l'elenco dei job utilizzando gcloud CLI o l'API Batch.

Etichette predefinite

Ogni etichetta predefinita ha una chiave che inizia con il prefisso batch-. Per impostazione predefinita, Batch applica automaticamente le seguenti etichette predefinite:

  • A ogni job creato:

    • batch-job-id: il valore di questa etichetta è impostato sul nome del job.
  • A ogni GPU, disco permanente e VM creata per un job:

    • batch-job-id: il valore di questa etichetta è impostato sul nome del job.

    • batch-job-uid: il valore di questa etichetta è impostato sull'identificatore unico (UID) del job.

    • batch-node: il valore di questa etichetta è nullo: raggruppa semplicemente tutte le GPU, i dischi permanenti e le VM create per i job. Ad esempio, utilizza questa etichetta quando visualizzi un report di fatturazione Cloud per identificare i costi di tutte le GPU, i dischi permanenti e le VM create da Batch.

Definire le etichette personalizzate

Facoltativamente, puoi definire una o più etichette personalizzate durante la creazione di un job. Puoi definire etichette personalizzate con nuove chiavi o con quelle già utilizzate dal tuo progetto. Per definire le etichette personalizzate, seleziona uno o più dei seguenti metodi in questo documento in base allo scopo dell'etichetta:

  • Definisci etichette personalizzate per il job e le relative risorse.

    Questa sezione spiega come applicare una o più etichette personalizzate al job e a ogni GPU, disco permanente e VM creati per il job. Dopo aver creato il job, puoi utilizzare queste etichette per filtrare i report del fatturazione Cloud e gli elenchi di job, dischi permanenti e VM del tuo progetto.

  • Definisci le etichette personalizzate per il job.

    Questa sezione spiega come applicare uno o più etichette personalizzate al job. Dopo aver creato il job, puoi utilizzare queste etichette per filtrare gli elenchi di job del progetto.

  • Definire etichette personalizzate per gli elementi eseguibili.

    Questa sezione spiega come applicare una o più etichette personalizzate a uno o più entità eseguibili per il job. Dopo aver creato il job, puoi utilizzare queste etichette perfiltrare gli elenchi di job del progetto.

Definisci etichette personalizzate per il job e le relative risorse

Le etichette definite nel campo labels per il criterio di allocazione di un job vengono applicate al job, nonché a ogni GPU (se presente), disco permanente (tutti i dischi di avvio e eventuali nuovi volumi di archiviazione) e VM creata per il job.

Puoi definire le etichette per un job e le relative risorse durante la creazione del job utilizzando l'interfaccia a riga di comando gcloud o l'API Batch.

gcloud

Ad esempio, per creare un job contenitore di base in us-central1 che definisce due etichette personalizzate da applicare al job e alle risorse create per il job:

  1. Crea un file JSON che specifichi i dettagli di configurazione del job e il campo allocationPolicy.labels.

    {
      "allocationPolicy": {
        "instances": [
          {
            "policy": {
              "machineType": "e2-standard-4"
            }
          }
        ],
        "labels": {
          "VM_LABEL_NAME1": "VM_LABEL_VALUE1",
          "VM_LABEL_NAME2": "VM_LABEL_VALUE2"
        }
      },
      "taskGroups": [
        {
          "taskSpec": {
            "runnables": [
              {
                "container": {
                  "imageUri": "gcr.io/google-containers/busybox",
                  "entrypoint": "/bin/sh",
                  "commands": [
                    "-c",
                    "echo Hello world!"
                  ]
                }
              }
            ]
          }
        }
      ]
    }
    

    Sostituisci quanto segue:

    • VM_LABEL_NAME1: il nome della prima etichetta da applicare alle VM create per il job.

    • VM_LABEL_VALUE1: il valore della prima etichetta da applicare alle VM create per il job.

    • VM_LABEL_NAME2: il nome della seconda etichetta da applicare alle VM create per il job.

    • VM_LABEL_VALUE2: il valore della seconda etichetta da applicare alle VM create per il job.

  2. Crea il job in us-central1 utilizzando il comando gcloud batch jobs submit.

    gcloud batch jobs submit example-job \
        --config=JSON_CONFIGURATION_FILE \
        --location=us-central1
    

    Sostituisci JSON_CONFIGURATION_FILE con il percorso del file JSON con i dettagli di configurazione del job che hai creato nel passaggio precedente.

API

Ad esempio, per creare un job di container di base in us-central1 che definisce due etichette personalizzate da applicare al job e alle risorse create per il job, invia una richiesta POST al metodo jobs.create e specifica il campo allocationPolicy.labels.

POST https://batch.googleapis.com/v1/projects/example-project/locations/us-central1/jobs?job_id=example-job

{
  "allocationPolicy": {
    "instances": [
      {
        "policy": {
          "machineType": "e2-standard-4"
        }
      }
    ],
    "labels": {
      "VM_LABEL_NAME1": "VM_LABEL_VALUE1",
      "VM_LABEL_NAME2": "VM_LABEL_VALUE2"
    }
  },
  "taskGroups": [
    {
      "taskSpec": {
        "runnables": [
          {
            "container": {
              "imageUri": "gcr.io/google-containers/busybox",
              "entrypoint": "/bin/sh",
              "commands": [
                "-c",
                "echo Hello world!"
              ]
            }
          }
        ]
      }
    }
  ]
}

Sostituisci quanto segue:

  • VM_LABEL_NAME1: il nome della prima etichetta da applicare alle VM create per il job.

  • VM_LABEL_VALUE1: il valore della prima etichetta da applicare alle VM create per il job.

  • VM_LABEL_NAME2: il nome della seconda etichetta da applicare alle VM create per il job.

