Getting started with ML: 25+ resources recommended by role and task
Nikita Namjoshi
Developer Advocate
Polong Lin
Developer Advocate
Wondering how to get started with Vertex AI? Below, we've collected a list of resources to help you build and hone your skills across data science, machine learning, and artificial intelligence on Google Cloud.
We've broken down the resources by what we think a Data Analyst, Data Scientist, ML Engineer, or a Software Engineer might be most interested in. But we also recognize there's a lot of overlap between these roles, so even if you identify as a Data Scientist, for example, you might find some of the resources for ML Engineers or Developers just as useful!
Data Analyst
From data to insights, and perhaps some modeling, data analysts look for ways to help their stakeholders understand the value of their data.
Data exploration and Feature Engineering
Data visualization
Data Scientist
As a data scientist, you might be interested in generating insights from data, primarily through extensive exploratory data analysis, visualization, feature engineering, and modeling. If you'd like one place to start, check out Best practices for implementing machine learning on Google Cloud.
Model registry
Model training
[Codelab] Train models with the Vertex AI Workbench notebook executor
[Codelab] Use autopackaging to fine tune Bert with Hugging Face on Vertex AI Training
Large scale model training
[Codelab] Multi-Worker Training and Transfer Learning with TensorFlow
[Blog] Optimize training performance with Reduction Server on Vertex AI
Model tuning
Model serving
ML Engineer
Below are resources for an ML Engineer, someone whose focus area is MLOps, or the operationalization of feature management, model serving and monitoring, and CI/CD with ML pipelines.
Feature management
Model Monitoring
ML Pipelines
Machine Learning Operations
Software Engineer with ML applications
Here are some resources if you work more as a traditional software engineer who spends more time on using ML in applications and less time on data wrangling, model building, or MLOps.
[Blog] Find anything blazingly fast with Google's vector search technology
[Blog] Using Vertex AI for rapid model prototyping and deployment
Looking for resources?
Are you looking for more information but you can't seem to find them? Let us know! Reach out to us on Linkedin: