Organize recursos com etiquetas

Este documento explica como usar etiquetas para organizar os seus recursos do Batch.

As etiquetas são pares de chave-valor aplicados aos recursos para os agrupar e descrever. O lote tem etiquetas predefinidas, que são aplicadas automaticamente aos recursos, e etiquetas personalizadas, que pode definir e aplicar quando cria uma tarefa.

As etiquetas permitem-lhe filtrar os resultados das listas de recursos e dos relatórios de faturação do Google Cloud. Por exemplo, pode usar etiquetas para fazer o seguinte:

  • Clarifique e organize a lista de tarefas do seu projeto.

  • Distinguir os executáveis de uma tarefa através de etiquetas para descrever o tipo de contentor ou script que especificam.

  • Analise os custos filtrando os relatórios de faturação do Google Cloud para os recursos criados pelo Batch ou por tarefas específicas.

Para mais informações sobre etiquetas, consulte também a documentação do Compute Engine sobre etiquetas

Antes de começar

  1. Se nunca usou o Batch, reveja o artigo Comece a usar o Batch e ative o Batch concluindo os pré-requisitos para projetos e utilizadores.
  2. Para receber as autorizações de que precisa para criar uma tarefa, peça ao seu administrador para lhe conceder as seguintes funções de IAM:

    Para mais informações sobre a atribuição de funções, consulte o artigo Faça a gestão do acesso a projetos, pastas e organizações.

    Também pode conseguir as autorizações necessárias através de funções personalizadas ou outras funções predefinidas.

Restrições

Além dos requisitos para etiquetas especificados na documentação do Compute Engine, a aplicação de etiquetas a uma tarefa em lote e aos respetivos recursos tem as seguintes restrições:

  • O processamento em lote só suporta etiquetas para recursos criados com o processamento em lote e dos seguintes tipos:

  • Depois de ter em conta as etiquetas predefinidas que o Batch aplica automaticamente a uma tarefa, pode definir as seguintes quantidades de etiquetas personalizadas:

    • Pode definir um máximo de 63 etiquetas personalizadas para aplicar à tarefa e aos respetivos elementos executáveis.

    • Pode definir um máximo de 61 etiquetas personalizadas para aplicar a cada GPU, disco persistente e VM criados para a tarefa.

  • O processamento em lote só suporta a definição de etiquetas personalizadas com nomes únicos. Isto tem as seguintes consequências:

    • A tentativa de substituir uma etiqueta predefinida causa erros.

    • A definição de uma etiqueta personalizada duplicada substitui a etiqueta personalizada existente.

  • O processamento em lote só suporta a definição de etiquetas quando cria uma tarefa.

    • Não é possível adicionar, atualizar nem remover etiquetas para tarefas e itens executáveis.

    • Embora seja possível usar o Compute Engine para adicionar, atualizar ou remover etiquetas para os discos persistentes e as VMs criadas para tarefas, não é recomendado. Não é possível estimar de forma fiável o período durante o qual os recursos de uma tarefa existem, e quaisquer alterações podem não funcionar corretamente com o Batch.

  • Para usar etiquetas para filtrar a sua lista de trabalhos, tem de ver a sua lista de trabalhos através da CLI gcloud ou da API Batch.

Etiquetas predefinidas

Cada etiqueta predefinida tem uma chave que começa com o prefixo batch-. Por predefinição, o Batch aplica automaticamente as seguintes etiquetas predefinidas:

  • Para cada tarefa que criar:

    • batch-job-id: o valor desta etiqueta é definido como o nome da tarefa.
  • Para cada GPU, disco persistente e VM criados para uma tarefa:

    • batch-job-id: o valor desta etiqueta é definido como o nome da tarefa.

    • batch-job-uid: o valor desta etiqueta é definido como o identificador único (UID) da tarefa.

    • batch-node: O valor desta etiqueta é nulo. Apenas agrupa todas as GPUs, os discos persistentes e as VMs criados para tarefas. Por exemplo, use esta etiqueta quando visualizar um relatório de faturação do Google Cloud para identificar os custos de todas as GPUs, discos persistentes e VMs criados pelo Batch.

Defina etiquetas personalizadas

Opcionalmente, pode definir uma ou mais etiquetas personalizadas quando cria uma tarefa. Pode definir etiquetas personalizadas com novas chaves ou chaves que o seu projeto já usa. Para definir etiquetas personalizadas, selecione um ou mais dos seguintes métodos neste documento com base na finalidade da etiqueta:

  • Defina etiquetas personalizadas para a tarefa e os respetivos recursos.

    Esta secção explica como aplicar uma ou mais etiquetas personalizadas à tarefa e a cada GPU, disco persistente e VM criados para a tarefa. Depois de criar a tarefa, pode usar estas etiquetas para filtrar os relatórios de faturação do Google Cloud e as listas de tarefas, discos persistentes e VMs do seu projeto.

  • Defina etiquetas personalizadas para o trabalho.

    Esta secção explica como aplicar uma ou mais etiquetas personalizadas à tarefa. Depois de criar a tarefa, pode usar estas etiquetas para filtrar as listas de tarefas do seu projeto.

  • Defina etiquetas personalizadas para executáveis.

    Esta secção explica como aplicar uma ou mais etiquetas personalizadas a um ou mais elementos executáveis para a tarefa. Depois de criar a tarefa, pode usar estas etiquetas para filtrar as listas de tarefas do seu projeto.

Defina etiquetas personalizadas para a tarefa e os respetivos recursos

As etiquetas definidas no campo labels para a política de atribuição de uma tarefa são aplicadas à tarefa, bem como a cada GPU (se existir), disco persistente (todos os discos de arranque e quaisquer novos volumes de armazenamento) e VM criados para a tarefa.

Pode definir etiquetas para uma tarefa e os respetivos recursos quando cria uma tarefa através da CLI gcloud ou da API Batch.

gcloud

Por exemplo, para criar uma tarefa de contentor básica em us-central1 que defina duas etiquetas personalizadas que se aplicam à tarefa e aos recursos criados para a tarefa, siga estes passos:

  1. Crie um ficheiro JSON que especifique os detalhes de configuração da tarefa e o campo allocationPolicy.labels.

    {
      "allocationPolicy": {
        "instances": [
          {
            "policy": {
              "machineType": "e2-standard-4"
            }
          }
        ],
        "labels": {
          "VM_LABEL_NAME1": "VM_LABEL_VALUE1",
          "VM_LABEL_NAME2": "VM_LABEL_VALUE2"
        }
      },
      "taskGroups": [
        {
          "taskSpec": {
            "runnables": [
              {
                "container": {
                  "imageUri": "gcr.io/google-containers/busybox",
                  "entrypoint": "/bin/sh",
                  "commands": [
                    "-c",
                    "echo Hello world!"
                  ]
                }
              }
            ]
          }
        }
      ]
    }
    

    Substitua o seguinte:

    • VM_LABEL_NAME1: O nome da primeira etiqueta a aplicar às VMs criadas para a tarefa.

    • VM_LABEL_VALUE1: o valor da primeira etiqueta a aplicar às VMs criadas para a tarefa.

    • VM_LABEL_NAME2: O nome da segunda etiqueta a aplicar às VMs criadas para a tarefa.

    • VM_LABEL_VALUE2: o valor da segunda etiqueta a aplicar às VMs criadas para a tarefa.

  2. Crie a tarefa no us-central1 com o comando gcloud batch jobs submit.

    gcloud batch jobs submit example-job \
        --config=JSON_CONFIGURATION_FILE \
        --location=us-central1
    

    Substitua JSON_CONFIGURATION_FILE pelo caminho para o ficheiro JSON com os detalhes de configuração da tarefa que criou no passo anterior.

API

Por exemplo, para criar uma tarefa de contentor básica em us-central1 que defina duas etiquetas personalizadas que se aplicam à tarefa e aos recursos criados para a tarefa, faça um pedido POST ao método jobs.create e especifique o campo allocationPolicy.labels.

POST https://batch.googleapis.com/v1/projects/example-project/locations/us-central1/jobs?job_id=example-job

{
  "allocationPolicy": {
    "instances": [
      {
        "policy": {
          "machineType": "e2-standard-4"
        }
      }
    ],
    "labels": {
      "VM_LABEL_NAME1": "VM_LABEL_VALUE1",
      "VM_LABEL_NAME2": "VM_LABEL_VALUE2"
    }
  },
  "taskGroups": [
    {
      "taskSpec": {
        "runnables": [
          {
            "container": {
              "imageUri": "gcr.io/google-containers/busybox",
              "entrypoint": "/bin/sh",
              "commands": [
                "-c",
                "echo Hello world!"
              ]
            }
          }
        ]
      }
    }
  ]
}

Substitua o seguinte:

  • VM_LABEL_NAME1: o nome da primeira etiqueta a aplicar às VMs criadas para a tarefa.

  • VM_LABEL_VALUE1: o valor da primeira etiqueta a aplicar às VMs criadas para a tarefa.

  • VM_LABEL_NAME2: o nome da segunda etiqueta a aplicar às VMs criadas para a tarefa.

  • VM_LABEL_VALUE2: o valor da segunda etiqueta a aplicar às VMs criadas para a tarefa.

Java


import com.google.cloud.batch.v1.AllocationPolicy;
import com.google.cloud.batch.v1.BatchServiceClient;
import com.google.cloud.batch.v1.ComputeResource;
import com.google.cloud.batch.v1.CreateJobRequest;
import com.google.cloud.batch.v1.Job;
import com.google.cloud.batch.v1.LogsPolicy;
import com.google.cloud.batch.v1.Runnable;
import com.google.cloud.batch.v1.TaskGroup;
import com.google.cloud.batch.v1.TaskSpec;
import com.google.protobuf.Duration;
import java.io.IOException;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.TimeoutException;

public class CreateBatchAllocationPolicyLabel {

  public static void main(String[] args)
      throws IOException, ExecutionException, InterruptedException, TimeoutException {
    // TODO(developer): Replace these variables before running the sample.
    // Project ID or project number of the Google Cloud project you want to use.
    String projectId = "YOUR_PROJECT_ID";
    // Name of the region you want to use to run the job. Regions that are
    // available for Batch are listed on: https://cloud.google.com/batch/docs/get-started#locations
    String region = "us-central1";
    // The name of the job that will be created.
    // It needs to be unique for each project and region pair.
    String jobName = "example-job";
    // Name of the label1 to be applied for your Job.
    String labelName1 = "VM_LABEL_NAME1";
    // Value for the label1 to be applied for your Job.
    String labelValue1 = "VM_LABEL_VALUE1";
    // Name of the label2 to be applied for your Job.
    String labelName2 = "VM_LABEL_NAME2";
    // Value for the label2 to be applied for your Job.
    String labelValue2 = "VM_LABEL_VALUE2";

    createBatchAllocationPolicyLabel(projectId, region, jobName, labelName1,
        labelValue1, labelName2, labelValue2);
  }

  // This method shows how to create a job with labels defined 
  // in the labels field of a job's allocation policy. These are 
  // applied to the job, as well as to each GPU (if any), persistent disk 
  // (all boot disks and any new storage volumes), and VM created for the job.
  public static Job createBatchAllocationPolicyLabel(String projectId, String region,
                               String jobName, String labelName1,
                               String labelValue1, String labelName2, String labelValue2)
      throws IOException, ExecutionException, InterruptedException, TimeoutException {
    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests.
    try (BatchServiceClient batchServiceClient = BatchServiceClient.create()) {

      // Define what will be done as part of the job.
      Runnable runnable =
          Runnable.newBuilder()
              .setContainer(
                  Runnable.Container.newBuilder()
                      .setImageUri("gcr.io/google-containers/busybox")
                      .setEntrypoint("/bin/sh")
                      .addCommands("-c")
                      .addCommands(
                          "echo Hello world! This is task ${BATCH_TASK_INDEX}. "
                              + "This job has a total of ${BATCH_TASK_COUNT} tasks.")
                      .build())
              .build();