  • VM_LABEL_VALUE2: il valore della seconda etichetta da applicare alle VM create per il job.

Java


import com.google.cloud.batch.v1.AllocationPolicy;
import com.google.cloud.batch.v1.BatchServiceClient;
import com.google.cloud.batch.v1.ComputeResource;
import com.google.cloud.batch.v1.CreateJobRequest;
import com.google.cloud.batch.v1.Job;
import com.google.cloud.batch.v1.LogsPolicy;
import com.google.cloud.batch.v1.Runnable;
import com.google.cloud.batch.v1.TaskGroup;
import com.google.cloud.batch.v1.TaskSpec;
import com.google.protobuf.Duration;
import java.io.IOException;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.TimeoutException;

public class CreateBatchAllocationPolicyLabel {

  public static void main(String[] args)
      throws IOException, ExecutionException, InterruptedException, TimeoutException {
    // TODO(developer): Replace these variables before running the sample.
    // Project ID or project number of the Google Cloud project you want to use.
    String projectId = "YOUR_PROJECT_ID";
    // Name of the region you want to use to run the job. Regions that are
    // available for Batch are listed on: https://cloud.google.com/batch/docs/get-started#locations
    String region = "us-central1";
    // The name of the job that will be created.
    // It needs to be unique for each project and region pair.
    String jobName = "example-job";
    // Name of the label1 to be applied for your Job.
    String labelName1 = "VM_LABEL_NAME1";
    // Value for the label1 to be applied for your Job.
    String labelValue1 = "VM_LABEL_VALUE1";
    // Name of the label2 to be applied for your Job.
    String labelName2 = "VM_LABEL_NAME2";
    // Value for the label2 to be applied for your Job.
    String labelValue2 = "VM_LABEL_VALUE2";

    createBatchAllocationPolicyLabel(projectId, region, jobName, labelName1,
        labelValue1, labelName2, labelValue2);
  }

  // This method shows how to create a job with labels defined 
  // in the labels field of a job's allocation policy. These are 
  // applied to the job, as well as to each GPU (if any), persistent disk 
  // (all boot disks and any new storage volumes), and VM created for the job.
  public static Job createBatchAllocationPolicyLabel(String projectId, String region,
                               String jobName, String labelName1,
                               String labelValue1, String labelName2, String labelValue2)
      throws IOException, ExecutionException, InterruptedException, TimeoutException {
    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests.
    try (BatchServiceClient batchServiceClient = BatchServiceClient.create()) {

      // Define what will be done as part of the job.
      Runnable runnable =
          Runnable.newBuilder()
              .setContainer(
                  Runnable.Container.newBuilder()
                      .setImageUri("gcr.io/google-containers/busybox")
                      .setEntrypoint("/bin/sh")
                      .addCommands("-c")
                      .addCommands(
                          "echo Hello world! This is task ${BATCH_TASK_INDEX}. "
                              + "This job has a total of ${BATCH_TASK_COUNT} tasks.")
                      .build())
              .build();

      // We can specify what resources are requested by each task.
      ComputeResource computeResource =
          ComputeResource.newBuilder()
              // In milliseconds per cpu-second. This means the task requires 50% of a single CPUs.
              .setCpuMilli(2000)
              // In MiB.
              .setMemoryMib(2000)
              .build();

      TaskSpec task =
          TaskSpec.newBuilder()
              // Jobs can be divided into tasks. In this case, we have only one task.
              .addRunnables(runnable)
              .setComputeResource(computeResource)
              .setMaxRetryCount(2)
              .setMaxRunDuration(Duration.newBuilder().setSeconds(3600).build())
              .build();

      // Tasks are grouped inside a job using TaskGroups.
      // Currently, it's possible to have only one task group.
      TaskGroup taskGroup = TaskGroup.newBuilder().setTaskCount(1).setTaskSpec(task).build();

      // Policies are used to define on what kind of virtual machines the tasks will run on.
      // In this case, we tell the system to use "e2-standard-4" machine type.
      // Read more about machine types here: https://cloud.google.com/compute/docs/machine-types
      AllocationPolicy.InstancePolicy instancePolicy =
          AllocationPolicy.InstancePolicy.newBuilder().setMachineType("e2-standard-4").build();

      AllocationPolicy allocationPolicy =
          AllocationPolicy.newBuilder()
              .addInstances(AllocationPolicy.InstancePolicyOrTemplate.newBuilder()
                  .setPolicy(instancePolicy)
                  .build())
              // Labels and their value to be applied to the job and its resources
              .putLabels(labelName1, labelValue1)
              .putLabels(labelName2, labelValue2)
              .build();

      Job job =
          Job.newBuilder()
              .addTaskGroups(taskGroup)
              .setAllocationPolicy(allocationPolicy)
              // We use Cloud Logging as it's an out of the box available option.
              .setLogsPolicy(LogsPolicy.newBuilder()
                      .setDestination(LogsPolicy.Destination.CLOUD_LOGGING).build())
              .build();

      CreateJobRequest createJobRequest =
          CreateJobRequest.newBuilder()
              // The job's parent is the region in which the job will run.
              .setParent(String.format("projects/%s/locations/%s", projectId, region))
              .setJob(job)
              .setJobId(jobName)
              .build();

      Job result =
          batchServiceClient
              .createJobCallable()
              .futureCall(createJobRequest)
              .get(5, TimeUnit.MINUTES);

      System.out.printf("Successfully created the job: %s", result.getName());

      return result;
    }
  }

}

Node.js

// Imports the Batch library
const batchLib = require('@google-cloud/batch');
const batch = batchLib.protos.google.cloud.batch.v1;

