Annotate a batch of files in Cloud Storage

Annotate a batch of files in Cloud Storage while online.

Documentation pages that include this code sample

To view the code sample used in context, see the following documentation:

Code sample

Java

Before trying this sample, follow the Java setup instructions in the Vision quickstart using client libraries. For more information, see the Vision Java API reference documentation.

import com.google.cloud.vision.v1.AnnotateFileRequest;
import com.google.cloud.vision.v1.AnnotateImageResponse;
import com.google.cloud.vision.v1.BatchAnnotateFilesRequest;
import com.google.cloud.vision.v1.BatchAnnotateFilesResponse;
import com.google.cloud.vision.v1.Block;
import com.google.cloud.vision.v1.Feature;
import com.google.cloud.vision.v1.GcsSource;
import com.google.cloud.vision.v1.ImageAnnotatorClient;
import com.google.cloud.vision.v1.InputConfig;
import com.google.cloud.vision.v1.Page;
import com.google.cloud.vision.v1.Paragraph;
import com.google.cloud.vision.v1.Symbol;
import com.google.cloud.vision.v1.Word;
import java.io.IOException;

public class BatchAnnotateFilesGcs {

  public static void batchAnnotateFilesGcs() throws IOException {
    String gcsUri = "gs://cloud-samples-data/vision/document_understanding/kafka.pdf";
    batchAnnotateFilesGcs(gcsUri);
  }

  public static void batchAnnotateFilesGcs(String gcsUri) throws IOException {
    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (ImageAnnotatorClient imageAnnotatorClient = ImageAnnotatorClient.create()) {
      // You can send multiple files to be annotated, this sample demonstrates how to do this with
      // one file. If you want to use multiple files, you have to create a `AnnotateImageRequest`
      // object for each file that you want annotated.
      // First specify where the vision api can find the image
      GcsSource gcsSource = GcsSource.newBuilder().setUri(gcsUri).build();

      // Specify the input config with the file's uri and its type.
      // Supported mime_type: application/pdf, image/tiff, image/gif
      // https://cloud.google.com/vision/docs/reference/rpc/google.cloud.vision.v1#inputconfig
      InputConfig inputConfig =
          InputConfig.newBuilder().setMimeType("application/pdf").setGcsSource(gcsSource).build();

      // Set the type of annotation you want to perform on the file
      // https://cloud.google.com/vision/docs/reference/rpc/google.cloud.vision.v1#google.cloud.vision.v1.Feature.Type
      Feature feature = Feature.newBuilder().setType(Feature.Type.DOCUMENT_TEXT_DETECTION).build();

      // Build the request object for that one file. Note: for additional file you have to create
      // additional `AnnotateFileRequest` objects and store them in a list to be used below.
      // Since we are sending a file of type `application/pdf`, we can use the `pages` field to
      // specify which pages to process. The service can process up to 5 pages per document file.
      // https://cloud.google.com/vision/docs/reference/rpc/google.cloud.vision.v1#google.cloud.vision.v1.AnnotateFileRequest
      AnnotateFileRequest fileRequest =
          AnnotateFileRequest.newBuilder()
              .setInputConfig(inputConfig)
              .addFeatures(feature)
              .addPages(1) // Process the first page
              .addPages(2) // Process the second page
              .addPages(-1) // Process the last page
              .build();

      // Add each `AnnotateFileRequest` object to the batch request.
      BatchAnnotateFilesRequest request =
          BatchAnnotateFilesRequest.newBuilder().addRequests(fileRequest).build();

      // Make the synchronous batch request.
      BatchAnnotateFilesResponse response = imageAnnotatorClient.batchAnnotateFiles(request);

      // Process the results, just get the first result, since only one file was sent in this
      // sample.
      for (AnnotateImageResponse imageResponse :
          response.getResponsesList().get(0).getResponsesList()) {
        System.out.format("Full text: %s%n", imageResponse.getFullTextAnnotation().getText());
        for (Page page : imageResponse.getFullTextAnnotation().getPagesList()) {
          for (Block block : page.getBlocksList()) {
            System.out.format("%nBlock confidence: %s%n", block.getConfidence());
            for (Paragraph par : block.getParagraphsList()) {
              System.out.format("\tParagraph confidence: %s%n", par.getConfidence());
              for (Word word : par.getWordsList()) {
                System.out.format("\t\tWord confidence: %s%n", word.getConfidence());
                for (Symbol symbol : word.getSymbolsList()) {
                  System.out.format(
                      "\t\t\tSymbol: %s, (confidence: %s)%n",
                      symbol.getText(), symbol.getConfidence());
                }
              }
            }
          }
        }
      }
    }
  }
}

Node.js

Before trying this sample, follow the Node.js setup instructions in the Vision quickstart using client libraries. For more information, see the Vision Node.js API reference documentation.