      // We can specify what resources are requested by each task.
      ComputeResource computeResource =
          ComputeResource.newBuilder()
              // In milliseconds per cpu-second. This means the task requires 50% of a single CPUs.
              .setCpuMilli(2000)
              // In MiB.
              .setMemoryMib(2000)
              .build();

      TaskSpec task =
          TaskSpec.newBuilder()
              // Jobs can be divided into tasks. In this case, we have only one task.
              .addRunnables(runnable)
              .setComputeResource(computeResource)
              .setMaxRetryCount(2)
              .setMaxRunDuration(Duration.newBuilder().setSeconds(3600).build())
              .build();

      // Tasks are grouped inside a job using TaskGroups.
      // Currently, it's possible to have only one task group.
      TaskGroup taskGroup = TaskGroup.newBuilder().setTaskCount(1).setTaskSpec(task).build();

      // Policies are used to define on what kind of virtual machines the tasks will run on.
      // In this case, we tell the system to use "e2-standard-4" machine type.
      // Read more about machine types here: https://cloud.google.com/compute/docs/machine-types
      AllocationPolicy.InstancePolicy instancePolicy =
          AllocationPolicy.InstancePolicy.newBuilder().setMachineType("e2-standard-4").build();

      AllocationPolicy allocationPolicy =
          AllocationPolicy.newBuilder()
              .addInstances(AllocationPolicy.InstancePolicyOrTemplate.newBuilder()
                  .setPolicy(instancePolicy)
                  .build())
              // Labels and their value to be applied to the job and its resources
              .putLabels(labelName1, labelValue1)
              .putLabels(labelName2, labelValue2)
              .build();

      Job job =
          Job.newBuilder()
              .addTaskGroups(taskGroup)
              .setAllocationPolicy(allocationPolicy)
              // We use Cloud Logging as it's an out of the box available option.
              .setLogsPolicy(LogsPolicy.newBuilder()
                      .setDestination(LogsPolicy.Destination.CLOUD_LOGGING).build())
              .build();

      CreateJobRequest createJobRequest =
          CreateJobRequest.newBuilder()
              // The job's parent is the region in which the job will run.
              .setParent(String.format("projects/%s/locations/%s", projectId, region))
              .setJob(job)
              .setJobId(jobName)
              .build();

      Job result =
          batchServiceClient
              .createJobCallable()
              .futureCall(createJobRequest)
              .get(5, TimeUnit.MINUTES);

      System.out.printf("Successfully created the job: %s", result.getName());

      return result;
    }
  }

}

Node.js

// Imports the Batch library
const batchLib = require('@google-cloud/batch');
const batch = batchLib.protos.google.cloud.batch.v1;

// Instantiates a client
const batchClient = new batchLib.v1.BatchServiceClient();

/**
 * TODO(developer): Update these variables before running the sample.
 */
// Project ID or project number of the Google Cloud project you want to use.
const projectId = await batchClient.getProjectId();
// Name of the region you want to use to run the job. Regions that are
// available for Batch are listed on: https://cloud.google.com/batch/docs/get-started#locations
const region = 'europe-central2';
// The name of the job that will be created.
// It needs to be unique for each project and region pair.
const jobName = 'batch-labels-allocation-job';
// Name of the label1 to be applied for your Job.
const labelName1 = 'vm_label_name_1';
// Value for the label1 to be applied for your Job.
const labelValue1 = 'vmLabelValue1';
// Name of the label2 to be applied for your Job.
const labelName2 = 'vm_label_name_2';
// Value for the label2 to be applied for your Job.
const labelValue2 = 'vmLabelValue2';

// Define what will be done as part of the job.
const runnable = new batch.Runnable({
  script: new batch.Runnable.Script({
    commands: ['-c', 'echo Hello world! This is task ${BATCH_TASK_INDEX}.'],
  }),
});

// Specify what resources are requested by each task.
const computeResource = new batch.ComputeResource({
  // In milliseconds per cpu-second. This means the task requires 50% of a single CPUs.
  cpuMilli: 500,
  // In MiB.
  memoryMib: 16,
});

const task = new batch.TaskSpec({
  runnables: [runnable],
  computeResource,
  maxRetryCount: 2,
  maxRunDuration: {seconds: 3600},
});

// Tasks are grouped inside a job using TaskGroups.
const group = new batch.TaskGroup({
  taskCount: 3,
  taskSpec: task,
});

// Policies are used to define on what kind of virtual machines the tasks will run on.
// In this case, we tell the system to use "e2-standard-4" machine type.
// Read more about machine types here: https://cloud.google.com/compute/docs/machine-types
const instancePolicy = new batch.AllocationPolicy.InstancePolicy({
  machineType: 'e2-standard-4',
});

const allocationPolicy = new batch.AllocationPolicy({
  instances: [{policy: instancePolicy}],
});
// Labels and their value to be applied to the job and its resources.
allocationPolicy.labels[labelName1] = labelValue1;
allocationPolicy.labels[labelName2] = labelValue2;

const job = new batch.Job({
  name: jobName,
  taskGroups: [group],
  labels: {env: 'testing', type: 'script'},
  allocationPolicy,
  // We use Cloud Logging as it's an option available out of the box
  logsPolicy: new batch.LogsPolicy({
    destination: batch.LogsPolicy.Destination.CLOUD_LOGGING,
  }),
});

// The job's parent is the project and region in which the job will run
const parent = `projects/${projectId}/locations/${region}`;

async function callCreateBatchLabelsAllocation() {
  // Construct request
  const request = {
    parent,
    jobId: jobName,
    job,
  };

  // Run request
  const [response] = await batchClient.createJob(request);
  console.log(JSON.stringify(response));
}

await callCreateBatchLabelsAllocation();

Python

from google.cloud import batch_v1


def create_job_with_custom_allocation_policy_labels(
    project_id: str, region: str, job_name: str, labels: dict
) -> batch_v1.Job:
    """
    This method shows the creation of a Batch job with custom labels which describe the allocation policy.
    Args:
        project_id (str): project ID or project number of the Cloud project you want to use.
        region (str): name of the region you want to use to run the job. Regions that are
            available for Batch are listed on: https://cloud.google.com/batch/docs/locations
        job_name (str): the name of the job that will be created.
        labels (dict): a dictionary of key-value pairs that will be used as labels
            E.g., {"label_key1": "label_value2", "label_key2": "label_value2"}
    Returns:
        batch_v1.Job: The created Batch job object containing configuration details.
    """
    client = batch_v1.BatchServiceClient()

    runnable = batch_v1.Runnable()
    runnable.container = batch_v1.Runnable.Container()
    runnable.container.image_uri = "gcr.io/google-containers/busybox"
    runnable.container.entrypoint = "/bin/sh"
    runnable.container.commands = [
        "-c",
        "echo Hello world!",
    ]

    # Create a task specification and assign the runnable and volume to it
    task = batch_v1.TaskSpec()
    task.runnables = [runnable]

    # Specify what resources are requested by each task.
    resources = batch_v1.ComputeResource()
    resources.cpu_milli = 2000  # in milliseconds per cpu-second. This means the task requires 2 whole CPUs.
    resources.memory_mib = 16  # in MiB
    task.compute_resource = resources

    task.max_retry_count = 2
    task.max_run_duration = "3600s"

    # Create a task group and assign the task specification to it
    group = batch_v1.TaskGroup()
    group.task_count = 3
    group.task_spec = task

    # Policies are used to define on what kind of virtual machines the tasks will run on.
    # In this case, we tell the system to use "e2-standard-4" machine type.
    # Read more about machine types here: https://cloud.google.com/compute/docs/machine-types
    policy = batch_v1.AllocationPolicy.InstancePolicy()
    policy.machine_type = "e2-standard-4"
    instances = batch_v1.AllocationPolicy.InstancePolicyOrTemplate()
    instances.policy = policy
    allocation_policy = batch_v1.AllocationPolicy()
    allocation_policy.instances = [instances]

    # Assign the provided labels to the allocation policy
    allocation_policy.labels = labels

    # Create the job and assign the task group and allocation policy to it
    job = batch_v1.Job()
    job.task_groups = [group]
    job.allocation_policy = allocation_policy

    # We use Cloud Logging as it's an out of the box available option
    job.logs_policy = batch_v1.LogsPolicy()
    job.logs_policy.destination = batch_v1.LogsPolicy.Destination.CLOUD_LOGGING

    # Create the job request and set the job and job ID
    create_request = batch_v1.CreateJobRequest()
    create_request.job = job
    create_request.job_id = job_name
    # The job's parent is the region in which the job will run
    create_request.parent = f"projects/{project_id}/locations/{region}"

    return client.create_job(create_request)

Defina etiquetas personalizadas para a tarefa

As etiquetas definidas no campo labels para o trabalho são aplicadas apenas ao trabalho.

Pode definir etiquetas para uma tarefa quando cria uma tarefa através da CLI gcloud ou da API Batch.

gcloud

Por exemplo, para criar uma tarefa de contentor básica em us-central1 que defina duas etiquetas personalizadas que se aplicam à própria tarefa, siga estes passos:

  1. Crie um ficheiro JSON que especifique os detalhes de configuração da tarefa e o campo labels.

    {
      "taskGroups": [
        {
          "taskSpec": {
            "runnables": [
              {
                "container": {
                  "imageUri": "gcr.io/google-containers/busybox",
                  "entrypoint": "/bin/sh",
                  "commands": [
                    "-c",
                    "echo Hello World!"
                  ]
                }
              }
            ]
          }
        }
      ],
      "labels": {
        "JOB_LABEL_NAME1": "JOB_LABEL_VALUE1",
        "JOB_LABEL_NAME2": "JOB_LABEL_VALUE2"
      }
    }
    

    Substitua o seguinte:

    • JOB_LABEL_NAME1: o nome da primeira etiqueta a aplicar à sua tarefa.

    • JOB_LABEL_VALUE1: o valor da primeira etiqueta a aplicar à sua tarefa.

    • JOB_LABEL_NAME2: o nome da segunda etiqueta a aplicar ao seu trabalho.

    • JOB_LABEL_VALUE2: o valor da segunda etiqueta a aplicar à sua tarefa.

  2. Crie a tarefa no us-central1 usando o comando gcloud batch jobs submit com as seguintes flags:

    gcloud batch jobs submit example-job \
        --config=JSON_CONFIGURATION_FILE \
        --location=us-central1
    

    Substitua JSON_CONFIGURATION_FILE pelo caminho para o ficheiro JSON com os detalhes de configuração da tarefa que criou no passo anterior.

API

Por exemplo, para criar uma tarefa de contentor em us-central1 que defina duas etiquetas personalizadas a aplicar à própria tarefa, faça um pedido POST ao método jobs.create e especifique o campo labels.

POST https://batch.googleapis.com/v1/projects/example-project/locations/us-central1/jobs?job_id=example-job

{
  "taskGroups": [
    {
      "taskSpec": {
        "runnables": [
          {
            "container": {
              "imageUri": "gcr.io/google-containers/busybox",
              "entrypoint": "/bin/sh",
              "commands": [
                "-c",
                "echo Hello World!"
              ]
            }
          }
        ]
      }
    }
  ],
  "labels": {
    "JOB_LABEL_NAME1": "JOB_LABEL_VALUE1",
    "JOB_LABEL_NAME2": "JOB_LABEL_VALUE2"
  }
}

Substitua o seguinte:

  • JOB_LABEL_NAME1: o nome da primeira etiqueta a aplicar ao seu trabalho.

  • JOB_LABEL_VALUE1: o valor da primeira etiqueta a aplicar à sua tarefa.

  • JOB_LABEL_NAME2: o nome da segunda etiqueta a aplicar ao seu trabalho.

  • JOB_LABEL_VALUE2: o valor da segunda etiqueta a aplicar ao seu trabalho.