// Instantiates a client
const batchClient = new batchLib.v1.BatchServiceClient();

/**
 * TODO(developer): Update these variables before running the sample.
 */
// Project ID or project number of the Google Cloud project you want to use.
const projectId = await batchClient.getProjectId();
// Name of the region you want to use to run the job. Regions that are
// available for Batch are listed on: https://cloud.google.com/batch/docs/get-started#locations
const region = 'europe-central2';
// The name of the job that will be created.
// It needs to be unique for each project and region pair.
const jobName = 'batch-labels-allocation-job';
// Name of the label1 to be applied for your Job.
const labelName1 = 'vm_label_name_1';
// Value for the label1 to be applied for your Job.
const labelValue1 = 'vmLabelValue1';
// Name of the label2 to be applied for your Job.
const labelName2 = 'vm_label_name_2';
// Value for the label2 to be applied for your Job.
const labelValue2 = 'vmLabelValue2';

// Define what will be done as part of the job.
const runnable = new batch.Runnable({
  script: new batch.Runnable.Script({
    commands: ['-c', 'echo Hello world! This is task ${BATCH_TASK_INDEX}.'],
  }),
});

// Specify what resources are requested by each task.
const computeResource = new batch.ComputeResource({
  // In milliseconds per cpu-second. This means the task requires 50% of a single CPUs.
  cpuMilli: 500,
  // In MiB.
  memoryMib: 16,
});

const task = new batch.TaskSpec({
  runnables: [runnable],
  computeResource,
  maxRetryCount: 2,
  maxRunDuration: {seconds: 3600},
});

// Tasks are grouped inside a job using TaskGroups.
const group = new batch.TaskGroup({
  taskCount: 3,
  taskSpec: task,
});

// Policies are used to define on what kind of virtual machines the tasks will run on.
// In this case, we tell the system to use "e2-standard-4" machine type.
// Read more about machine types here: https://cloud.google.com/compute/docs/machine-types
const instancePolicy = new batch.AllocationPolicy.InstancePolicy({
  machineType: 'e2-standard-4',
});

const allocationPolicy = new batch.AllocationPolicy({
  instances: [{policy: instancePolicy}],
});
// Labels and their value to be applied to the job and its resources.
allocationPolicy.labels[labelName1] = labelValue1;
allocationPolicy.labels[labelName2] = labelValue2;

const job = new batch.Job({
  name: jobName,
  taskGroups: [group],
  labels: {env: 'testing', type: 'script'},
  allocationPolicy,
  // We use Cloud Logging as it's an option available out of the box
  logsPolicy: new batch.LogsPolicy({
    destination: batch.LogsPolicy.Destination.CLOUD_LOGGING,
  }),
});

// The job's parent is the project and region in which the job will run
const parent = `projects/${projectId}/locations/${region}`;

async function callCreateBatchLabelsAllocation() {
  // Construct request
  const request = {
    parent,
    jobId: jobName,
    job,
  };

  // Run request
  const [response] = await batchClient.createJob(request);
  console.log(JSON.stringify(response));
}

await callCreateBatchLabelsAllocation();

Python

from google.cloud import batch_v1


def create_job_with_custom_allocation_policy_labels(
    project_id: str, region: str, job_name: str, labels: dict
) -> batch_v1.Job:
    """
    This method shows the creation of a Batch job with custom labels which describe the allocation policy.
    Args:
        project_id (str): project ID or project number of the Cloud project you want to use.
        region (str): name of the region you want to use to run the job. Regions that are
            available for Batch are listed on: https://cloud.google.com/batch/docs/locations
        job_name (str): the name of the job that will be created.
        labels (dict): a dictionary of key-value pairs that will be used as labels
            E.g., {"label_key1": "label_value2", "label_key2": "label_value2"}
    Returns:
        batch_v1.Job: The created Batch job object containing configuration details.
    """
    client = batch_v1.BatchServiceClient()

    runnable = batch_v1.Runnable()
    runnable.container = batch_v1.Runnable.Container()
    runnable.container.image_uri = "gcr.io/google-containers/busybox"
    runnable.container.entrypoint = "/bin/sh"
    runnable.container.commands = [
        "-c",
        "echo Hello world!",
    ]

    # Create a task specification and assign the runnable and volume to it
    task = batch_v1.TaskSpec()
    task.runnables = [runnable]

    # Specify what resources are requested by each task.
    resources = batch_v1.ComputeResource()
    resources.cpu_milli = 2000  # in milliseconds per cpu-second. This means the task requires 2 whole CPUs.
    resources.memory_mib = 16  # in MiB
    task.compute_resource = resources

    task.max_retry_count = 2
    task.max_run_duration = "3600s"

    # Create a task group and assign the task specification to it
    group = batch_v1.TaskGroup()
    group.task_count = 3
    group.task_spec = task

    # Policies are used to define on what kind of virtual machines the tasks will run on.
    # In this case, we tell the system to use "e2-standard-4" machine type.
    # Read more about machine types here: https://cloud.google.com/compute/docs/machine-types
    policy = batch_v1.AllocationPolicy.InstancePolicy()
    policy.machine_type = "e2-standard-4"
    instances = batch_v1.AllocationPolicy.InstancePolicyOrTemplate()
    instances.policy = policy
    allocation_policy = batch_v1.AllocationPolicy()
    allocation_policy.instances = [instances]

    # Assign the provided labels to the allocation policy
    allocation_policy.labels = labels

    # Create the job and assign the task group and allocation policy to it
    job = batch_v1.Job()
    job.task_groups = [group]
    job.allocation_policy = allocation_policy

    # We use Cloud Logging as it's an out of the box available option
    job.logs_policy = batch_v1.LogsPolicy()
    job.logs_policy.destination = batch_v1.LogsPolicy.Destination.CLOUD_LOGGING

    # Create the job request and set the job and job ID
    create_request = batch_v1.CreateJobRequest()
    create_request.job = job
    create_request.job_id = job_name
    # The job's parent is the region in which the job will run
    create_request.parent = f"projects/{project_id}/locations/{region}"

    return client.create_job(create_request)

Definisci le etichette personalizzate per il job

Le etichette definite nel campo labels per il job vengono applicate solo al job.

Puoi definire le etichette per un job quando lo crei utilizzando l'interfaccia a riga di comando gcloud CLI'API Batch.

gcloud

Ad esempio, per creare un job contenitore di base in us-central1 che definisce due etichette personalizzate da applicare al job stesso:

  1. Crea un file JSON che specifichi i dettagli di configurazione del job e il campo labels.

    {
      "taskGroups": [
        {
          "taskSpec": {
            "runnables": [
              {
                "container": {
                  "imageUri": "gcr.io/google-containers/busybox",
                  "entrypoint": "/bin/sh",
                  "commands": [
                    "-c",
                    "echo Hello World!"
                  ]
                }
              }
            ]
          }
        }
      ],
      "labels": {
        "JOB_LABEL_NAME1": "JOB_LABEL_VALUE1",
        "JOB_LABEL_NAME2": "JOB_LABEL_VALUE2"
      }
    }
    

    Sostituisci quanto segue:

    • JOB_LABEL_NAME1: il nome della prima etichetta da applicare al job.

    • JOB_LABEL_VALUE1: il valore della prima etichetta da applicare al job.

    • JOB_LABEL_NAME2: il nome della seconda etichetta da applicare al job.

    • JOB_LABEL_VALUE2: il valore della seconda etichetta da applicare al job.

  2. Crea il job in us-central1 utilizzando il comando gcloud batch jobs submit con i seguenti flag:

    gcloud batch jobs submit example-job \
        --config=JSON_CONFIGURATION_FILE \
        --location=us-central1
    

    Sostituisci JSON_CONFIGURATION_FILE con il percorso del file JSON con i dettagli di configurazione del job che hai creato nel passaggio precedente.

API

Ad esempio, per creare un job contenitore in us-central1 che definisce due etichette personalizzate da applicare ai job stessi, invia una richiesta POST al metodo jobs.create e specifica il campo labels.

POST https://batch.googleapis.com/v1/projects/example-project/locations/us-central1/jobs?job_id=example-job

{
  "taskGroups": [
    {
      "taskSpec": {
        "runnables": [
          {
            "container": {
              "imageUri": "gcr.io/google-containers/busybox",
              "entrypoint": "/bin/sh",
              "commands": [
                "-c",
                "echo Hello World!"
              ]
            }
          }
        ]
      }
    }
  ],
  "labels": {
    "JOB_LABEL_NAME1": "JOB_LABEL_VALUE1",
    "JOB_LABEL_NAME2": "JOB_LABEL_VALUE2"
  }
}

Sostituisci quanto segue:

  • JOB_LABEL_NAME1: il nome della prima etichetta da applicare al tuo job.

  • JOB_LABEL_VALUE1: il valore della prima etichetta da applicare al tuo job.

  • JOB_LABEL_NAME2: il nome della seconda etichetta da applicare al tuo job.

  • JOB_LABEL_VALUE2: il valore della seconda etichetta da applicare al tuo job.

Java


import com.google.cloud.batch.v1.BatchServiceClient;
import com.google.cloud.batch.v1.ComputeResource;
import com.google.cloud.batch.v1.CreateJobRequest;
import com.google.cloud.batch.v1.Job;
import com.google.cloud.batch.v1.LogsPolicy;
import com.google.cloud.batch.v1.Runnable;
import com.google.cloud.batch.v1.TaskGroup;
import com.google.cloud.batch.v1.TaskSpec;
import com.google.protobuf.Duration;
import java.io.IOException;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.TimeoutException;


public class CreateBatchLabelJob {

  public static void main(String[] args)
      throws IOException, ExecutionException, InterruptedException, TimeoutException {
    // TODO(developer): Replace these variables before running the sample.
    // Project ID or project number of the Google Cloud project you want to use.
    String projectId = "YOUR_PROJECT_ID";
    // Name of the region you want to use to run the job. Regions that are
    // available for Batch are listed on: https://cloud.google.com/batch/docs/get-started#locations
    String region = "us-central1";
    // The name of the job that will be created.
    // It needs to be unique for each project and region pair.
    String jobName = "example-job";
    // Name of the label1 to be applied for your Job.
    String labelName1 = "JOB_LABEL_NAME1";
    // Value for the label1 to be applied for your Job.
    String labelValue1 = "JOB_LABEL_VALUE1";
    // Name of the label2 to be applied for your Job.
    String labelName2 = "JOB_LABEL_NAME2";
    // Value for the label2 to be applied for your Job.
    String labelValue2 = "JOB_LABEL_VALUE2";

    createBatchLabelJob(projectId, region, jobName, labelName1,
        labelValue1, labelName2, labelValue2);
  }

  // Creates a job with labels defined in the labels field.
  public static Job createBatchLabelJob(String projectId, String region, String jobName,
                    String labelName1, String labelValue1, String labelName2, String labelValue2)
      throws IOException, ExecutionException, InterruptedException, TimeoutException {
    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests.
    try (BatchServiceClient batchServiceClient = BatchServiceClient.create()) {

