Organizar recursos usando rótulos

Neste documento, explicamos como usar rótulos para organizar seus recursos do Batch.

Rótulos são pares de chave-valor aplicados a recursos para agrupar e descrevê-los. O lote tem rótulos predefinidos, que são aplicados automaticamente aos recursos, e rótulos personalizados, que podem ser definidos e aplicados ao criar um job.

Com os rótulos, você pode filtrar os resultados das listas de recursos e dos relatórios do Cloud Billing. Por exemplo, você pode usar rótulos para:

  • Esclareça e organize a lista de jobs do seu projeto.

  • Distinguir os executáveis de um job usando rótulos para descrever o tipo de contêiner ou script especificado.

  • Analise os custos filtrando os relatórios do Cloud Billing para os recursos criados por jobs específicos ou em lote.

Para mais informações sobre rótulos, consulte a documentação do Compute Engine sobre rótulos.

Antes de começar

  1. Se você nunca usou o Batch, consulte Começar a usar o Batch e ative o Batch concluindo os pré-requisitos para projetos e usuários.
  2. Para receber as permissões necessárias para criar um job, peça ao administrador para conceder a você os seguintes papéis do IAM:

    Para mais informações sobre a concessão de papéis, consulte Gerenciar o acesso a projetos, pastas e organizações.

    Também é possível conseguir as permissões necessárias por meio de papéis personalizados ou de outros papéis predefinidos.

Restrições

Além dos requisitos de rótulos especificados na documentação do Compute Engine, a aplicação de rótulos a um job em lote e aos recursos dele tem as seguintes restrições:

  • O Batch só oferece suporte a rótulos para recursos criados usando o Batch e dos seguintes tipos:

  • Depois de contabilizar os rótulos predefinidos que o lote aplica automaticamente a um job, é possível definir os seguintes valores de rótulos personalizados:

    • É possível definir até 63 rótulos personalizados para aplicar ao job e aos executáveis.

    • É possível definir um máximo de 61 rótulos personalizados para aplicar a cada GPU, disco permanente e VM criada para o job.

  • O lote só aceita a definição de rótulos personalizados com nomes exclusivos. Isso tem as seguintes consequências:

    • Tentar substituir um rótulo predefinido causa erros.

    • A definição de um rótulo personalizado duplicado substitui o rótulo personalizado atual.

  • O Batch só oferece suporte à definição de rótulos ao criar um job.

    • Não é possível adicionar, atualizar ou remover rótulos de jobs e executáveis.

    • Embora seja possível usar o Compute Engine para adicionar, atualizar ou remover rótulos dos discos permanentes e das VMs criadas para jobs, isso não é recomendado. O período em que os recursos de um job existem não pode ser estimado com precisão, e qualquer mudança pode não funcionar corretamente com o lote.

  • Para usar rótulos para filtrar a lista de jobs, é necessário acessar a lista usando a CLI gcloud ou a API Batch.

Rótulos predefinidos

Cada rótulo predefinido tem uma chave que começa com o prefixo batch-. Por padrão, o lote aplica automaticamente os seguintes rótulos predefinidos:

  • Para cada job criado:

    • batch-job-id: o valor desse rótulo é definido como o nome do job.
  • Para cada GPU, disco permanente e VM criada para um job:

    • batch-job-id: o valor desse rótulo é definido como o nome do job.

    • batch-job-uid: o valor desse rótulo é definido como o identificador único (UID) do job.

    • batch-node: o valor desse rótulo é nulo. Ele apenas agrupa todas as GPUs, os discos persistentes e as VMs criadas para jobs. Por exemplo, use esse rótulo quando você visualizar um relatório do Cloud Billing para identificar os custos de todas as GPUs, discos persistentes e VMs criados pelo Batch.

Definir rótulos personalizados

Você pode definir um ou mais rótulos personalizados ao criar um job. Você pode definir rótulos personalizados com chaves novas ou que seu projeto já usa. Para definir rótulos personalizados, selecione um ou mais dos seguintes métodos neste documento com base na finalidade do rótulo:

  • Defina rótulos personalizados para o job e os recursos dele.

    Esta seção explica como aplicar um ou mais rótulos personalizados ao job e a cada GPU, disco permanente e VM criados para o job. Depois de criar o job, use esses rótulos para filtrar os relatórios do Cloud Billing e as listas de jobs, discos permanentes e VMs do projeto.

  • Defina rótulos personalizados para o job.

    Esta seção explica como aplicar um ou mais rótulos personalizados ao job. Depois de criar o job, você pode usar esses rótulos para filtrar as listas de jobs do seu projeto.

  • Defina rótulos personalizados para runnables.

    Esta seção explica como aplicar um ou mais rótulos personalizados a um ou mais executáveis do job. Depois de criar o job, você pode usar esses rótulos para filtrar as listas de jobs do seu projeto.

Definir rótulos personalizados para o job e os recursos dele

Os rótulos definidos no campo labels para a política de alocação de um job são aplicados ao job, bem como a cada GPU (se houver), disco permanente (todos os discos de inicialização e novos volumes de armazenamento) e VM criada para o job.

É possível definir rótulos para um job e os recursos dele ao criar um job usando a CLI gcloud ou a API Batch.

gcloud

Por exemplo, para criar um job de contêiner básico em us-central1 que define dois rótulos personalizados que se aplicam ao job e aos recursos criados para ele, siga estas etapas:

  1. Crie um arquivo JSON que especifique os detalhes de configuração do job e o campo allocationPolicy.labels.

    {
      "allocationPolicy": {
        "instances": [
          {
            "policy": {
              "machineType": "e2-standard-4"
            }
          }
        ],
        "labels": {
          "VM_LABEL_NAME1": "VM_LABEL_VALUE1",
          "VM_LABEL_NAME2": "VM_LABEL_VALUE2"
        }
      },
      "taskGroups": [
        {
          "taskSpec": {
            "runnables": [
              {
                "container": {
                  "imageUri": "gcr.io/google-containers/busybox",
                  "entrypoint": "/bin/sh",
                  "commands": [
                    "-c",
                    "echo Hello world!"
                  ]
                }
              }
            ]
          }
        }
      ]
    }
    

    Substitua:

    • VM_LABEL_NAME1: o nome do primeiro rótulo a ser aplicado às VMs criadas para o job.