Java


import com.google.cloud.batch.v1.BatchServiceClient;
import com.google.cloud.batch.v1.ComputeResource;
import com.google.cloud.batch.v1.CreateJobRequest;
import com.google.cloud.batch.v1.Job;
import com.google.cloud.batch.v1.LogsPolicy;
import com.google.cloud.batch.v1.Runnable;
import com.google.cloud.batch.v1.TaskGroup;
import com.google.cloud.batch.v1.TaskSpec;
import com.google.protobuf.Duration;
import java.io.IOException;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.TimeoutException;


public class CreateBatchLabelJob {

  public static void main(String[] args)
      throws IOException, ExecutionException, InterruptedException, TimeoutException {
    // TODO(developer): Replace these variables before running the sample.
    // Project ID or project number of the Google Cloud project you want to use.
    String projectId = "YOUR_PROJECT_ID";
    // Name of the region you want to use to run the job. Regions that are
    // available for Batch are listed on: https://cloud.google.com/batch/docs/get-started#locations
    String region = "us-central1";
    // The name of the job that will be created.
    // It needs to be unique for each project and region pair.
    String jobName = "example-job";
    // Name of the label1 to be applied for your Job.
    String labelName1 = "JOB_LABEL_NAME1";
    // Value for the label1 to be applied for your Job.
    String labelValue1 = "JOB_LABEL_VALUE1";
    // Name of the label2 to be applied for your Job.
    String labelName2 = "JOB_LABEL_NAME2";
    // Value for the label2 to be applied for your Job.
    String labelValue2 = "JOB_LABEL_VALUE2";

    createBatchLabelJob(projectId, region, jobName, labelName1,
        labelValue1, labelName2, labelValue2);
  }

  // Creates a job with labels defined in the labels field.
  public static Job createBatchLabelJob(String projectId, String region, String jobName,
                    String labelName1, String labelValue1, String labelName2, String labelValue2)
      throws IOException, ExecutionException, InterruptedException, TimeoutException {
    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests.
    try (BatchServiceClient batchServiceClient = BatchServiceClient.create()) {

      // Define what will be done as part of the job.
      Runnable runnable =
          Runnable.newBuilder()
              .setContainer(
                  Runnable.Container.newBuilder()
                      .setImageUri("gcr.io/google-containers/busybox")
                      .setEntrypoint("/bin/sh")
                      .addCommands("-c")
                      .addCommands(
                          "echo Hello world! This is task ${BATCH_TASK_INDEX}. "
                              + "This job has a total of ${BATCH_TASK_COUNT} tasks.")
                      .build())
              .build();

      // We can specify what resources are requested by each task.
      ComputeResource computeResource =
          ComputeResource.newBuilder()
              // In milliseconds per cpu-second. This means the task requires 50% of a single CPUs.
              .setCpuMilli(2000)
              // In MiB.
              .setMemoryMib(2000)
              .build();

      TaskSpec task =
          TaskSpec.newBuilder()
              // Jobs can be divided into tasks. In this case, we have only one task.
              .addRunnables(runnable)
              .setComputeResource(computeResource)
              .setMaxRetryCount(2)
              .setMaxRunDuration(Duration.newBuilder().setSeconds(3600).build())
              .build();

      // Tasks are grouped inside a job using TaskGroups.
      // Currently, it's possible to have only one task group.
      TaskGroup taskGroup = TaskGroup.newBuilder().setTaskCount(1).setTaskSpec(task).build();

      Job job =
          Job.newBuilder()
              .addTaskGroups(taskGroup)
              // We use Cloud Logging as it's an out of the box available option.
              .setLogsPolicy(LogsPolicy.newBuilder()
              .setDestination(LogsPolicy.Destination.CLOUD_LOGGING).build())
              // Labels and their value to be applied to the job.
              .putLabels(labelName1, labelValue1)
              .putLabels(labelName2, labelValue2)
              .build();

      CreateJobRequest createJobRequest =
          CreateJobRequest.newBuilder()
              // The job's parent is the region in which the job will run.
              .setParent(String.format("projects/%s/locations/%s", projectId, region))
              .setJob(job)
              .setJobId(jobName)
              .build();

      Job result =
          batchServiceClient
              .createJobCallable()
              .futureCall(createJobRequest)
              .get(5, TimeUnit.MINUTES);

      System.out.printf("Successfully created the job: %s", result.getName());

      return result;
    }
  }

}

Node.js

// Imports the Batch library
const batchLib = require('@google-cloud/batch');
const batch = batchLib.protos.google.cloud.batch.v1;

// Instantiates a client
const batchClient = new batchLib.v1.BatchServiceClient();

/**
 * TODO(developer): Update these variables before running the sample.
 */
// Project ID or project number of the Google Cloud project you want to use.
const projectId = await batchClient.getProjectId();
// Name of the region you want to use to run the job. Regions that are
// available for Batch are listed on: https://cloud.google.com/batch/docs/get-started#locations
const region = 'europe-central2';
// The name of the job that will be created.
// It needs to be unique for each project and region pair.
const jobName = 'batch-labels-job';
// Name of the label1 to be applied for your Job.
const labelName1 = 'job_label_name_1';
// Value for the label1 to be applied for your Job.
const labelValue1 = 'job_label_value1';
// Name of the label2 to be applied for your Job.
const labelName2 = 'job_label_name_2';
// Value for the label2 to be applied for your Job.
const labelValue2 = 'job_label_value2';

// Define what will be done as part of the job.
const runnable = new batch.Runnable({
  container: new batch.Runnable.Container({
    imageUri: 'gcr.io/google-containers/busybox',
    entrypoint: '/bin/sh',
    commands: ['-c', 'echo Hello world! This is task ${BATCH_TASK_INDEX}.'],
  }),
});

// Specify what resources are requested by each task.
const computeResource = new batch.ComputeResource({
  // In milliseconds per cpu-second. This means the task requires 50% of a single CPUs.
  cpuMilli: 500,
  // In MiB.
  memoryMib: 16,
});

const task = new batch.TaskSpec({
  runnables: [runnable],
  computeResource,
  maxRetryCount: 2,
  maxRunDuration: {seconds: 3600},
});

// Tasks are grouped inside a job using TaskGroups.
const group = new batch.TaskGroup({
  taskCount: 3,
  taskSpec: task,
});

const job = new batch.Job({
  name: jobName,
  taskGroups: [group],
  // We use Cloud Logging as it's an option available out of the box
  logsPolicy: new batch.LogsPolicy({
    destination: batch.LogsPolicy.Destination.CLOUD_LOGGING,
  }),
});

