Detect image properties

The Image Properties feature detects general attributes of the image, such as dominant color.

Bali image
Image credit: Jeremy Bishop, Unsplash.

Dominant colors detected:

dominant colors detected in Bali image

Image property detection requests

Set up your GCP project and authentication

Detect Image Properties in a local image

The Vision API can perform feature detection on a local image file by sending the contents of the image file as a base64 encoded string in the body of your request.

The ColorInfo field does not carry information about the absolute color space that should be used to interpret the RGB value (e.g. sRGB, Adobe RGB, DCI-P3, BT.2020, etc.). By default, applications should assume the sRGB color space.

REST & CMD LINE

Before using any of the request data below, make the following replacements:

  • base64-encoded-image: the base64 representation (ASCII string) of your binary image data. This string should look similar to the following string:
    • /9j/4QAYRXhpZgAA...9tAVx/zDQDlGxn//2Q==
    Visit the base64 encode topic for more information.

HTTP method and URL:

POST https://vision.googleapis.com/v1/images:annotate

Request JSON body:

{
  "requests": [
    {
      "image": {
        "content": "base64-encoded-image"
      },
      "features": [
        {
          "maxResults": 10,
          "type": "IMAGE_PROPERTIES"
        },
      ]
    }
  ]
}

To send your request, choose one of these options:

curl

Save the request body in a file called request.json, and execute the following command:

curl -X POST \
-H "Authorization: Bearer "$(gcloud auth application-default print-access-token) \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
https://vision.googleapis.com/v1/images:annotate

PowerShell

Save the request body in a file called request.json, and execute the following command:

$cred = gcloud auth application-default print-access-token
$headers = @{ Authorization = "Bearer $cred" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://vision.googleapis.com/v1/images:annotate" | Select-Object -Expand Content

If the request is successful, the server returns a 200 OK HTTP status code and the response in JSON format.

Response:

C#

Before trying this sample, follow the C# setup instructions in the Vision API Quickstart Using Client Libraries . For more information, see the Vision API C# API reference documentation .

// Load an image from a local file.
var image = Image.FromFile(filePath);
var client = ImageAnnotatorClient.Create();
var response = client.DetectImageProperties(image);
string header = "Red\tGreen\tBlue\tAlpha\n";
foreach (var color in response.DominantColors.Colors)
{
    Console.Write(header);
    header = "";
    Console.WriteLine("{0}\t{0}\t{0}\t{0}",
        color.Color.Red, color.Color.Green, color.Color.Blue,
        color.Color.Alpha);
}

Go

Before trying this sample, follow the Go setup instructions in the Vision API Quickstart Using Client Libraries . For more information, see the Vision API Go API reference documentation .


// detectProperties gets image properties from the Vision API for an image at the given file path.
func detectProperties(w io.Writer, file string) error {
	ctx := context.Background()

	client, err := vision.NewImageAnnotatorClient(ctx)
	if err != nil {
		return err
	}

	f, err := os.Open(file)
	if err != nil {
		return err
	}
	defer f.Close()

	image, err := vision.NewImageFromReader(f)
	if err != nil {
		return err
	}
	props, err := client.DetectImageProperties(ctx, image, nil)
	if err != nil {
		return err
	}

	fmt.Fprintln(w, "Dominant colors:")
	for _, quantized := range props.DominantColors.Colors {
		color := quantized.Color
		r := int(color.Red) & 0xff
		g := int(color.Green) & 0xff
		b := int(color.Blue) & 0xff
		fmt.Fprintf(w, "%2.1f%% - #%02x%02x%02x\n", quantized.PixelFraction*100, r, g, b)
	}

	return nil
}

Java

Before trying this sample, follow the Java setup instructions in the Vision API Quickstart Using Client Libraries. For more information, see the Vision API Java API reference documentation.

public static void detectProperties(String filePath, PrintStream out) throws Exception,
    IOException {
  List<AnnotateImageRequest> requests = new ArrayList<>();

  ByteString imgBytes = ByteString.readFrom(new FileInputStream(filePath));