    • VM_LABEL_VALUE1: o valor do primeiro rótulo a ser aplicado às VMs criadas para o job.

    • VM_LABEL_NAME2: o nome do segundo rótulo a ser aplicado às VMs criadas para o job.

    • VM_LABEL_VALUE2: o valor do segundo rótulo a ser aplicado às VMs criadas para o job.

  2. Crie o job em us-central1 usando o comando gcloud batch jobs submit.

    gcloud batch jobs submit example-job \
        --config=JSON_CONFIGURATION_FILE \
        --location=us-central1
    

    Substitua JSON_CONFIGURATION_FILE pelo caminho para o arquivo JSON com os detalhes de configuração do job que você criou na etapa anterior.

API

Por exemplo, para criar um job de contêiner básico em us-central1 que defina dois rótulos personalizados que se aplicam ao job e aos recursos criados para ele, faça uma solicitação POST para o método jobs.create e especifique o campo allocationPolicy.labels.

POST https://batch.googleapis.com/v1/projects/example-project/locations/us-central1/jobs?job_id=example-job

{
  "allocationPolicy": {
    "instances": [
      {
        "policy": {
          "machineType": "e2-standard-4"
        }
      }
    ],
    "labels": {
      "VM_LABEL_NAME1": "VM_LABEL_VALUE1",
      "VM_LABEL_NAME2": "VM_LABEL_VALUE2"
    }
  },
  "taskGroups": [
    {
      "taskSpec": {
        "runnables": [
          {
            "container": {
              "imageUri": "gcr.io/google-containers/busybox",
              "entrypoint": "/bin/sh",
              "commands": [
                "-c",
                "echo Hello world!"
              ]
            }
          }
        ]
      }
    }
  ]
}

Substitua:

  • VM_LABEL_NAME1: o nome do primeiro rótulo a ser aplicado às VMs criadas para o job.

  • VM_LABEL_VALUE1: o valor do primeiro rótulo a ser aplicado às VMs criadas para o job.

  • VM_LABEL_NAME2: o nome do segundo rótulo a ser aplicado às VMs criadas para o job.

  • VM_LABEL_VALUE2: o valor do segundo rótulo a ser aplicado às VMs criadas para o job.

Java


import com.google.cloud.batch.v1.AllocationPolicy;
import com.google.cloud.batch.v1.BatchServiceClient;
import com.google.cloud.batch.v1.ComputeResource;
import com.google.cloud.batch.v1.CreateJobRequest;
import com.google.cloud.batch.v1.Job;
import com.google.cloud.batch.v1.LogsPolicy;
import com.google.cloud.batch.v1.Runnable;
import com.google.cloud.batch.v1.TaskGroup;
import com.google.cloud.batch.v1.TaskSpec;
import com.google.protobuf.Duration;
import java.io.IOException;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.TimeoutException;

public class CreateBatchAllocationPolicyLabel {

  public static void main(String[] args)
      throws IOException, ExecutionException, InterruptedException, TimeoutException {
    // TODO(developer): Replace these variables before running the sample.
    // Project ID or project number of the Google Cloud project you want to use.
    String projectId = "YOUR_PROJECT_ID";
    // Name of the region you want to use to run the job. Regions that are
    // available for Batch are listed on: https://cloud.google.com/batch/docs/get-started#locations
    String region = "us-central1";
    // The name of the job that will be created.
    // It needs to be unique for each project and region pair.
    String jobName = "example-job";
    // Name of the label1 to be applied for your Job.
    String labelName1 = "VM_LABEL_NAME1";
    // Value for the label1 to be applied for your Job.
    String labelValue1 = "VM_LABEL_VALUE1";
    // Name of the label2 to be applied for your Job.
    String labelName2 = "VM_LABEL_NAME2";
    // Value for the label2 to be applied for your Job.
    String labelValue2 = "VM_LABEL_VALUE2";

    createBatchAllocationPolicyLabel(projectId, region, jobName, labelName1,
        labelValue1, labelName2, labelValue2);
  }

  // This method shows how to create a job with labels defined 
  // in the labels field of a job's allocation policy. These are 
  // applied to the job, as well as to each GPU (if any), persistent disk 
  // (all boot disks and any new storage volumes), and VM created for the job.
  public static Job createBatchAllocationPolicyLabel(String projectId, String region,
                               String jobName, String labelName1,
                               String labelValue1, String labelName2, String labelValue2)
      throws IOException, ExecutionException, InterruptedException, TimeoutException {
    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests.
    try (BatchServiceClient batchServiceClient = BatchServiceClient.create()) {

      // Define what will be done as part of the job.
      Runnable runnable =
          Runnable.newBuilder()
              .setContainer(
                  Runnable.Container.newBuilder()
                      .setImageUri("gcr.io/google-containers/busybox")
                      .setEntrypoint("/bin/sh")
                      .addCommands("-c")
                      .addCommands(
                          "echo Hello world! This is task ${BATCH_TASK_INDEX}. "
                              + "This job has a total of ${BATCH_TASK_COUNT} tasks.")
                      .build())
              .build();

      // We can specify what resources are requested by each task.
      ComputeResource computeResource =
          ComputeResource.newBuilder()
              // In milliseconds per cpu-second. This means the task requires 50% of a single CPUs.
              .setCpuMilli(2000)
              // In MiB.
              .setMemoryMib(2000)
              .build();

      TaskSpec task =
          TaskSpec.newBuilder()
              // Jobs can be divided into tasks. In this case, we have only one task.
              .addRunnables(runnable)
              .setComputeResource(computeResource)
              .setMaxRetryCount(2)
              .setMaxRunDuration(Duration.newBuilder().setSeconds(3600).build())
              .build();

