AI & Machine Learning

Getting started with ML: 25+ resources recommended by role and task

applied ml summit 2022.jpg

Wondering how to get started with Vertex AI? Below, we've collected a list of resources to help you build and hone your skills across data science, machine learning, and artificial intelligence on Google Cloud.

We've broken down the resources by what we think a Data Analyst, Data Scientist, ML Engineer, or a Software Engineer might be most interested in. But we also recognize there's a lot of overlap between these roles, so even if you identify as a Data Scientist, for example, you might find some of the resources for ML Engineers or Developers just as useful!

Data Analyst 

From data to insights, and perhaps some modeling, data analysts look for ways to help their stakeholders understand the value of their data.

Data exploration and Feature Engineering

Data visualization

Data Scientist

As a data scientist, you might be interested in generating insights from data, primarily through extensive exploratory data analysis, visualization, feature engineering, and modeling. If you'd like one place to start, check out Best practices for implementing machine learning on Google Cloud

Model registry

Model training

Large scale model training

Model tuning

Model serving

ML Engineer

Below are resources for an ML Engineer, someone whose focus area is MLOps, or the operationalization of feature management, model serving and monitoring, and CI/CD with ML pipelines.

Feature management

Model Monitoring

ML Pipelines

Machine Learning Operations

Software Engineer with ML applications

Here are some resources if you work more as a traditional software engineer who spends more time on using ML in applications and less time on data wrangling, model building, or MLOps.

Looking for resources?

Are you looking for more information but you can't seem to find them? Let us know! Reach out to us on Linkedin: