Como detectar marcadores

A detecção de marcadores encontra amplos conjuntos de categorias em uma imagem, que variam de meios de transporte a animais.

Como detectar marcadores em uma imagem local

Protocolo

Consulte o endpoint da API images:annotate para todos os detalhes.

Para executar a detecção de marcadores, faça uma solicitação POST e forneça o corpo apropriado:

POST https://vision.googleapis.com/v1/images:annotate?key=YOUR_API_KEY
{
  "requests": [
    {
      "image": {
        "content": "/9j/7QBEUGhvdG9zaG9...base64-encoded-image-content...fXNWzvDEeYxxxzj/Coa6Bax//Z"
      },
      "features": [
        {
          "type": "LABEL_DETECTION"
        }
      ]
    }
  ]
}

Para mais informações sobre como configurar o corpo da solicitação, consulte a documentação de referência de AnnotateImageRequest.

C#

Antes de testar esta amostra, siga as instruções de configuração do C# no Guia de início rápido do Vision: como usar bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API Vision para C#.

// Load an image from a local file.
var image = Image.FromFile(filePath);
var client = ImageAnnotatorClient.Create();
var response = client.DetectLabels(image);
foreach (var annotation in response)
{
    if (annotation.Description != null)
        Console.WriteLine(annotation.Description);
}

Go

Antes de testar esta amostra, siga as instruções de configuração do Go no Guia de início rápido da Vision: como usar bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API Vision para Go.


// detectLabels gets labels from the Vision API for an image at the given file path.
func detectLabels(w io.Writer, file string) error {
	ctx := context.Background()

	client, err := vision.NewImageAnnotatorClient(ctx)
	if err != nil {
		return err
	}

	f, err := os.Open(file)
	if err != nil {
		return err
	}
	defer f.Close()

	image, err := vision.NewImageFromReader(f)
	if err != nil {
		return err
	}
	annotations, err := client.DetectLabels(ctx, image, nil, 10)
	if err != nil {
		return err
	}

	if len(annotations) == 0 {
		fmt.Fprintln(w, "No labels found.")
	} else {
		fmt.Fprintln(w, "Labels:")
		for _, annotation := range annotations {
			fmt.Fprintln(w, annotation.Description)
		}
	}

	return nil
}

Java

Antes de testar esta amostra, siga as instruções de configuração do Java no Guia de início rápido da Vision: como usar bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API Vision para Java.

public static void detectLabels(String filePath, PrintStream out) throws Exception, IOException {
  List<AnnotateImageRequest> requests = new ArrayList<>();

  ByteString imgBytes = ByteString.readFrom(new FileInputStream(filePath));

  Image img = Image.newBuilder().setContent(imgBytes).build();
  Feature feat = Feature.newBuilder().setType(Type.LABEL_DETECTION).build();
  AnnotateImageRequest request =
      AnnotateImageRequest.newBuilder().addFeatures(feat).setImage(img).build();
  requests.add(request);

  try (ImageAnnotatorClient client = ImageAnnotatorClient.create()) {
    BatchAnnotateImagesResponse response = client.batchAnnotateImages(requests);
    List<AnnotateImageResponse> responses = response.getResponsesList();

    for (AnnotateImageResponse res : responses) {
      if (res.hasError()) {
        out.printf("Error: %s\n", res.getError().getMessage());
        return;
      }

      // For full list of available annotations, see http://g.co/cloud/vision/docs
      for (EntityAnnotation annotation : res.getLabelAnnotationsList()) {
        annotation.getAllFields().forEach((k, v) -> out.printf("%s : %s\n", k, v.toString()));
      }
    }
  }
}

Node.js

Antes de testar esta amostra, siga as instruções de configuração do Node.js no Guia de início rápido da Vision: como usar bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API Vision para Node.js.

// Imports the Google Cloud client library
const vision = require('@google-cloud/vision');

// Creates a client
const client = new vision.ImageAnnotatorClient();

/**
 * TODO(developer): Uncomment the following line before running the sample.
 */
// const fileName = 'Local image file, e.g. /path/to/image.png';

// Performs label detection on the local file
const [result] = await client.labelDetection(fileName);
const labels = result.labelAnnotations;
console.log('Labels:');
labels.forEach(label => console.log(label.description));

PHP

Antes de testar esta amostra, siga as instruções de configuração do PHP no Guia de início rápido da Vision: como usar bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API Vision para PHP.

namespace Google\Cloud\Samples\Vision;

use Google\Cloud\Vision\V1\ImageAnnotatorClient;