  Image img = Image.newBuilder().setContent(imgBytes).build();
  Feature feat = Feature.newBuilder().setType(Type.IMAGE_PROPERTIES).build();
  AnnotateImageRequest request =
      AnnotateImageRequest.newBuilder().addFeatures(feat).setImage(img).build();
  requests.add(request);

  try (ImageAnnotatorClient client = ImageAnnotatorClient.create()) {
    BatchAnnotateImagesResponse response = client.batchAnnotateImages(requests);
    List<AnnotateImageResponse> responses = response.getResponsesList();

    for (AnnotateImageResponse res : responses) {
      if (res.hasError()) {
        out.printf("Error: %s\n", res.getError().getMessage());
        return;
      }

      // For full list of available annotations, see http://g.co/cloud/vision/docs
      DominantColorsAnnotation colors = res.getImagePropertiesAnnotation().getDominantColors();
      for (ColorInfo color : colors.getColorsList()) {
        out.printf(
            "fraction: %f\nr: %f, g: %f, b: %f\n",
            color.getPixelFraction(),
            color.getColor().getRed(),
            color.getColor().getGreen(),
            color.getColor().getBlue());
      }
    }
  }
}

Node.js

Before trying this sample, follow the Node.js setup instructions in the Vision API Quickstart Using Client Libraries . For more information, see the Vision API Node.js API reference documentation .

const vision = require('@google-cloud/vision');

// Creates a client
const client = new vision.ImageAnnotatorClient();

/**
 * TODO(developer): Uncomment the following line before running the sample.
 */
// const fileName = 'Local image file, e.g. /path/to/image.png';

// Performs property detection on the local file
const [result] = await client.imageProperties(fileName);
const colors = result.imagePropertiesAnnotation.dominantColors.colors;
colors.forEach(color => console.log(color));

PHP

Before trying this sample, follow the PHP setup instructions in the Vision API Quickstart Using Client Libraries . For more information, see the Vision API PHP API reference documentation .

namespace Google\Cloud\Samples\Vision;

use Google\Cloud\Vision\V1\ImageAnnotatorClient;

// $path = 'path/to/your/image.jpg'

function detect_image_property($path)
{
    $imageAnnotator = new ImageAnnotatorClient();

    # annotate the image
    $image = file_get_contents($path);
    $response = $imageAnnotator->imagePropertiesDetection($image);
    $props = $response->getImagePropertiesAnnotation();

    print("Properties:" . PHP_EOL);
    foreach ($props->getDominantColors()->getColors() as $colorInfo) {
        printf("Fraction: %s" . PHP_EOL, $colorInfo->getPixelFraction());
        $color = $colorInfo->getColor();
        printf("Red: %s" . PHP_EOL, $color->getRed());
        printf("Green: %s" . PHP_EOL, $color->getGreen());
        printf("Blue: %s" . PHP_EOL, $color->getBlue());
        print(PHP_EOL);
    }

    $imageAnnotator->close();
}

Python

Before trying this sample, follow the Python setup instructions in the Vision API Quickstart Using Client Libraries . For more information, see the Vision API Python API reference documentation .

def detect_properties(path):
    """Detects image properties in the file."""
    from google.cloud import vision
    import io
    client = vision.ImageAnnotatorClient()

    with io.open(path, 'rb') as image_file:
        content = image_file.read()

    image = vision.types.Image(content=content)

    response = client.image_properties(image=image)
    props = response.image_properties_annotation
    print('Properties:')

    for color in props.dominant_colors.colors:
        print('fraction: {}'.format(color.pixel_fraction))
        print('\tr: {}'.format(color.color.red))
        print('\tg: {}'.format(color.color.green))
        print('\tb: {}'.format(color.color.blue))
        print('\ta: {}'.format(color.color.alpha))

Ruby

Before trying this sample, follow the Ruby setup instructions in the Vision API Quickstart Using Client Libraries . For more information, see the Vision API Ruby API reference documentation .

# image_path = "Path to local image file, eg. './image.png'"

require "google/cloud/vision"

image_annotator = Google::Cloud::Vision::ImageAnnotator.new

response = image_annotator.image_properties_detection image: image_path

response.responses.each do |res|
  res.image_properties_annotation.dominant_colors.colors.each do |color_info|
    color = color_info.color
    puts "Color #{color.red}, #{color.green}, #{color.blue}"
  end
end

Detect Image Properties in a remote image

For your convenience, the Vision API can perform feature detection directly on an image file located in Google Cloud Storage or on the Web without the need to send the contents of the image file in the body of your request.

The ColorInfo field does not carry information about the absolute color space that should be used to interpret the RGB value (e.g. sRGB, Adobe RGB, DCI-P3, BT.2020, etc.). By default, applications should assume the sRGB color space.