      // Define what will be done as part of the job.
      Runnable runnable =
          Runnable.newBuilder()
              .setContainer(
                  Runnable.Container.newBuilder()
                      .setImageUri("gcr.io/google-containers/busybox")
                      .setEntrypoint("/bin/sh")
                      .addCommands("-c")
                      .addCommands(
                          "echo Hello world! This is task ${BATCH_TASK_INDEX}. "
                              + "This job has a total of ${BATCH_TASK_COUNT} tasks.")
                      .build())
              .build();

      // We can specify what resources are requested by each task.
      ComputeResource computeResource =
          ComputeResource.newBuilder()
              // In milliseconds per cpu-second. This means the task requires 50% of a single CPUs.
              .setCpuMilli(2000)
              // In MiB.
              .setMemoryMib(2000)
              .build();

      TaskSpec task =
          TaskSpec.newBuilder()
              // Jobs can be divided into tasks. In this case, we have only one task.
              .addRunnables(runnable)
              .setComputeResource(computeResource)
              .setMaxRetryCount(2)
              .setMaxRunDuration(Duration.newBuilder().setSeconds(3600).build())
              .build();

      // Tasks are grouped inside a job using TaskGroups.
      // Currently, it's possible to have only one task group.
      TaskGroup taskGroup = TaskGroup.newBuilder().setTaskCount(1).setTaskSpec(task).build();

      Job job =
          Job.newBuilder()
              .addTaskGroups(taskGroup)
              // We use Cloud Logging as it's an out of the box available option.
              .setLogsPolicy(LogsPolicy.newBuilder()
              .setDestination(LogsPolicy.Destination.CLOUD_LOGGING).build())
              // Labels and their value to be applied to the job.
              .putLabels(labelName1, labelValue1)
              .putLabels(labelName2, labelValue2)
              .build();

      CreateJobRequest createJobRequest =
          CreateJobRequest.newBuilder()
              // The job's parent is the region in which the job will run.
              .setParent(String.format("projects/%s/locations/%s", projectId, region))
              .setJob(job)
              .setJobId(jobName)
              .build();

      Job result =
          batchServiceClient
              .createJobCallable()
              .futureCall(createJobRequest)
              .get(5, TimeUnit.MINUTES);

      System.out.printf("Successfully created the job: %s", result.getName());

      return result;
    }
  }

}

Node.js

// Imports the Batch library
const batchLib = require('@google-cloud/batch');
const batch = batchLib.protos.google.cloud.batch.v1;

// Instantiates a client
const batchClient = new batchLib.v1.BatchServiceClient();

/**
 * TODO(developer): Update these variables before running the sample.
 */
// Project ID or project number of the Google Cloud project you want to use.
const projectId = await batchClient.getProjectId();
// Name of the region you want to use to run the job. Regions that are
// available for Batch are listed on: https://cloud.google.com/batch/docs/get-started#locations
const region = 'europe-central2';
// The name of the job that will be created.
// It needs to be unique for each project and region pair.
const jobName = 'batch-labels-job';
// Name of the label1 to be applied for your Job.
const labelName1 = 'job_label_name_1';
// Value for the label1 to be applied for your Job.
const labelValue1 = 'job_label_value1';
// Name of the label2 to be applied for your Job.
const labelName2 = 'job_label_name_2';
// Value for the label2 to be applied for your Job.
const labelValue2 = 'job_label_value2';

// Define what will be done as part of the job.
const runnable = new batch.Runnable({
  container: new batch.Runnable.Container({
    imageUri: 'gcr.io/google-containers/busybox',
    entrypoint: '/bin/sh',
    commands: ['-c', 'echo Hello world! This is task ${BATCH_TASK_INDEX}.'],
  }),
});

// Specify what resources are requested by each task.
const computeResource = new batch.ComputeResource({
  // In milliseconds per cpu-second. This means the task requires 50% of a single CPUs.
  cpuMilli: 500,
  // In MiB.
  memoryMib: 16,
});

const task = new batch.TaskSpec({
  runnables: [runnable],
  computeResource,
  maxRetryCount: 2,
  maxRunDuration: {seconds: 3600},
});

// Tasks are grouped inside a job using TaskGroups.
const group = new batch.TaskGroup({
  taskCount: 3,
  taskSpec: task,
});

const job = new batch.Job({
  name: jobName,
  taskGroups: [group],
  // We use Cloud Logging as it's an option available out of the box
  logsPolicy: new batch.LogsPolicy({
    destination: batch.LogsPolicy.Destination.CLOUD_LOGGING,
  }),
});

// Labels and their value to be applied to the job and its resources.
job.labels[labelName1] = labelValue1;
job.labels[labelName2] = labelValue2;

// The job's parent is the project and region in which the job will run
const parent = `projects/${projectId}/locations/${region}`;

async function callCreateBatchLabelsJob() {
  // Construct request
  const request = {
    parent,
    jobId: jobName,
    job,
  };

  // Run request
  const [response] = await batchClient.createJob(request);
  console.log(JSON.stringify(response));
}

await callCreateBatchLabelsJob();

Python

from google.cloud import batch_v1


def create_job_with_custom_job_labels(
    project_id: str,
    region: str,
    job_name: str,
    labels: dict,
) -> batch_v1.Job:
    """
    This method creates a Batch job with custom labels.
    Args:
        project_id (str): project ID or project number of the Cloud project you want to use.
        region (str): name of the region you want to use to run the job. Regions that are
            available for Batch are listed on: https://cloud.google.com/batch/docs/locations
        job_name (str): the name of the job that will be created.
        labels (dict): A dictionary of custom labels to be added to the job.
            E.g., {"label_key1": "label_value2", "label_key2": "label_value2"}
    Returns:
        batch_v1.Job: The created Batch job object containing configuration details.
    """
    client = batch_v1.BatchServiceClient()

    runnable = batch_v1.Runnable()
    runnable.container = batch_v1.Runnable.Container()
    runnable.container.image_uri = "gcr.io/google-containers/busybox"
    runnable.container.entrypoint = "/bin/sh"
    runnable.container.commands = [
        "-c",
        "echo Hello world!",
    ]