// $path = 'path/to/your/image.jpg'

function detect_label($path)
{
    $imageAnnotator = new ImageAnnotatorClient();

    # annotate the image
    $image = file_get_contents($path);
    $response = $imageAnnotator->labelDetection($image);
    $labels = $response->getLabelAnnotations();

    if ($labels) {
        print("Labels:" . PHP_EOL);
        foreach ($labels as $label) {
            print($label->getDescription() . PHP_EOL);
        }
    } else {
        print('No label found' . PHP_EOL);
    }

    $imageAnnotator->close();
}

Python

Antes de testar esta amostra, siga as instruções de configuração do Python no Guia de início rápido da Vision: como usar bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API Vision para Python.

def detect_labels(path):
    """Detects labels in the file."""
    from google.cloud import vision
    client = vision.ImageAnnotatorClient()

    with io.open(path, 'rb') as image_file:
        content = image_file.read()

    image = vision.types.Image(content=content)

    response = client.label_detection(image=image)
    labels = response.label_annotations
    print('Labels:')

    for label in labels:
        print(label.description)

Ruby

Antes de testar esta amostra, siga as instruções de configuração do Ruby no Guia de início rápido da Vision: como usar bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API Vision para Ruby.

# image_path = "Path to local image file, eg. './image.png'"

require "google/cloud/vision"

image_annotator = Google::Cloud::Vision::ImageAnnotator.new

response = image_annotator.label_detection(
  image: image_path,
  max_results: 15 # optional, defaults to 10
)

response.responses.each do |res|
  res.label_annotations.each do |label|
    puts label.description
  end
end

Detectar rótulos em uma imagem remota

Para sua comodidade, a Vision realiza a detecção de rótulos diretamente em um arquivo de imagem localizado no Google Cloud Storage ou na Web, sem precisar enviar o conteúdo do arquivo no corpo da solicitação.

Protocolo

Consulte o endpoint da API images:annotate para todos os detalhes.

Para executar a detecção de marcadores, faça uma solicitação POST e forneça o corpo apropriado:

POST https://vision.googleapis.com/v1/images:annotate?key=YOUR_API_KEY
{
  "requests": [
    {
      "image": {
        "source": {
          "gcsImageUri": "gs://YOUR_BUCKET_NAME/YOUR_FILE_NAME"
        }
      },
      "features": [
        {
          "type": "LABEL_DETECTION"
        }
      ]
    }
  ]
}

Para mais informações sobre como configurar o corpo da solicitação, consulte a documentação de referência de AnnotateImageRequest.

C#

Antes de testar esta amostra, siga as instruções de configuração do C# no Guia de início rápido do Vision: como usar bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API Vision para C#.

// Specify a Google Cloud Storage uri for the image
// or a publicly accessible HTTP or HTTPS uri.
var image = Image.FromUri(uri);
var client = ImageAnnotatorClient.Create();
var response = client.DetectLabels(image);
foreach (var annotation in response)
{
    if (annotation.Description != null)
        Console.WriteLine(annotation.Description);
}

Go

Antes de testar esta amostra, siga as instruções de configuração do Go no Guia de início rápido da Vision: como usar bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API Vision para Go.


// detectLabels gets labels from the Vision API for an image at the given file path.
func detectLabelsURI(w io.Writer, file string) error {
	ctx := context.Background()

	client, err := vision.NewImageAnnotatorClient(ctx)
	if err != nil {
		return err
	}

	image := vision.NewImageFromURI(file)
	annotations, err := client.DetectLabels(ctx, image, nil, 10)
	if err != nil {
		return err
	}

	if len(annotations) == 0 {
		fmt.Fprintln(w, "No labels found.")
	} else {
		fmt.Fprintln(w, "Labels:")
		for _, annotation := range annotations {
			fmt.Fprintln(w, annotation.Description)
		}
	}

	return nil
}

Java

Antes de testar esta amostra, siga as instruções de configuração do Java no Guia de início rápido da Vision: como usar bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API Vision para Java.

public static void detectLabelsGcs(String gcsPath, PrintStream out) throws Exception,
    IOException {
  List<AnnotateImageRequest> requests = new ArrayList<>();