// Labels and their value to be applied to the job and its resources.
job.labels[labelName1] = labelValue1;
job.labels[labelName2] = labelValue2;

// The job's parent is the project and region in which the job will run
const parent = `projects/${projectId}/locations/${region}`;

async function callCreateBatchLabelsJob() {
  // Construct request
  const request = {
    parent,
    jobId: jobName,
    job,
  };

  // Run request
  const [response] = await batchClient.createJob(request);
  console.log(JSON.stringify(response));
}

await callCreateBatchLabelsJob();

Python

from google.cloud import batch_v1


def create_job_with_custom_job_labels(
    project_id: str,
    region: str,
    job_name: str,
    labels: dict,
) -> batch_v1.Job:
    """
    This method creates a Batch job with custom labels.
    Args:
        project_id (str): project ID or project number of the Cloud project you want to use.
        region (str): name of the region you want to use to run the job. Regions that are
            available for Batch are listed on: https://cloud.google.com/batch/docs/locations
        job_name (str): the name of the job that will be created.
        labels (dict): A dictionary of custom labels to be added to the job.
            E.g., {"label_key1": "label_value2", "label_key2": "label_value2"}
    Returns:
        batch_v1.Job: The created Batch job object containing configuration details.
    """
    client = batch_v1.BatchServiceClient()

    runnable = batch_v1.Runnable()
    runnable.container = batch_v1.Runnable.Container()
    runnable.container.image_uri = "gcr.io/google-containers/busybox"
    runnable.container.entrypoint = "/bin/sh"
    runnable.container.commands = [
        "-c",
        "echo Hello world!",
    ]

    # Create a task specification and assign the runnable and volume to it
    task = batch_v1.TaskSpec()
    task.runnables = [runnable]

    # Specify what resources are requested by each task.
    resources = batch_v1.ComputeResource()
    resources.cpu_milli = 2000  # in milliseconds per cpu-second. This means the task requires 2 whole CPUs.
    resources.memory_mib = 16  # in MiB
    task.compute_resource = resources

    task.max_retry_count = 2
    task.max_run_duration = "3600s"

    # Create a task group and assign the task specification to it
    group = batch_v1.TaskGroup()
    group.task_count = 3
    group.task_spec = task

    # Policies are used to define on what kind of virtual machines the tasks will run on.
    # In this case, we tell the system to use "e2-standard-4" machine type.
    # Read more about machine types here: https://cloud.google.com/compute/docs/machine-types
    policy = batch_v1.AllocationPolicy.InstancePolicy()
    policy.machine_type = "e2-standard-4"
    instances = batch_v1.AllocationPolicy.InstancePolicyOrTemplate()
    instances.policy = policy
    allocation_policy = batch_v1.AllocationPolicy()
    allocation_policy.instances = [instances]

    # Create the job and assign the task group and allocation policy to it
    job = batch_v1.Job()
    job.task_groups = [group]
    job.allocation_policy = allocation_policy

    # Set the labels for the job
    job.labels = labels

    # We use Cloud Logging as it's an out of the box available option
    job.logs_policy = batch_v1.LogsPolicy()
    job.logs_policy.destination = batch_v1.LogsPolicy.Destination.CLOUD_LOGGING

    # Create the job request and set the job and job ID
    create_request = batch_v1.CreateJobRequest()
    create_request.job = job
    create_request.job_id = job_name
    # The job's parent is the region in which the job will run
    create_request.parent = f"projects/{project_id}/locations/{region}"

    return client.create_job(create_request)

Defina etiquetas personalizadas para itens executáveis

As etiquetas definidas no campo labels para um elemento executável só são aplicadas a esse elemento executável.

Pode definir etiquetas para um ou mais executáveis quando cria uma tarefa através da CLI gcloud ou da API Batch.

gcloud

Por exemplo, para criar uma tarefa em us-central1 que defina duas etiquetas personalizadas, uma etiqueta personalizada para cada um dos dois executáveis da tarefa, siga estes passos:

  1. Crie um ficheiro JSON que especifique os detalhes de configuração da tarefa e os campos runnables.labels.

    {
      "taskGroups": [
        {
          "taskSpec": {
            "runnables": [
              {
                "container": {
                  "imageUri": "gcr.io/google-containers/busybox",
                  "entrypoint": "/bin/sh",
                  "commands": [
                    "-c",
                    "echo Hello from task ${BATCH_TASK_INDEX}!"
                  ]
                },
                "labels": {
                  "RUNNABLE1_LABEL_NAME1": "RUNNABLE1_LABEL_VALUE1"
                }
              },
              {
                "script": {
                  "text": "echo Hello from task ${BATCH_TASK_INDEX}!"
                },
                "labels": {
                  "RUNNABLE2_LABEL_NAME1": "RUNNABLE2_LABEL_VALUE1"
                }
              }
            ]
          }
        }
      ]
    }
    

    Substitua o seguinte:

    • RUNNABLE1_LABEL_NAME1: o nome da etiqueta a aplicar à primeira execução da tarefa.

    • RUNNABLE1_LABEL_VALUE1: o valor da etiqueta a aplicar à primeira execução da tarefa.

    • RUNNABLE2_LABEL_NAME1: o nome da etiqueta a aplicar ao segundo executável da tarefa.

    • RUNNABLE2_LABEL_VALUE1: o valor da etiqueta a aplicar à segunda execução do trabalho.

  2. Crie a tarefa no us-central1 com o comando gcloud batch jobs submit.

    gcloud batch jobs submit example-job \
        --config=JSON_CONFIGURATION_FILE \
        --location=us-central1
    

    Substitua JSON_CONFIGURATION_FILE pelo caminho para o ficheiro JSON com os detalhes de configuração da tarefa que criou no passo anterior.

API

Por exemplo, para criar uma tarefa em us-central1 que defina duas etiquetas personalizadas, uma para cada um dos executáveis da tarefa, faça um pedido POST ao método jobs.create e especifique os campos runnables.labels.