/**
 * TODO(developer): Uncomment these variables before running the sample.
 */
// const gcsSourceUri = 'gs://cloud-samples-data/vision/document_understanding/kafka.pdf';

// Imports the Google Cloud client libraries
const {ImageAnnotatorClient} = require('@google-cloud/vision').v1;

// Instantiates a client
const client = new ImageAnnotatorClient();

// You can send multiple files to be annotated, this sample demonstrates how to do this with
// one file. If you want to use multiple files, you have to create a request object for each file that you want annotated.
async function batchAnnotateFiles() {
  // First Specify the input config with the file's uri and its type.
  // Supported mime_type: application/pdf, image/tiff, image/gif
  // https://cloud.google.com/vision/docs/reference/rpc/google.cloud.vision.v1#inputconfig
  const inputConfig = {
    mimeType: 'application/pdf',
    gcsSource: {
      uri: gcsSourceUri,
    },
  };

  // Set the type of annotation you want to perform on the file
  // https://cloud.google.com/vision/docs/reference/rpc/google.cloud.vision.v1#google.cloud.vision.v1.Feature.Type
  const features = [{type: 'DOCUMENT_TEXT_DETECTION'}];

  // Build the request object for that one file. Note: for additional files you have to create
  // additional file request objects and store them in a list to be used below.
  // Since we are sending a file of type `application/pdf`, we can use the `pages` field to
  // specify which pages to process. The service can process up to 5 pages per document file.
  // https://cloud.google.com/vision/docs/reference/rpc/google.cloud.vision.v1#google.cloud.vision.v1.AnnotateFileRequest
  const fileRequest = {
    inputConfig: inputConfig,
    features: features,
    // Annotate the first two pages and the last one (max 5 pages)
    // First page starts at 1, and not 0. Last page is -1.
    pages: [1, 2, -1],
  };

  // Add each `AnnotateFileRequest` object to the batch request.
  const request = {
    requests: [fileRequest],
  };

  // Make the synchronous batch request.
  const [result] = await client.batchAnnotateFiles(request);

  // Process the results, just get the first result, since only one file was sent in this
  // sample.
  const responses = result.responses[0].responses;

  for (const response of responses) {
    console.log(`Full text: ${response.fullTextAnnotation.text}`);
    for (const page of response.fullTextAnnotation.pages) {
      for (const block of page.blocks) {
        console.log(`Block confidence: ${block.confidence}`);
        for (const paragraph of block.paragraphs) {
          console.log(` Paragraph confidence: ${paragraph.confidence}`);
          for (const word of paragraph.words) {
            const symbol_texts = word.symbols.map(symbol => symbol.text);
            const word_text = symbol_texts.join('');
            console.log(
              `  Word text: ${word_text} (confidence: ${word.confidence})`
            );
            for (const symbol of word.symbols) {
              console.log(
                `   Symbol: ${symbol.text} (confidence: ${symbol.confidence})`
              );
            }
          }
        }
      }
    }
  }
}

batchAnnotateFiles();

Python

Before trying this sample, follow the Python setup instructions in the Vision quickstart using client libraries. For more information, see the Vision Python API reference documentation.


from google.cloud import vision_v1


def sample_batch_annotate_files(
    storage_uri="gs://cloud-samples-data/vision/document_understanding/kafka.pdf",
):
    """Perform batch file annotation."""
    mime_type = "application/pdf"

    client = vision_v1.ImageAnnotatorClient()

    gcs_source = {"uri": storage_uri}
    input_config = {"gcs_source": gcs_source, "mime_type": mime_type}
    features = [{"type_": vision_v1.Feature.Type.DOCUMENT_TEXT_DETECTION}]

    # The service can process up to 5 pages per document file.
    # Here we specify the first, second, and last page of the document to be
    # processed.
    pages = [1, 2, -1]
    requests = [{"input_config": input_config, "features": features, "pages": pages}]

    response = client.batch_annotate_files(requests=requests)
    for image_response in response.responses[0].responses:
        print(u"Full text: {}".format(image_response.full_text_annotation.text))
        for page in image_response.full_text_annotation.pages:
            for block in page.blocks:
                print(u"\nBlock confidence: {}".format(block.confidence))
                for par in block.paragraphs:
                    print(u"\tParagraph confidence: {}".format(par.confidence))
                    for word in par.words:
                        print(u"\t\tWord confidence: {}".format(word.confidence))
                        for symbol in word.symbols:
                            print(
                                u"\t\t\tSymbol: {}, (confidence: {})".format(
                                    symbol.text, symbol.confidence
                                )
                            )

What's next

To search and filter code samples for other Google Cloud products, see the Google Cloud sample browser