      // Tasks are grouped inside a job using TaskGroups.
      // Currently, it's possible to have only one task group.
      TaskGroup taskGroup = TaskGroup.newBuilder().setTaskCount(1).setTaskSpec(task).build();

      // Policies are used to define on what kind of virtual machines the tasks will run on.
      // In this case, we tell the system to use "e2-standard-4" machine type.
      // Read more about machine types here: https://cloud.google.com/compute/docs/machine-types
      AllocationPolicy.InstancePolicy instancePolicy =
          AllocationPolicy.InstancePolicy.newBuilder().setMachineType("e2-standard-4").build();

      AllocationPolicy allocationPolicy =
          AllocationPolicy.newBuilder()
              .addInstances(AllocationPolicy.InstancePolicyOrTemplate.newBuilder()
                  .setPolicy(instancePolicy)
                  .build())
              // Labels and their value to be applied to the job and its resources
              .putLabels(labelName1, labelValue1)
              .putLabels(labelName2, labelValue2)
              .build();

      Job job =
          Job.newBuilder()
              .addTaskGroups(taskGroup)
              .setAllocationPolicy(allocationPolicy)
              // We use Cloud Logging as it's an out of the box available option.
              .setLogsPolicy(LogsPolicy.newBuilder()
                      .setDestination(LogsPolicy.Destination.CLOUD_LOGGING).build())
              .build();

      CreateJobRequest createJobRequest =
          CreateJobRequest.newBuilder()
              // The job's parent is the region in which the job will run.
              .setParent(String.format("projects/%s/locations/%s", projectId, region))
              .setJob(job)
              .setJobId(jobName)
              .build();

      Job result =
          batchServiceClient
              .createJobCallable()
              .futureCall(createJobRequest)
              .get(5, TimeUnit.MINUTES);

      System.out.printf("Successfully created the job: %s", result.getName());

      return result;
    }
  }

}

Node.js

// Imports the Batch library
const batchLib = require('@google-cloud/batch');
const batch = batchLib.protos.google.cloud.batch.v1;

// Instantiates a client
const batchClient = new batchLib.v1.BatchServiceClient();

/**
 * TODO(developer): Update these variables before running the sample.
 */
// Project ID or project number of the Google Cloud project you want to use.
const projectId = await batchClient.getProjectId();
// Name of the region you want to use to run the job. Regions that are
// available for Batch are listed on: https://cloud.google.com/batch/docs/get-started#locations
const region = 'europe-central2';
// The name of the job that will be created.
// It needs to be unique for each project and region pair.
const jobName = 'batch-labels-allocation-job';
// Name of the label1 to be applied for your Job.
const labelName1 = 'vm_label_name_1';
// Value for the label1 to be applied for your Job.
const labelValue1 = 'vmLabelValue1';
// Name of the label2 to be applied for your Job.
const labelName2 = 'vm_label_name_2';
// Value for the label2 to be applied for your Job.
const labelValue2 = 'vmLabelValue2';

// Define what will be done as part of the job.
const runnable = new batch.Runnable({
  script: new batch.Runnable.Script({
    commands: ['-c', 'echo Hello world! This is task ${BATCH_TASK_INDEX}.'],
  }),
});

// Specify what resources are requested by each task.
const computeResource = new batch.ComputeResource({
  // In milliseconds per cpu-second. This means the task requires 50% of a single CPUs.
  cpuMilli: 500,
  // In MiB.
  memoryMib: 16,
});

const task = new batch.TaskSpec({
  runnables: [runnable],
  computeResource,
  maxRetryCount: 2,
  maxRunDuration: {seconds: 3600},
});

// Tasks are grouped inside a job using TaskGroups.
const group = new batch.TaskGroup({
  taskCount: 3,
  taskSpec: task,
});

// Policies are used to define on what kind of virtual machines the tasks will run on.
// In this case, we tell the system to use "e2-standard-4" machine type.
// Read more about machine types here: https://cloud.google.com/compute/docs/machine-types
const instancePolicy = new batch.AllocationPolicy.InstancePolicy({
  machineType: 'e2-standard-4',
});

const allocationPolicy = new batch.AllocationPolicy({
  instances: [{policy: instancePolicy}],
});
// Labels and their value to be applied to the job and its resources.
allocationPolicy.labels[labelName1] = labelValue1;
allocationPolicy.labels[labelName2] = labelValue2;

const job = new batch.Job({
  name: jobName,
  taskGroups: [group],
  labels: {env: 'testing', type: 'script'},
  allocationPolicy,
  // We use Cloud Logging as it's an option available out of the box
  logsPolicy: new batch.LogsPolicy({
    destination: batch.LogsPolicy.Destination.CLOUD_LOGGING,
  }),
});

// The job's parent is the project and region in which the job will run
const parent = `projects/${projectId}/locations/${region}`;

async function callCreateBatchLabelsAllocation() {
  // Construct request
  const request = {
    parent,
    jobId: jobName,
    job,
  };

  // Run request
  const [response] = await batchClient.createJob(request);
  console.log(JSON.stringify(response));
}

await callCreateBatchLabelsAllocation();

Python

from google.cloud import batch_v1


def create_job_with_custom_allocation_policy_labels(
    project_id: str, region: str, job_name: str, labels: dict
) -> batch_v1.Job:
    """
    This method shows the creation of a Batch job with custom labels which describe the allocation policy.
    Args:
        project_id (str): project ID or project number of the Cloud project you want to use.
        region (str): name of the region you want to use to run the job. Regions that are
            available for Batch are listed on: https://cloud.google.com/batch/docs/locations
        job_name (str): the name of the job that will be created.
        labels (dict): a dictionary of key-value pairs that will be used as labels
            E.g., {"label_key1": "label_value2", "label_key2": "label_value2"}
    Returns:
        batch_v1.Job: The created Batch job object containing configuration details.
    """
    client = batch_v1.BatchServiceClient()

    runnable = batch_v1.Runnable()
    runnable.container = batch_v1.Runnable.Container()
    runnable.container.image_uri = "gcr.io/google-containers/busybox"
    runnable.container.entrypoint = "/bin/sh"
    runnable.container.commands = [
        "-c",
        "echo Hello world!",
    ]