POST https://batch.googleapis.com/v1/projects/example-project/locations/us-central1/jobs?job_id=example-job

{
  "taskGroups": [
    {
      "taskSpec": {
        "runnables": [
          {
            "container": {
              "imageUri": "gcr.io/google-containers/busybox",
              "entrypoint": "/bin/sh",
              "commands": [
                "-c",
                "echo Hello from ${BATCH_TASK_INDEX}!"
              ]
            },
            "labels": {
              "RUNNABLE1_LABEL_NAME1": "RUNNABLE1_LABEL_VALUE1"
            }
          },
          {
            "script": {
              "text": "echo Hello from ${BATCH_TASK_INDEX}!"
            },
            "labels": {
              "RUNNABLE2_LABEL_NAME1": "RUNNABLE2_LABEL_VALUE1"
            }
          }
        ]
      }
    }
  ]
}

Substitua o seguinte:

  • RUNNABLE1_LABEL_NAME1: o nome da etiqueta a aplicar ao executável da primeira tarefa.

  • RUNNABLE1_LABEL_VALUE1: o valor da etiqueta a aplicar ao executável da primeira tarefa.

  • RUNNABLE2_LABEL_NAME1: o nome da etiqueta a aplicar ao executável da segunda tarefa.

  • RUNNABLE2_LABEL_VALUE1: o valor da etiqueta a aplicar ao executável da segunda tarefa.

Java


import com.google.cloud.batch.v1.BatchServiceClient;
import com.google.cloud.batch.v1.ComputeResource;
import com.google.cloud.batch.v1.CreateJobRequest;
import com.google.cloud.batch.v1.Job;
import com.google.cloud.batch.v1.LogsPolicy;
import com.google.cloud.batch.v1.Runnable;
import com.google.cloud.batch.v1.TaskGroup;
import com.google.cloud.batch.v1.TaskSpec;
import com.google.protobuf.Duration;
import java.io.IOException;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.TimeoutException;

public class CreateBatchRunnableLabel {
  public static void main(String[] args)
      throws IOException, ExecutionException, InterruptedException, TimeoutException {
    // TODO(developer): Replace these variables before running the sample.
    // Project ID or project number of the Google Cloud project you want to use.
    String projectId = "YOUR_PROJECT_ID";
    // Name of the region you want to use to run the job. Regions that are
    // available for Batch are listed on: https://cloud.google.com/batch/docs/get-started#locations
    String region = "us-central1";
    // The name of the job that will be created.
    // It needs to be unique for each project and region pair.
    String jobName = "example-job";
    // Name of the label1 to be applied for your Job.
    String labelName1 = "RUNNABLE_LABEL_NAME1";
    // Value for the label1 to be applied for your Job.
    String labelValue1 = "RUNNABLE_LABEL_VALUE1";
    // Name of the label2 to be applied for your Job.
    String labelName2 = "RUNNABLE_LABEL_NAME2";
    // Value for the label2 to be applied for your Job.
    String labelValue2 = "RUNNABLE_LABEL_VALUE2";

    createBatchRunnableLabel(projectId, region, jobName, labelName1,
        labelValue1, labelName2, labelValue2);
  }

  // Creates a job with labels defined in the labels field
  // for a runnable. The labels are only applied to that runnable.
  // In Batch, a runnable represents a single task or unit of work within a job.
  // It can be a container (like a Docker image) or a script.
  public static Job createBatchRunnableLabel(String projectId, String region, String jobName,
                   String labelName1, String labelValue1, String labelName2, String labelValue2)
      throws IOException, ExecutionException, InterruptedException, TimeoutException {
    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests.
    try (BatchServiceClient batchServiceClient = BatchServiceClient.create()) {

      // Define what will be done as part of the job.
      Runnable runnable =
          Runnable.newBuilder()
              .setContainer(
                  Runnable.Container.newBuilder()
                      .setImageUri("gcr.io/google-containers/busybox")
                      .setEntrypoint("/bin/sh")
                      .addCommands("-c")
                      .addCommands(
                          "echo Hello world! This is task ${BATCH_TASK_INDEX}. "
                              + "This job has a total of ${BATCH_TASK_COUNT} tasks.")
                      .build())
              // Label and its value to be applied to the container
              // that processes data from a specific region.
              .putLabels(labelName1, labelValue1)
              .setScript(Runnable.Script.newBuilder()
              .setText("echo Hello world! This is task ${BATCH_TASK_INDEX}. ").build())
              // Label and its value to be applied to the script
              // that performs some analysis on the processed data.
              .putLabels(labelName2, labelValue2)
              .build();

      // We can specify what resources are requested by each task.
      ComputeResource computeResource =
          ComputeResource.newBuilder()
              // In milliseconds per cpu-second. This means the task requires 50% of a single CPUs.
              .setCpuMilli(2000)
              // In MiB.
              .setMemoryMib(2000)
              .build();

      TaskSpec task =
          TaskSpec.newBuilder()
              // Jobs can be divided into tasks. In this case, we have only one task.
              .addRunnables(runnable)
              .setComputeResource(computeResource)
              .setMaxRetryCount(2)
              .setMaxRunDuration(Duration.newBuilder().setSeconds(3600).build())
              .build();

      // Tasks are grouped inside a job using TaskGroups.
      // Currently, it's possible to have only one task group.
      TaskGroup taskGroup = TaskGroup.newBuilder().setTaskCount(1).setTaskSpec(task).build();

      Job job =
          Job.newBuilder()
              .addTaskGroups(taskGroup)
              // We use Cloud Logging as it's an out of the box available option.
              .setLogsPolicy(LogsPolicy.newBuilder()
              .setDestination(LogsPolicy.Destination.CLOUD_LOGGING).build())
              .build();

      CreateJobRequest createJobRequest =
          CreateJobRequest.newBuilder()
              // The job's parent is the region in which the job will run for the specific project.
              .setParent(String.format("projects/%s/locations/%s", projectId, region))
              .setJob(job)
              .setJobId(jobName)
              .build();

      Job result =
          batchServiceClient
              .createJobCallable()
              .futureCall(createJobRequest)
              .get(5, TimeUnit.MINUTES);