    # Create a task specification and assign the runnable and volume to it
    task = batch_v1.TaskSpec()
    task.runnables = [runnable]

    # Specify what resources are requested by each task.
    resources = batch_v1.ComputeResource()
    resources.cpu_milli = 2000  # in milliseconds per cpu-second. This means the task requires 2 whole CPUs.
    resources.memory_mib = 16  # in MiB
    task.compute_resource = resources

    task.max_retry_count = 2
    task.max_run_duration = "3600s"

    # Create a task group and assign the task specification to it
    group = batch_v1.TaskGroup()
    group.task_count = 3
    group.task_spec = task

    # Policies are used to define on what kind of virtual machines the tasks will run on.
    # In this case, we tell the system to use "e2-standard-4" machine type.
    # Read more about machine types here: https://cloud.google.com/compute/docs/machine-types
    policy = batch_v1.AllocationPolicy.InstancePolicy()
    policy.machine_type = "e2-standard-4"
    instances = batch_v1.AllocationPolicy.InstancePolicyOrTemplate()
    instances.policy = policy
    allocation_policy = batch_v1.AllocationPolicy()
    allocation_policy.instances = [instances]

    # Create the job and assign the task group and allocation policy to it
    job = batch_v1.Job()
    job.task_groups = [group]
    job.allocation_policy = allocation_policy

    # Set the labels for the job
    job.labels = labels

    # We use Cloud Logging as it's an out of the box available option
    job.logs_policy = batch_v1.LogsPolicy()
    job.logs_policy.destination = batch_v1.LogsPolicy.Destination.CLOUD_LOGGING

    # Create the job request and set the job and job ID
    create_request = batch_v1.CreateJobRequest()
    create_request.job = job
    create_request.job_id = job_name
    # The job's parent is the region in which the job will run
    create_request.parent = f"projects/{project_id}/locations/{region}"

    return client.create_job(create_request)

Definire etichette personalizzate per gli elementi eseguibili

Le etichette definite nel campo labels per un eseguibile vengono applicate solo a quell'eseguibile.

Puoi definire le etichette per uno o più eseguibili quando crei un job utilizzando gcloud CLI o l'API Batch.

gcloud

Ad esempio, per creare un job in us-central1 che definisce due etichette personalizzate, una per ogni elemento eseguibile del job:

  1. Crea un file JSON che specifichi i dettagli di configurazione del job e i campi runnables.labels.

    {
      "taskGroups": [
        {
          "taskSpec": {
            "runnables": [
              {
                "container": {
                  "imageUri": "gcr.io/google-containers/busybox",
                  "entrypoint": "/bin/sh",
                  "commands": [
                    "-c",
                    "echo Hello from task ${BATCH_TASK_INDEX}!"
                  ]
                },
                "labels": {
                  "RUNNABLE1_LABEL_NAME1": "RUNNABLE1_LABEL_VALUE1"
                }
              },
              {
                "script": {
                  "text": "echo Hello from task ${BATCH_TASK_INDEX}!"
                },
                "labels": {
                  "RUNNABLE2_LABEL_NAME1": "RUNNABLE2_LABEL_VALUE1"
                }
              }
            ]
          }
        }
      ]
    }
    

    Sostituisci quanto segue:

    • RUNNABLE1_LABEL_NAME1: il nome dell'etichetta da applicare al primo eseguibile del job.

    • RUNNABLE1_LABEL_VALUE1: il valore dell'etichetta da applicare al primo eseguibile del job.

    • RUNNABLE2_LABEL_NAME1: il nome dell'etichetta da applicare al secondo eseguibile del job.

    • RUNNABLE2_LABEL_VALUE1: il valore dell'etichetta da applicare al secondo eseguibile del job.

  2. Crea il job in us-central1 utilizzando il comando gcloud batch jobs submit.

    gcloud batch jobs submit example-job \
        --config=JSON_CONFIGURATION_FILE \
        --location=us-central1
    

    Sostituisci JSON_CONFIGURATION_FILE con il percorso del file JSON con i dettagli di configurazione del job che hai creato nel passaggio precedente.

API

Ad esempio, per creare un job in us-central1 che definisce due etichette personalizzate, una per ciascuno dei due elementi eseguibili del job, invia una richiesta POST al metodo jobs.create e specifica i campi runnables.labels.

POST https://batch.googleapis.com/v1/projects/example-project/locations/us-central1/jobs?job_id=example-job

{
  "taskGroups": [
    {
      "taskSpec": {
        "runnables": [
          {
            "container": {
              "imageUri": "gcr.io/google-containers/busybox",
              "entrypoint": "/bin/sh",
              "commands": [
                "-c",
                "echo Hello from ${BATCH_TASK_INDEX}!"
              ]
            },
            "labels": {
              "RUNNABLE1_LABEL_NAME1": "RUNNABLE1_LABEL_VALUE1"
            }
          },
          {
            "script": {
              "text": "echo Hello from ${BATCH_TASK_INDEX}!"
            },
            "labels": {
              "RUNNABLE2_LABEL_NAME1": "RUNNABLE2_LABEL_VALUE1"
            }
          }
        ]
      }
    }
  ]
}

Sostituisci quanto segue:

  • RUNNABLE1_LABEL_NAME1: il nome dell'etichetta da applicare al programma eseguibile del primo job.