    # Create a task specification and assign the runnable and volume to it
    task = batch_v1.TaskSpec()
    task.runnables = [runnable]

    # Specify what resources are requested by each task.
    resources = batch_v1.ComputeResource()
    resources.cpu_milli = 2000  # in milliseconds per cpu-second. This means the task requires 2 whole CPUs.
    resources.memory_mib = 16  # in MiB
    task.compute_resource = resources

    task.max_retry_count = 2
    task.max_run_duration = "3600s"

    # Create a task group and assign the task specification to it
    group = batch_v1.TaskGroup()
    group.task_count = 3
    group.task_spec = task

    # Policies are used to define on what kind of virtual machines the tasks will run on.
    # In this case, we tell the system to use "e2-standard-4" machine type.
    # Read more about machine types here: https://cloud.google.com/compute/docs/machine-types
    policy = batch_v1.AllocationPolicy.InstancePolicy()
    policy.machine_type = "e2-standard-4"
    instances = batch_v1.AllocationPolicy.InstancePolicyOrTemplate()
    instances.policy = policy
    allocation_policy = batch_v1.AllocationPolicy()
    allocation_policy.instances = [instances]

    # Assign the provided labels to the allocation policy
    allocation_policy.labels = labels

    # Create the job and assign the task group and allocation policy to it
    job = batch_v1.Job()
    job.task_groups = [group]
    job.allocation_policy = allocation_policy

    # We use Cloud Logging as it's an out of the box available option
    job.logs_policy = batch_v1.LogsPolicy()
    job.logs_policy.destination = batch_v1.LogsPolicy.Destination.CLOUD_LOGGING

    # Create the job request and set the job and job ID
    create_request = batch_v1.CreateJobRequest()
    create_request.job = job
    create_request.job_id = job_name
    # The job's parent is the region in which the job will run
    create_request.parent = f"projects/{project_id}/locations/{region}"

    return client.create_job(create_request)

Definir rótulos personalizados para o job

Os rótulos definidos no campo labels do job são aplicados apenas ao job.

É possível definir rótulos para um job ao criar um job usando a CLI gcloud ou a API Batch.

gcloud

Por exemplo, para criar um job de contêiner básico em us-central1 que define dois rótulos personalizados que se aplicam ao próprio job, siga estas etapas:

  1. Crie um arquivo JSON que especifique os detalhes de configuração do job e o campo labels.

    {
      "taskGroups": [
        {
          "taskSpec": {
            "runnables": [
              {
                "container": {
                  "imageUri": "gcr.io/google-containers/busybox",
                  "entrypoint": "/bin/sh",
                  "commands": [
                    "-c",
                    "echo Hello World!"
                  ]
                }
              }
            ]
          }
        }
      ],
      "labels": {
        "JOB_LABEL_NAME1": "JOB_LABEL_VALUE1",
        "JOB_LABEL_NAME2": "JOB_LABEL_VALUE2"
      }
    }
    

    Substitua:

    • JOB_LABEL_NAME1: o nome do primeiro rótulo a ser aplicado ao job.

    • JOB_LABEL_VALUE1: o valor do primeiro rótulo a ser aplicado ao job.

    • JOB_LABEL_NAME2: o nome do segundo rótulo a ser aplicado ao job.

    • JOB_LABEL_VALUE2: o valor do segundo rótulo a ser aplicado ao job.

  2. Crie o job em us-central1 usando o comando gcloud batch jobs submit com as seguintes flags:

    gcloud batch jobs submit example-job \
        --config=JSON_CONFIGURATION_FILE \
        --location=us-central1
    

    Substitua JSON_CONFIGURATION_FILE pelo caminho para o arquivo JSON com os detalhes de configuração do job que você criou na etapa anterior.

API

Por exemplo, para criar um job de contêiner em us-central1 que defina dois rótulos personalizados para aplicar aos próprios jobs, faça uma solicitação POST para o método jobs.create e especifique o campo labels.

POST https://batch.googleapis.com/v1/projects/example-project/locations/us-central1/jobs?job_id=example-job

{
  "taskGroups": [
    {
      "taskSpec": {
        "runnables": [
          {
            "container": {
              "imageUri": "gcr.io/google-containers/busybox",
              "entrypoint": "/bin/sh",
              "commands": [
                "-c",
                "echo Hello World!"
              ]
            }
          }
        ]
      }
    }
  ],
  "labels": {
    "JOB_LABEL_NAME1": "JOB_LABEL_VALUE1",
    "JOB_LABEL_NAME2": "JOB_LABEL_VALUE2"
  }
}

Substitua:

  • JOB_LABEL_NAME1: o nome do primeiro rótulo a ser aplicado ao seu job.

  • JOB_LABEL_VALUE1: o valor do primeiro rótulo a ser aplicado ao job.

  • JOB_LABEL_NAME2: o nome do segundo rótulo a ser aplicado ao seu job.

  • JOB_LABEL_VALUE2: o valor do segundo rótulo a ser aplicado ao job.