      System.out.printf("Successfully created the job: %s", result.getName());

      return result;
    }
  }

}

Node.js

// Imports the Batch library
const batchLib = require('@google-cloud/batch');
const batch = batchLib.protos.google.cloud.batch.v1;

// Instantiates a client
const batchClient = new batchLib.v1.BatchServiceClient();

/**
 * TODO(developer): Update these variables before running the sample.
 */
// Project ID or project number of the Google Cloud project you want to use.
const projectId = await batchClient.getProjectId();
// Name of the region you want to use to run the job. Regions that are
// available for Batch are listed on: https://cloud.google.com/batch/docs/get-started#locations
const region = 'us-central1';
// The name of the job that will be created.
// It needs to be unique for each project and region pair.
const jobName = 'example-job';
// Name of the label1 to be applied for your Job.
const labelName1 = 'RUNNABLE_LABEL_NAME1';
// Value for the label1 to be applied for your Job.
const labelValue1 = 'RUNNABLE_LABEL_VALUE1';
// Name of the label2 to be applied for your Job.
const labelName2 = 'RUNNABLE_LABEL_NAME2';
// Value for the label2 to be applied for your Job.
const labelValue2 = 'RUNNABLE_LABEL_VALUE2';

const container = new batch.Runnable.Container({
  imageUri: 'gcr.io/google-containers/busybox',
  entrypoint: '/bin/sh',
  commands: ['-c', 'echo Hello world! This is task ${BATCH_TASK_INDEX}.'],
});

const script = new batch.Runnable.Script({
  commands: ['-c', 'echo Hello world! This is task ${BATCH_TASK_INDEX}.'],
});

const runnable1 = new batch.Runnable({
  container,
  // Label and its value to be applied to the container
  // that processes data from a specific region.
  labels: {
    [labelName1]: labelValue1,
  },
});

const runnable2 = new batch.Runnable({
  script,
  // Label and its value to be applied to the script
  // that performs some analysis on the processed data.
  labels: {
    [labelName2]: labelValue2,
  },
});

// Specify what resources are requested by each task.
const computeResource = new batch.ComputeResource({
  // In milliseconds per cpu-second. This means the task requires 50% of a single CPUs.
  cpuMilli: 500,
  // In MiB.
  memoryMib: 16,
});

const task = new batch.TaskSpec({
  runnables: [runnable1, runnable2],
  computeResource,
  maxRetryCount: 2,
  maxRunDuration: {seconds: 3600},
});

// Tasks are grouped inside a job using TaskGroups.
const group = new batch.TaskGroup({
  taskCount: 3,
  taskSpec: task,
});

const job = new batch.Job({
  name: jobName,
  taskGroups: [group],
  // We use Cloud Logging as it's an option available out of the box
  logsPolicy: new batch.LogsPolicy({
    destination: batch.LogsPolicy.Destination.CLOUD_LOGGING,
  }),
});

// The job's parent is the project and region in which the job will run
const parent = `projects/${projectId}/locations/${region}`;

async function callCreateBatchLabelsRunnable() {
  // Construct request
  const request = {
    parent,
    jobId: jobName,
    job,
  };

  // Run request
  const [response] = await batchClient.createJob(request);
  console.log(JSON.stringify(response));
}

await callCreateBatchLabelsRunnable();

Python

from google.cloud import batch_v1


def create_job_with_custom_runnables_labels(
    project_id: str,
    region: str,
    job_name: str,
    labels: dict,
) -> batch_v1.Job:
    """
    This method creates a Batch job with custom labels for runnable.
    Args:
        project_id (str): project ID or project number of the Cloud project you want to use.
        region (str): name of the region you want to use to run the job. Regions that are
            available for Batch are listed on: https://cloud.google.com/batch/docs/locations
        job_name (str): the name of the job that will be created.
        labels (dict): a dictionary of key-value pairs that will be used as labels
            E.g., {"label_key1": "label_value2"}
    Returns:
        batch_v1.Job: The created Batch job object containing configuration details.
    """
    client = batch_v1.BatchServiceClient()

    runnable = batch_v1.Runnable()
    runnable.display_name = "Script 1"
    runnable.script = batch_v1.Runnable.Script()
    runnable.script.text = "echo Hello world from Script 1 for task ${BATCH_TASK_INDEX}"
    # Add custom labels to the first runnable
    runnable.labels = labels

    # Create a task specification and assign the runnable and volume to it
    task = batch_v1.TaskSpec()
    task.runnables = [runnable]

    # Specify what resources are requested by each task.
    resources = batch_v1.ComputeResource()
    resources.cpu_milli = 2000  # in milliseconds per cpu-second. This means the task requires 2 whole CPUs.
    resources.memory_mib = 16  # in MiB
    task.compute_resource = resources

    task.max_retry_count = 2
    task.max_run_duration = "3600s"

    # Create a task group and assign the task specification to it
    group = batch_v1.TaskGroup()
    group.task_count = 3
    group.task_spec = task

    # Policies are used to define on what kind of virtual machines the tasks will run on.
    # In this case, we tell the system to use "e2-standard-4" machine type.
    # Read more about machine types here: https://cloud.google.com/compute/docs/machine-types
    policy = batch_v1.AllocationPolicy.InstancePolicy()
    policy.machine_type = "e2-standard-4"
    instances = batch_v1.AllocationPolicy.InstancePolicyOrTemplate()
    instances.policy = policy
    allocation_policy = batch_v1.AllocationPolicy()
    allocation_policy.instances = [instances]

    # Create the job and assign the task group and allocation policy to it
    job = batch_v1.Job()
    job.task_groups = [group]
    job.allocation_policy = allocation_policy

    # We use Cloud Logging as it's an out of the box available option
    job.logs_policy = batch_v1.LogsPolicy()
    job.logs_policy.destination = batch_v1.LogsPolicy.Destination.CLOUD_LOGGING

    # Create the job request and set the job and job ID
    create_request = batch_v1.CreateJobRequest()
    create_request.job = job
    create_request.job_id = job_name
    # The job's parent is the region in which the job will run
    create_request.parent = f"projects/{project_id}/locations/{region}"

    return client.create_job(create_request)

O que se segue?