  ImageSource imgSource = ImageSource.newBuilder().setGcsImageUri(gcsPath).build();
  Image img = Image.newBuilder().setSource(imgSource).build();
  Feature feat = Feature.newBuilder().setType(Type.LABEL_DETECTION).build();
  AnnotateImageRequest request =
      AnnotateImageRequest.newBuilder().addFeatures(feat).setImage(img).build();
  requests.add(request);

  try (ImageAnnotatorClient client = ImageAnnotatorClient.create()) {
    BatchAnnotateImagesResponse response = client.batchAnnotateImages(requests);
    List<AnnotateImageResponse> responses = response.getResponsesList();

    for (AnnotateImageResponse res : responses) {
      if (res.hasError()) {
        out.printf("Error: %s\n", res.getError().getMessage());
        return;
      }

      // For full list of available annotations, see http://g.co/cloud/vision/docs
      for (EntityAnnotation annotation : res.getLabelAnnotationsList()) {
        annotation.getAllFields().forEach((k, v) ->
            out.printf("%s : %s\n", k, v.toString()));
      }
    }
  }
}

Node.js

Antes de testar esta amostra, siga as instruções de configuração do Node.js no Guia de início rápido da Vision: como usar bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API Vision para Node.js.

// Imports the Google Cloud client libraries
const vision = require('@google-cloud/vision');

// Creates a client
const client = new vision.ImageAnnotatorClient();

/**
 * TODO(developer): Uncomment the following lines before running the sample.
 */
// const bucketName = 'Bucket where the file resides, e.g. my-bucket';
// const fileName = 'Path to file within bucket, e.g. path/to/image.png';

// Performs label detection on the gcs file
const [result] = await client.labelDetection(
  `gs://${bucketName}/${fileName}`
);
const labels = result.labelAnnotations;
console.log('Labels:');
labels.forEach(label => console.log(label.description));

PHP

Antes de testar esta amostra, siga as instruções de configuração do PHP no Guia de início rápido da Vision: como usar bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API Vision para PHP.

namespace Google\Cloud\Samples\Vision;

use Google\Cloud\Vision\V1\ImageAnnotatorClient;

// $path = 'gs://path/to/your/image.jpg'

function detect_label_gcs($path)
{
    $imageAnnotator = new ImageAnnotatorClient();

    # annotate the image
    $response = $imageAnnotator->labelDetection($path);
    $labels = $response->getLabelAnnotations();

    if ($labels) {
        print("Labels:" . PHP_EOL);
        foreach ($labels as $label) {
            print($label->getDescription() . PHP_EOL);
        }
    } else {
        print('No label found' . PHP_EOL);
    }

    $imageAnnotator->close();
}

Python

Antes de testar esta amostra, siga as instruções de configuração do Python no Guia de início rápido da Vision: como usar bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API Vision para Python.

def detect_labels_uri(uri):
    """Detects labels in the file located in Google Cloud Storage or on the
    Web."""
    from google.cloud import vision
    client = vision.ImageAnnotatorClient()
    image = vision.types.Image()
    image.source.image_uri = uri

    response = client.label_detection(image=image)
    labels = response.label_annotations
    print('Labels:')

    for label in labels:
        print(label.description)

Ruby

Antes de testar esta amostra, siga as instruções de configuração do Ruby no Guia de início rápido da Vision: como usar bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API Vision para Ruby.

# image_path = "Google Cloud Storage URI, eg. 'gs://my-bucket/image.png'"

require "google/cloud/vision"

image_annotator = Google::Cloud::Vision::ImageAnnotator.new

response = image_annotator.label_detection(
  image: image_path,
  max_results: 15 # optional, defaults to 10
)

response.responses.each do |res|
  res.label_annotations.each do |label|
    puts label.description
  end
end

Resposta LABEL_DETECTION

Uma resposta com um conjunto de labelAnnotations do tipo EntityAnnotation é produzida com uma solicitação LABEL_DETECTION.

O exemplo de código contém uma resposta de detecção de rótulos de amostra das cinco correspondências principais para a foto mostrada abaixo:

{
  "responses": [
    {
      "labelAnnotations": [
        {
          "mid": "/m/0bt9lr",
          "description": "dog",
          "score": 0.97346616
        },
        {
          "mid": "/m/09686",
          "description": "vertebrate",
          "score": 0.85700572
        },
        {
          "mid": "/m/01pm38",
          "description": "clumber spaniel",
          "score": 0.84881884
        },
        {
          "mid": "/m/04rky",
          "description": "mammal",
          "score": 0.847575
        },
        {
          "mid": "/m/02wbgd",
          "description": "english cocker spaniel",
          "score": 0.75829375
        }
      ]
    }
  ]
}
Esta página foi útil? Conte sua opinião sobre:

Enviar comentários sobre…

Documentação da API Cloud Vision
Precisa de ajuda? Acesse nossa página de suporte.