Java


import com.google.cloud.batch.v1.BatchServiceClient;
import com.google.cloud.batch.v1.ComputeResource;
import com.google.cloud.batch.v1.CreateJobRequest;
import com.google.cloud.batch.v1.Job;
import com.google.cloud.batch.v1.LogsPolicy;
import com.google.cloud.batch.v1.Runnable;
import com.google.cloud.batch.v1.TaskGroup;
import com.google.cloud.batch.v1.TaskSpec;
import com.google.protobuf.Duration;
import java.io.IOException;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.TimeoutException;


public class CreateBatchLabelJob {

  public static void main(String[] args)
      throws IOException, ExecutionException, InterruptedException, TimeoutException {
    // TODO(developer): Replace these variables before running the sample.
    // Project ID or project number of the Google Cloud project you want to use.
    String projectId = "YOUR_PROJECT_ID";
    // Name of the region you want to use to run the job. Regions that are
    // available for Batch are listed on: https://cloud.google.com/batch/docs/get-started#locations
    String region = "us-central1";
    // The name of the job that will be created.
    // It needs to be unique for each project and region pair.
    String jobName = "example-job";
    // Name of the label1 to be applied for your Job.
    String labelName1 = "JOB_LABEL_NAME1";
    // Value for the label1 to be applied for your Job.
    String labelValue1 = "JOB_LABEL_VALUE1";
    // Name of the label2 to be applied for your Job.
    String labelName2 = "JOB_LABEL_NAME2";
    // Value for the label2 to be applied for your Job.
    String labelValue2 = "JOB_LABEL_VALUE2";

    createBatchLabelJob(projectId, region, jobName, labelName1,
        labelValue1, labelName2, labelValue2);
  }

  // Creates a job with labels defined in the labels field.
  public static Job createBatchLabelJob(String projectId, String region, String jobName,
                    String labelName1, String labelValue1, String labelName2, String labelValue2)
      throws IOException, ExecutionException, InterruptedException, TimeoutException {
    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests.
    try (BatchServiceClient batchServiceClient = BatchServiceClient.create()) {

      // Define what will be done as part of the job.
      Runnable runnable =
          Runnable.newBuilder()
              .setContainer(
                  Runnable.Container.newBuilder()
                      .setImageUri("gcr.io/google-containers/busybox")
                      .setEntrypoint("/bin/sh")
                      .addCommands("-c")
                      .addCommands(
                          "echo Hello world! This is task ${BATCH_TASK_INDEX}. "
                              + "This job has a total of ${BATCH_TASK_COUNT} tasks.")
                      .build())
              .build();

      // We can specify what resources are requested by each task.
      ComputeResource computeResource =
          ComputeResource.newBuilder()
              // In milliseconds per cpu-second. This means the task requires 50% of a single CPUs.
              .setCpuMilli(2000)
              // In MiB.
              .setMemoryMib(2000)
              .build();

      TaskSpec task =
          TaskSpec.newBuilder()
              // Jobs can be divided into tasks. In this case, we have only one task.
              .addRunnables(runnable)
              .setComputeResource(computeResource)
              .setMaxRetryCount(2)
              .setMaxRunDuration(Duration.newBuilder().setSeconds(3600).build())
              .build();

      // Tasks are grouped inside a job using TaskGroups.
      // Currently, it's possible to have only one task group.
      TaskGroup taskGroup = TaskGroup.newBuilder().setTaskCount(1).setTaskSpec(task).build();

      Job job =
          Job.newBuilder()
              .addTaskGroups(taskGroup)
              // We use Cloud Logging as it's an out of the box available option.
              .setLogsPolicy(LogsPolicy.newBuilder()
              .setDestination(LogsPolicy.Destination.CLOUD_LOGGING).build())
              // Labels and their value to be applied to the job.
              .putLabels(labelName1, labelValue1)
              .putLabels(labelName2, labelValue2)
              .build();

      CreateJobRequest createJobRequest =
          CreateJobRequest.newBuilder()
              // The job's parent is the region in which the job will run.
              .setParent(String.format("projects/%s/locations/%s", projectId, region))
              .setJob(job)
              .setJobId(jobName)
              .build();

      Job result =
          batchServiceClient
              .createJobCallable()
              .futureCall(createJobRequest)
              .get(5, TimeUnit.MINUTES);

      System.out.printf("Successfully created the job: %s", result.getName());

      return result;
    }
  }

}

Node.js

// Imports the Batch library
const batchLib = require('@google-cloud/batch');
const batch = batchLib.protos.google.cloud.batch.v1;

// Instantiates a client
const batchClient = new batchLib.v1.BatchServiceClient();

/**
 * TODO(developer): Update these variables before running the sample.
 */
// Project ID or project number of the Google Cloud project you want to use.
const projectId = await batchClient.getProjectId();
// Name of the region you want to use to run the job. Regions that are
// available for Batch are listed on: https://cloud.google.com/batch/docs/get-started#locations
const region = 'europe-central2';
// The name of the job that will be created.
// It needs to be unique for each project and region pair.
const jobName = 'batch-labels-job';
// Name of the label1 to be applied for your Job.
const labelName1 = 'job_label_name_1';
// Value for the label1 to be applied for your Job.
const labelValue1 = 'job_label_value1';
// Name of the label2 to be applied for your Job.
const labelName2 = 'job_label_name_2';
// Value for the label2 to be applied for your Job.
const labelValue2 = 'job_label_value2';

// Define what will be done as part of the job.
const runnable = new batch.Runnable({
  container: new batch.Runnable.Container({
    imageUri: 'gcr.io/google-containers/busybox',
    entrypoint: '/bin/sh',
    commands: ['-c', 'echo Hello world! This is task ${BATCH_TASK_INDEX}.'],
  }),
});

// Specify what resources are requested by each task.
const computeResource = new batch.ComputeResource({
  // In milliseconds per cpu-second. This means the task requires 50% of a single CPUs.
  cpuMilli: 500,
  // In MiB.
  memoryMib: 16,
});

const task = new batch.TaskSpec({
  runnables: [runnable],
  computeResource,
  maxRetryCount: 2,
  maxRunDuration: {seconds: 3600},
});

// Tasks are grouped inside a job using TaskGroups.
const group = new batch.TaskGroup({
  taskCount: 3,
  taskSpec: task,
});

const job = new batch.Job({
  name: jobName,
  taskGroups: [group],
  // We use Cloud Logging as it's an option available out of the box
  logsPolicy: new batch.LogsPolicy({
    destination: batch.LogsPolicy.Destination.CLOUD_LOGGING,
  }),
});

// Labels and their value to be applied to the job and its resources.
job.labels[labelName1] = labelValue1;
job.labels[labelName2] = labelValue2;