  • RUNNABLE1_LABEL_VALUE1: il valore dell'etichetta da applicare al file eseguibile del primo job.

  • RUNNABLE2_LABEL_NAME1: il nome dell'etichetta da applicare al programma eseguibile del secondo job.

  • RUNNABLE2_LABEL_VALUE1: il valore dell'etichetta da applicare al file eseguibile del secondo job.

Java


import com.google.cloud.batch.v1.BatchServiceClient;
import com.google.cloud.batch.v1.ComputeResource;
import com.google.cloud.batch.v1.CreateJobRequest;
import com.google.cloud.batch.v1.Job;
import com.google.cloud.batch.v1.LogsPolicy;
import com.google.cloud.batch.v1.Runnable;
import com.google.cloud.batch.v1.TaskGroup;
import com.google.cloud.batch.v1.TaskSpec;
import com.google.protobuf.Duration;
import java.io.IOException;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.TimeoutException;

public class CreateBatchRunnableLabel {
  public static void main(String[] args)
      throws IOException, ExecutionException, InterruptedException, TimeoutException {
    // TODO(developer): Replace these variables before running the sample.
    // Project ID or project number of the Google Cloud project you want to use.
    String projectId = "YOUR_PROJECT_ID";
    // Name of the region you want to use to run the job. Regions that are
    // available for Batch are listed on: https://cloud.google.com/batch/docs/get-started#locations
    String region = "us-central1";
    // The name of the job that will be created.
    // It needs to be unique for each project and region pair.
    String jobName = "example-job";
    // Name of the label1 to be applied for your Job.
    String labelName1 = "RUNNABLE_LABEL_NAME1";
    // Value for the label1 to be applied for your Job.
    String labelValue1 = "RUNNABLE_LABEL_VALUE1";
    // Name of the label2 to be applied for your Job.
    String labelName2 = "RUNNABLE_LABEL_NAME2";
    // Value for the label2 to be applied for your Job.
    String labelValue2 = "RUNNABLE_LABEL_VALUE2";

    createBatchRunnableLabel(projectId, region, jobName, labelName1,
        labelValue1, labelName2, labelValue2);
  }

  // Creates a job with labels defined in the labels field
  // for a runnable. The labels are only applied to that runnable.
  // In Batch, a runnable represents a single task or unit of work within a job.
  // It can be a container (like a Docker image) or a script.
  public static Job createBatchRunnableLabel(String projectId, String region, String jobName,
                   String labelName1, String labelValue1, String labelName2, String labelValue2)
      throws IOException, ExecutionException, InterruptedException, TimeoutException {
    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests.
    try (BatchServiceClient batchServiceClient = BatchServiceClient.create()) {

      // Define what will be done as part of the job.
      Runnable runnable =
          Runnable.newBuilder()
              .setContainer(
                  Runnable.Container.newBuilder()
                      .setImageUri("gcr.io/google-containers/busybox")
                      .setEntrypoint("/bin/sh")
                      .addCommands("-c")
                      .addCommands(
                          "echo Hello world! This is task ${BATCH_TASK_INDEX}. "
                              + "This job has a total of ${BATCH_TASK_COUNT} tasks.")
                      .build())
              // Label and its value to be applied to the container
              // that processes data from a specific region.
              .putLabels(labelName1, labelValue1)
              .setScript(Runnable.Script.newBuilder()
              .setText("echo Hello world! This is task ${BATCH_TASK_INDEX}. ").build())
              // Label and its value to be applied to the script
              // that performs some analysis on the processed data.
              .putLabels(labelName2, labelValue2)
              .build();

      // We can specify what resources are requested by each task.
      ComputeResource computeResource =
          ComputeResource.newBuilder()
              // In milliseconds per cpu-second. This means the task requires 50% of a single CPUs.
              .setCpuMilli(2000)
              // In MiB.
              .setMemoryMib(2000)
              .build();

      TaskSpec task =
          TaskSpec.newBuilder()
              // Jobs can be divided into tasks. In this case, we have only one task.
              .addRunnables(runnable)
              .setComputeResource(computeResource)
              .setMaxRetryCount(2)
              .setMaxRunDuration(Duration.newBuilder().setSeconds(3600).build())
              .build();

      // Tasks are grouped inside a job using TaskGroups.
      // Currently, it's possible to have only one task group.
      TaskGroup taskGroup = TaskGroup.newBuilder().setTaskCount(1).setTaskSpec(task).build();

      Job job =
          Job.newBuilder()
              .addTaskGroups(taskGroup)
              // We use Cloud Logging as it's an out of the box available option.
              .setLogsPolicy(LogsPolicy.newBuilder()
              .setDestination(LogsPolicy.Destination.CLOUD_LOGGING).build())
              .build();

      CreateJobRequest createJobRequest =
          CreateJobRequest.newBuilder()
              // The job's parent is the region in which the job will run for the specific project.
              .setParent(String.format("projects/%s/locations/%s", projectId, region))
              .setJob(job)
              .setJobId(jobName)
              .build();

      Job result =
          batchServiceClient
              .createJobCallable()
              .futureCall(createJobRequest)
              .get(5, TimeUnit.MINUTES);

      System.out.printf("Successfully created the job: %s", result.getName());

      return result;
    }
  }

}

Node.js

// Imports the Batch library
const batchLib = require('@google-cloud/batch');
const batch = batchLib.protos.google.cloud.batch.v1;

// Instantiates a client
const batchClient = new batchLib.v1.BatchServiceClient();