REST & CMD LINE

Before using any of the request data below, make the following replacements:

  • cloud-storage-image-uri: the path to a valid image file in a Google Cloud Storage bucket. You must at least have read priveleges to the file. Example:
    • gs://cloud-samples-data/vision/image_properties/bali.jpeg

HTTP method and URL:

POST https://vision.googleapis.com/v1/images:annotate

Request JSON body:

{
  "requests": [
    {
      "image": {
        "source": {
          "gcsImageUri": "cloud-storage-image-uri"
        }
      },
      "features": [
        {
          "maxResults": 10,
          "type": "IMAGE_PROPERTIES"
        },
      ]
    }
  ]
}

To send your request, choose one of these options:

curl

Save the request body in a file called request.json, and execute the following command:

curl -X POST \
-H "Authorization: Bearer "$(gcloud auth application-default print-access-token) \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
https://vision.googleapis.com/v1/images:annotate

PowerShell

Save the request body in a file called request.json, and execute the following command:

$cred = gcloud auth application-default print-access-token
$headers = @{ Authorization = "Bearer $cred" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://vision.googleapis.com/v1/images:annotate" | Select-Object -Expand Content

If the request is successful, the server returns a 200 OK HTTP status code and the response in JSON format.

Response:

C#

Before trying this sample, follow the C# setup instructions in the Vision API Quickstart Using Client Libraries . For more information, see the Vision API C# API reference documentation .

// Specify a Google Cloud Storage uri for the image
// or a publicly accessible HTTP or HTTPS uri.
var image = Image.FromUri(uri);
var client = ImageAnnotatorClient.Create();
var response = client.DetectImageProperties(image);
string header = "Red\tGreen\tBlue\tAlpha\n";
foreach (var color in response.DominantColors.Colors)
{
    Console.Write(header);
    header = "";
    Console.WriteLine("{0}\t{0}\t{0}\t{0}",
        color.Color.Red, color.Color.Green, color.Color.Blue,
        color.Color.Alpha);
}

Go

Before trying this sample, follow the Go setup instructions in the Vision API Quickstart Using Client Libraries . For more information, see the Vision API Go API reference documentation .


// detectProperties gets image properties from the Vision API for an image at the given file path.
func detectPropertiesURI(w io.Writer, file string) error {
	ctx := context.Background()

	client, err := vision.NewImageAnnotatorClient(ctx)
	if err != nil {
		return err
	}

	image := vision.NewImageFromURI(file)
	props, err := client.DetectImageProperties(ctx, image, nil)
	if err != nil {
		return err
	}

	fmt.Fprintln(w, "Dominant colors:")
	for _, quantized := range props.DominantColors.Colors {
		color := quantized.Color
		r := int(color.Red) & 0xff
		g := int(color.Green) & 0xff
		b := int(color.Blue) & 0xff
		fmt.Fprintf(w, "%2.1f%% - #%02x%02x%02x\n", quantized.PixelFraction*100, r, g, b)
	}

	return nil
}

Java

Before trying this sample, follow the Java setup instructions in the Vision API Quickstart Using Client Libraries . For more information, see the Vision API Java API reference documentation .

public static void detectPropertiesGcs(String gcsPath, PrintStream out) throws Exception,
    IOException {
  List<AnnotateImageRequest> requests = new ArrayList<>();

  ImageSource imgSource = ImageSource.newBuilder().setGcsImageUri(gcsPath).build();
  Image img = Image.newBuilder().setSource(imgSource).build();
  Feature feat = Feature.newBuilder().setType(Type.IMAGE_PROPERTIES).build();
  AnnotateImageRequest request =
      AnnotateImageRequest.newBuilder().addFeatures(feat).setImage(img).build();
  requests.add(request);

  try (ImageAnnotatorClient client = ImageAnnotatorClient.create()) {
    BatchAnnotateImagesResponse response = client.batchAnnotateImages(requests);
    List<AnnotateImageResponse> responses = response.getResponsesList();

    for (AnnotateImageResponse res : responses) {
      if (res.hasError()) {
        out.printf("Error: %s\n", res.getError().getMessage());
        return;
      }

      // For full list of available annotations, see http://g.co/cloud/vision/docs
      DominantColorsAnnotation colors = res.getImagePropertiesAnnotation().getDominantColors();
      for (ColorInfo color : colors.getColorsList()) {
        out.printf(
            "fraction: %f\nr: %f, g: %f, b: %f\n",
            color.getPixelFraction(),
            color.getColor().getRed(),
            color.getColor().getGreen(),
            color.getColor().getBlue());
      }
    }
  }
}

Node.js

Before trying this sample, follow the Node.js setup instructions in the Vision API Quickstart Using Client Libraries . For more information, see the Vision API Node.js API reference documentation .