// The job's parent is the project and region in which the job will run
const parent = `projects/${projectId}/locations/${region}`;

async function callCreateBatchLabelsJob() {
  // Construct request
  const request = {
    parent,
    jobId: jobName,
    job,
  };

  // Run request
  const [response] = await batchClient.createJob(request);
  console.log(JSON.stringify(response));
}

await callCreateBatchLabelsJob();

Python

from google.cloud import batch_v1


def create_job_with_custom_job_labels(
    project_id: str,
    region: str,
    job_name: str,
    labels: dict,
) -> batch_v1.Job:
    """
    This method creates a Batch job with custom labels.
    Args:
        project_id (str): project ID or project number of the Cloud project you want to use.
        region (str): name of the region you want to use to run the job. Regions that are
            available for Batch are listed on: https://cloud.google.com/batch/docs/locations
        job_name (str): the name of the job that will be created.
        labels (dict): A dictionary of custom labels to be added to the job.
            E.g., {"label_key1": "label_value2", "label_key2": "label_value2"}
    Returns:
        batch_v1.Job: The created Batch job object containing configuration details.
    """
    client = batch_v1.BatchServiceClient()

    runnable = batch_v1.Runnable()
    runnable.container = batch_v1.Runnable.Container()
    runnable.container.image_uri = "gcr.io/google-containers/busybox"
    runnable.container.entrypoint = "/bin/sh"
    runnable.container.commands = [
        "-c",
        "echo Hello world!",
    ]

    # Create a task specification and assign the runnable and volume to it
    task = batch_v1.TaskSpec()
    task.runnables = [runnable]

    # Specify what resources are requested by each task.
    resources = batch_v1.ComputeResource()
    resources.cpu_milli = 2000  # in milliseconds per cpu-second. This means the task requires 2 whole CPUs.
    resources.memory_mib = 16  # in MiB
    task.compute_resource = resources

    task.max_retry_count = 2
    task.max_run_duration = "3600s"

    # Create a task group and assign the task specification to it
    group = batch_v1.TaskGroup()
    group.task_count = 3
    group.task_spec = task

    # Policies are used to define on what kind of virtual machines the tasks will run on.
    # In this case, we tell the system to use "e2-standard-4" machine type.
    # Read more about machine types here: https://cloud.google.com/compute/docs/machine-types
    policy = batch_v1.AllocationPolicy.InstancePolicy()
    policy.machine_type = "e2-standard-4"
    instances = batch_v1.AllocationPolicy.InstancePolicyOrTemplate()
    instances.policy = policy
    allocation_policy = batch_v1.AllocationPolicy()
    allocation_policy.instances = [instances]

    # Create the job and assign the task group and allocation policy to it
    job = batch_v1.Job()
    job.task_groups = [group]
    job.allocation_policy = allocation_policy

    # Set the labels for the job
    job.labels = labels

    # We use Cloud Logging as it's an out of the box available option
    job.logs_policy = batch_v1.LogsPolicy()
    job.logs_policy.destination = batch_v1.LogsPolicy.Destination.CLOUD_LOGGING

    # Create the job request and set the job and job ID
    create_request = batch_v1.CreateJobRequest()
    create_request.job = job
    create_request.job_id = job_name
    # The job's parent is the region in which the job will run
    create_request.parent = f"projects/{project_id}/locations/{region}"

    return client.create_job(create_request)

Definir rótulos personalizados para executáveis

Os rótulos definidos no campo labels de um executável são aplicados apenas a esse executável.

É possível definir rótulos para um ou mais executáveis ao criar um job usando a CLI gcloud ou a API Batch.

gcloud

Por exemplo, para criar um job em us-central1 que defina dois rótulos personalizados, um para cada um dos executáveis do job, siga estas etapas:

  1. Crie um arquivo JSON que especifique os detalhes de configuração do job e os campos runnables.labels.

    {
      "taskGroups": [
        {
          "taskSpec": {
            "runnables": [
              {
                "container": {
                  "imageUri": "gcr.io/google-containers/busybox",
                  "entrypoint": "/bin/sh",
                  "commands": [
                    "-c",
                    "echo Hello from task ${BATCH_TASK_INDEX}!"
                  ]
                },
                "labels": {
                  "RUNNABLE1_LABEL_NAME1": "RUNNABLE1_LABEL_VALUE1"
                }
              },
              {
                "script": {
                  "text": "echo Hello from task ${BATCH_TASK_INDEX}!"
                },
                "labels": {
                  "RUNNABLE2_LABEL_NAME1": "RUNNABLE2_LABEL_VALUE1"
                }
              }
            ]
          }
        }
      ]
    }
    

    Substitua:

    • RUNNABLE1_LABEL_NAME1: o nome do rótulo a ser aplicado ao primeiro executável do job.

    • RUNNABLE1_LABEL_VALUE1: o valor do rótulo a ser aplicado ao primeiro executável do job.

    • RUNNABLE2_LABEL_NAME1: o nome do rótulo a ser aplicado ao segundo executável do job.

    • RUNNABLE2_LABEL_VALUE1: o valor do rótulo a ser aplicado ao segundo executável do job.

  2. Crie o job em us-central1 usando o comando gcloud batch jobs submit.

    gcloud batch jobs submit example-job \
        --config=JSON_CONFIGURATION_FILE \
        --location=us-central1
    

    Substitua JSON_CONFIGURATION_FILE pelo caminho para o arquivo JSON com os detalhes de configuração do job que você criou na etapa anterior.

API

Por exemplo, para criar um job em us-central1 que defina dois rótulos personalizados, um para cada um dos dois executáveis do job, faça uma solicitação POST para o método jobs.create e especifique os campos runnables.labels.