/**
 * TODO(developer): Update these variables before running the sample.
 */
// Project ID or project number of the Google Cloud project you want to use.
const projectId = await batchClient.getProjectId();
// Name of the region you want to use to run the job. Regions that are
// available for Batch are listed on: https://cloud.google.com/batch/docs/get-started#locations
const region = 'us-central1';
// The name of the job that will be created.
// It needs to be unique for each project and region pair.
const jobName = 'example-job';
// Name of the label1 to be applied for your Job.
const labelName1 = 'RUNNABLE_LABEL_NAME1';
// Value for the label1 to be applied for your Job.
const labelValue1 = 'RUNNABLE_LABEL_VALUE1';
// Name of the label2 to be applied for your Job.
const labelName2 = 'RUNNABLE_LABEL_NAME2';
// Value for the label2 to be applied for your Job.
const labelValue2 = 'RUNNABLE_LABEL_VALUE2';

const container = new batch.Runnable.Container({
  imageUri: 'gcr.io/google-containers/busybox',
  entrypoint: '/bin/sh',
  commands: ['-c', 'echo Hello world! This is task ${BATCH_TASK_INDEX}.'],
});

const script = new batch.Runnable.Script({
  commands: ['-c', 'echo Hello world! This is task ${BATCH_TASK_INDEX}.'],
});

const runnable1 = new batch.Runnable({
  container,
  // Label and its value to be applied to the container
  // that processes data from a specific region.
  labels: {
    [labelName1]: labelValue1,
  },
});

const runnable2 = new batch.Runnable({
  script,
  // Label and its value to be applied to the script
  // that performs some analysis on the processed data.
  labels: {
    [labelName2]: labelValue2,
  },
});

// Specify what resources are requested by each task.
const computeResource = new batch.ComputeResource({
  // In milliseconds per cpu-second. This means the task requires 50% of a single CPUs.
  cpuMilli: 500,
  // In MiB.
  memoryMib: 16,
});

const task = new batch.TaskSpec({
  runnables: [runnable1, runnable2],
  computeResource,
  maxRetryCount: 2,
  maxRunDuration: {seconds: 3600},
});

// Tasks are grouped inside a job using TaskGroups.
const group = new batch.TaskGroup({
  taskCount: 3,
  taskSpec: task,
});

const job = new batch.Job({
  name: jobName,
  taskGroups: [group],
  // We use Cloud Logging as it's an option available out of the box
  logsPolicy: new batch.LogsPolicy({
    destination: batch.LogsPolicy.Destination.CLOUD_LOGGING,
  }),
});

// The job's parent is the project and region in which the job will run
const parent = `projects/${projectId}/locations/${region}`;

async function callCreateBatchLabelsRunnable() {
  // Construct request
  const request = {
    parent,
    jobId: jobName,
    job,
  };

  // Run request
  const [response] = await batchClient.createJob(request);
  console.log(JSON.stringify(response));
}

await callCreateBatchLabelsRunnable();

Python

from google.cloud import batch_v1


def create_job_with_custom_runnables_labels(
    project_id: str,
    region: str,
    job_name: str,
    labels: dict,
) -> batch_v1.Job:
    """
    This method creates a Batch job with custom labels for runnable.
    Args:
        project_id (str): project ID or project number of the Cloud project you want to use.
        region (str): name of the region you want to use to run the job. Regions that are
            available for Batch are listed on: https://cloud.google.com/batch/docs/locations
        job_name (str): the name of the job that will be created.
        labels (dict): a dictionary of key-value pairs that will be used as labels
            E.g., {"label_key1": "label_value2"}
    Returns:
        batch_v1.Job: The created Batch job object containing configuration details.
    """
    client = batch_v1.BatchServiceClient()

    runnable = batch_v1.Runnable()
    runnable.display_name = "Script 1"
    runnable.script = batch_v1.Runnable.Script()
    runnable.script.text = "echo Hello world from Script 1 for task ${BATCH_TASK_INDEX}"
    # Add custom labels to the first runnable
    runnable.labels = labels

    # Create a task specification and assign the runnable and volume to it
    task = batch_v1.TaskSpec()
    task.runnables = [runnable]

    # Specify what resources are requested by each task.
    resources = batch_v1.ComputeResource()
    resources.cpu_milli = 2000  # in milliseconds per cpu-second. This means the task requires 2 whole CPUs.
    resources.memory_mib = 16  # in MiB
    task.compute_resource = resources

    task.max_retry_count = 2
    task.max_run_duration = "3600s"

    # Create a task group and assign the task specification to it
    group = batch_v1.TaskGroup()
    group.task_count = 3
    group.task_spec = task

    # Policies are used to define on what kind of virtual machines the tasks will run on.
    # In this case, we tell the system to use "e2-standard-4" machine type.
    # Read more about machine types here: https://cloud.google.com/compute/docs/machine-types
    policy = batch_v1.AllocationPolicy.InstancePolicy()
    policy.machine_type = "e2-standard-4"
    instances = batch_v1.AllocationPolicy.InstancePolicyOrTemplate()
    instances.policy = policy
    allocation_policy = batch_v1.AllocationPolicy()
    allocation_policy.instances = [instances]

    # Create the job and assign the task group and allocation policy to it
    job = batch_v1.Job()
    job.task_groups = [group]
    job.allocation_policy = allocation_policy

    # We use Cloud Logging as it's an out of the box available option
    job.logs_policy = batch_v1.LogsPolicy()
    job.logs_policy.destination = batch_v1.LogsPolicy.Destination.CLOUD_LOGGING

    # Create the job request and set the job and job ID
    create_request = batch_v1.CreateJobRequest()
    create_request.job = job
    create_request.job_id = job_name
    # The job's parent is the region in which the job will run
    create_request.parent = f"projects/{project_id}/locations/{region}"

    return client.create_job(create_request)

Passaggi successivi