// Imports the Google Cloud client libraries
const vision = require('@google-cloud/vision');

// Creates a client
const client = new vision.ImageAnnotatorClient();

/**
 * TODO(developer): Uncomment the following lines before running the sample.
 */
// const bucketName = 'Bucket where the file resides, e.g. my-bucket';
// const fileName = 'Path to file within bucket, e.g. path/to/image.png';

// Performs property detection on the gcs file
const [result] = await client.imageProperties(
  `gs://${bucketName}/${fileName}`
);
const colors = result.imagePropertiesAnnotation.dominantColors.colors;
colors.forEach(color => console.log(color));

PHP

Before trying this sample, follow the PHP setup instructions in the Vision API Quickstart Using Client Libraries . For more information, see the Vision API PHP API reference documentation .

namespace Google\Cloud\Samples\Vision;

use Google\Cloud\Vision\V1\ImageAnnotatorClient;

// $path = 'gs://path/to/your/image.jpg'

function detect_image_property_gcs($path)
{
    $imageAnnotator = new ImageAnnotatorClient();

    # annotate the image
    $response = $imageAnnotator->imagePropertiesDetection($path);
    $props = $response->getImagePropertiesAnnotation();


    if ($props) {
        print("Properties:" . PHP_EOL);
        foreach ($props->getDominantColors()->getColors() as $colorInfo) {
            printf("Fraction: %s" . PHP_EOL, $colorInfo->getPixelFraction());
            $color = $colorInfo->getColor();
            printf("Red: %s" . PHP_EOL, $color->getRed());
            printf("Green: %s" . PHP_EOL, $color->getGreen());
            printf("Blue: %s" . PHP_EOL, $color->getBlue());
            print(PHP_EOL);
        }
    } else {
        print('No Results.' . PHP_EOL);
    }

    $imageAnnotator->close();
}

Python

Before trying this sample, follow the Python setup instructions in the Vision API Quickstart Using Client Libraries . For more information, see the Vision API Python API reference documentation .

def detect_properties_uri(uri):
    """Detects image properties in the file located in Google Cloud Storage or
    on the Web."""
    from google.cloud import vision
    client = vision.ImageAnnotatorClient()
    image = vision.types.Image()
    image.source.image_uri = uri

    response = client.image_properties(image=image)
    props = response.image_properties_annotation
    print('Properties:')

    for color in props.dominant_colors.colors:
        print('frac: {}'.format(color.pixel_fraction))
        print('\tr: {}'.format(color.color.red))
        print('\tg: {}'.format(color.color.green))
        print('\tb: {}'.format(color.color.blue))
        print('\ta: {}'.format(color.color.alpha))

Ruby

Before trying this sample, follow the Ruby setup instructions in the Vision API Quickstart Using Client Libraries . For more information, see the Vision API Ruby API reference documentation .

# image_path = "Google Cloud Storage URI, eg. 'gs://my-bucket/image.png'"

require "google/cloud/vision"

image_annotator = Google::Cloud::Vision::ImageAnnotator.new

response = image_annotator.image_properties_detection image: image_path

response.responses.each do |res|
  res.image_properties_annotation.dominant_colors.colors.each do |color_info|
    color = color_info.color
    puts "Color #{color.red}, #{color.green}, #{color.blue}"
  end
end

GCLOUD COMMAND

To perform image property detection, use the gcloud ml vision detect-image-properties command as shown in the following example:

gcloud ml vision detect-image-properties gs://cloud-samples-data/vision/image_properties/bali.jpeg

Try it

Try image property detection below. You can use the image specified already (gs://cloud-samples-data/vision/image_properties/bali.jpeg) or specify your own image in its place. Send the request by selecting Execute.

Bali image
Vai šī lapa bija noderīga? Informējiet mūs:

Nosūtīt atsauksmi par tēmu...

Cloud Vision API Documentation
Vai jums nepieciešama palīdzība? Apmeklējiet atbalsta lapu.