POST https://batch.googleapis.com/v1/projects/example-project/locations/us-central1/jobs?job_id=example-job

{
  "taskGroups": [
    {
      "taskSpec": {
        "runnables": [
          {
            "container": {
              "imageUri": "gcr.io/google-containers/busybox",
              "entrypoint": "/bin/sh",
              "commands": [
                "-c",
                "echo Hello from ${BATCH_TASK_INDEX}!"
              ]
            },
            "labels": {
              "RUNNABLE1_LABEL_NAME1": "RUNNABLE1_LABEL_VALUE1"
            }
          },
          {
            "script": {
              "text": "echo Hello from ${BATCH_TASK_INDEX}!"
            },
            "labels": {
              "RUNNABLE2_LABEL_NAME1": "RUNNABLE2_LABEL_VALUE1"
            }
          }
        ]
      }
    }
  ]
}

Substitua:

  • RUNNABLE1_LABEL_NAME1: o nome do rótulo a ser aplicado ao job executável da primeira tarefa.

  • RUNNABLE1_LABEL_VALUE1: o valor do rótulo a ser aplicado ao executável do primeiro job.

  • RUNNABLE2_LABEL_NAME1: o nome do rótulo a ser aplicado ao job executável da segunda job.

  • RUNNABLE2_LABEL_VALUE1: o valor do rótulo a ser aplicado ao executável do segundo job.

Java


import com.google.cloud.batch.v1.BatchServiceClient;
import com.google.cloud.batch.v1.ComputeResource;
import com.google.cloud.batch.v1.CreateJobRequest;
import com.google.cloud.batch.v1.Job;
import com.google.cloud.batch.v1.LogsPolicy;
import com.google.cloud.batch.v1.Runnable;
import com.google.cloud.batch.v1.TaskGroup;
import com.google.cloud.batch.v1.TaskSpec;
import com.google.protobuf.Duration;
import java.io.IOException;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.TimeoutException;

public class CreateBatchRunnableLabel {
  public static void main(String[] args)
      throws IOException, ExecutionException, InterruptedException, TimeoutException {
    // TODO(developer): Replace these variables before running the sample.
    // Project ID or project number of the Google Cloud project you want to use.
    String projectId = "YOUR_PROJECT_ID";
    // Name of the region you want to use to run the job. Regions that are
    // available for Batch are listed on: https://cloud.google.com/batch/docs/get-started#locations
    String region = "us-central1";
    // The name of the job that will be created.
    // It needs to be unique for each project and region pair.
    String jobName = "example-job";
    // Name of the label1 to be applied for your Job.
    String labelName1 = "RUNNABLE_LABEL_NAME1";
    // Value for the label1 to be applied for your Job.
    String labelValue1 = "RUNNABLE_LABEL_VALUE1";
    // Name of the label2 to be applied for your Job.
    String labelName2 = "RUNNABLE_LABEL_NAME2";
    // Value for the label2 to be applied for your Job.
    String labelValue2 = "RUNNABLE_LABEL_VALUE2";

    createBatchRunnableLabel(projectId, region, jobName, labelName1,
        labelValue1, labelName2, labelValue2);
  }

  // Creates a job with labels defined in the labels field
  // for a runnable. The labels are only applied to that runnable.
  // In Batch, a runnable represents a single task or unit of work within a job.
  // It can be a container (like a Docker image) or a script.
  public static Job createBatchRunnableLabel(String projectId, String region, String jobName,
                   String labelName1, String labelValue1, String labelName2, String labelValue2)
      throws IOException, ExecutionException, InterruptedException, TimeoutException {
    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests.
    try (BatchServiceClient batchServiceClient = BatchServiceClient.create()) {

      // Define what will be done as part of the job.
      Runnable runnable =
          Runnable.newBuilder()
              .setContainer(
                  Runnable.Container.newBuilder()
                      .setImageUri("gcr.io/google-containers/busybox")
                      .setEntrypoint("/bin/sh")
                      .addCommands("-c")
                      .addCommands(
                          "echo Hello world! This is task ${BATCH_TASK_INDEX}. "
                              + "This job has a total of ${BATCH_TASK_COUNT} tasks.")
                      .build())
              // Label and its value to be applied to the container
              // that processes data from a specific region.
              .putLabels(labelName1, labelValue1)
              .setScript(Runnable.Script.newBuilder()
              .setText("echo Hello world! This is task ${BATCH_TASK_INDEX}. ").build())
              // Label and its value to be applied to the script
              // that performs some analysis on the processed data.
              .putLabels(labelName2, labelValue2)
              .build();

      // We can specify what resources are requested by each task.
      ComputeResource computeResource =
          ComputeResource.newBuilder()
              // In milliseconds per cpu-second. This means the task requires 50% of a single CPUs.
              .setCpuMilli(2000)
              // In MiB.
              .setMemoryMib(2000)
              .build();

      TaskSpec task =
          TaskSpec.newBuilder()
              // Jobs can be divided into tasks. In this case, we have only one task.
              .addRunnables(runnable)
              .setComputeResource(computeResource)
              .setMaxRetryCount(2)
              .setMaxRunDuration(Duration.newBuilder().setSeconds(3600).build())
              .build();

      // Tasks are grouped inside a job using TaskGroups.
      // Currently, it's possible to have only one task group.
      TaskGroup taskGroup = TaskGroup.newBuilder().setTaskCount(1).setTaskSpec(task).build();

      Job job =
          Job.newBuilder()
              .addTaskGroups(taskGroup)
              // We use Cloud Logging as it's an out of the box available option.
              .setLogsPolicy(LogsPolicy.newBuilder()
              .setDestination(LogsPolicy.Destination.CLOUD_LOGGING).build())
              .build();

      CreateJobRequest createJobRequest =
          CreateJobRequest.newBuilder()
              // The job's parent is the region in which the job will run for the specific project.
              .setParent(String.format("projects/%s/locations/%s", projectId, region))
              .setJob(job)
              .setJobId(jobName)
              .build();

      Job result =
          batchServiceClient
              .createJobCallable()
              .futureCall(createJobRequest)
              .get(5, TimeUnit.MINUTES);

      System.out.printf("Successfully created the job: %s", result.getName());

      return result;
    }
  }

}

Node.js

// Imports the Batch library
const batchLib = require('@google-cloud/batch');
const batch = batchLib.protos.google.cloud.batch.v1;

// Instantiates a client
const batchClient = new batchLib.v1.BatchServiceClient();

/**
 * TODO(developer): Update these variables before running the sample.
 */
// Project ID or project number of the Google Cloud project you want to use.
const projectId = await batchClient.getProjectId();
// Name of the region you want to use to run the job. Regions that are
// available for Batch are listed on: https://cloud.google.com/batch/docs/get-started#locations
const region = 'us-central1';
// The name of the job that will be created.
// It needs to be unique for each project and region pair.
const jobName = 'example-job';
// Name of the label1 to be applied for your Job.
const labelName1 = 'RUNNABLE_LABEL_NAME1';
// Value for the label1 to be applied for your Job.
const labelValue1 = 'RUNNABLE_LABEL_VALUE1';
// Name of the label2 to be applied for your Job.
const labelName2 = 'RUNNABLE_LABEL_NAME2';
// Value for the label2 to be applied for your Job.
const labelValue2 = 'RUNNABLE_LABEL_VALUE2';

const container = new batch.Runnable.Container({
  imageUri: 'gcr.io/google-containers/busybox',
  entrypoint: '/bin/sh',
  commands: ['-c', 'echo Hello world! This is task ${BATCH_TASK_INDEX}.'],
});

const script = new batch.Runnable.Script({
  commands: ['-c', 'echo Hello world! This is task ${BATCH_TASK_INDEX}.'],
});

const runnable1 = new batch.Runnable({
  container,
  // Label and its value to be applied to the container
  // that processes data from a specific region.
  labels: {
    [labelName1]: labelValue1,
  },
});

const runnable2 = new batch.Runnable({
  script,
  // Label and its value to be applied to the script
  // that performs some analysis on the processed data.
  labels: {
    [labelName2]: labelValue2,
  },
});

// Specify what resources are requested by each task.
const computeResource = new batch.ComputeResource({
  // In milliseconds per cpu-second. This means the task requires 50% of a single CPUs.
  cpuMilli: 500,
  // In MiB.
  memoryMib: 16,
});

const task = new batch.TaskSpec({
  runnables: [runnable1, runnable2],
  computeResource,
  maxRetryCount: 2,
  maxRunDuration: {seconds: 3600},
});

// Tasks are grouped inside a job using TaskGroups.
const group = new batch.TaskGroup({
  taskCount: 3,
  taskSpec: task,
});

const job = new batch.Job({
  name: jobName,
  taskGroups: [group],
  // We use Cloud Logging as it's an option available out of the box
  logsPolicy: new batch.LogsPolicy({
    destination: batch.LogsPolicy.Destination.CLOUD_LOGGING,
  }),
});

// The job's parent is the project and region in which the job will run
const parent = `projects/${projectId}/locations/${region}`;

async function callCreateBatchLabelsRunnable() {
  // Construct request
  const request = {
    parent,
    jobId: jobName,
    job,
  };

  // Run request
  const [response] = await batchClient.createJob(request);
  console.log(JSON.stringify(response));
}

await callCreateBatchLabelsRunnable();

Python

from google.cloud import batch_v1


def create_job_with_custom_runnables_labels(
    project_id: str,
    region: str,
    job_name: str,
    labels: dict,
) -> batch_v1.Job:
    """
    This method creates a Batch job with custom labels for runnable.
    Args:
        project_id (str): project ID or project number of the Cloud project you want to use.
        region (str): name of the region you want to use to run the job. Regions that are
            available for Batch are listed on: https://cloud.google.com/batch/docs/locations
        job_name (str): the name of the job that will be created.
        labels (dict): a dictionary of key-value pairs that will be used as labels
            E.g., {"label_key1": "label_value2"}
    Returns:
        batch_v1.Job: The created Batch job object containing configuration details.
    """
    client = batch_v1.BatchServiceClient()

    runnable = batch_v1.Runnable()
    runnable.display_name = "Script 1"
    runnable.script = batch_v1.Runnable.Script()
    runnable.script.text = "echo Hello world from Script 1 for task ${BATCH_TASK_INDEX}"
    # Add custom labels to the first runnable
    runnable.labels = labels

    # Create a task specification and assign the runnable and volume to it
    task = batch_v1.TaskSpec()
    task.runnables = [runnable]

    # Specify what resources are requested by each task.
    resources = batch_v1.ComputeResource()
    resources.cpu_milli = 2000  # in milliseconds per cpu-second. This means the task requires 2 whole CPUs.
    resources.memory_mib = 16  # in MiB
    task.compute_resource = resources

    task.max_retry_count = 2
    task.max_run_duration = "3600s"

    # Create a task group and assign the task specification to it
    group = batch_v1.TaskGroup()
    group.task_count = 3
    group.task_spec = task

    # Policies are used to define on what kind of virtual machines the tasks will run on.
    # In this case, we tell the system to use "e2-standard-4" machine type.
    # Read more about machine types here: https://cloud.google.com/compute/docs/machine-types
    policy = batch_v1.AllocationPolicy.InstancePolicy()
    policy.machine_type = "e2-standard-4"
    instances = batch_v1.AllocationPolicy.InstancePolicyOrTemplate()
    instances.policy = policy
    allocation_policy = batch_v1.AllocationPolicy()
    allocation_policy.instances = [instances]

    # Create the job and assign the task group and allocation policy to it
    job = batch_v1.Job()
    job.task_groups = [group]
    job.allocation_policy = allocation_policy

    # We use Cloud Logging as it's an out of the box available option
    job.logs_policy = batch_v1.LogsPolicy()
    job.logs_policy.destination = batch_v1.LogsPolicy.Destination.CLOUD_LOGGING

    # Create the job request and set the job and job ID
    create_request = batch_v1.CreateJobRequest()
    create_request.job = job
    create_request.job_id = job_name
    # The job's parent is the region in which the job will run
    create_request.parent = f"projects/{project_id}/locations/{region}"

    return client.create_job(create_request)

A seguir