本文档适用于 AutoML Vision,它与 Vertex AI 有所不同。如果您使用的是 Vertex AI,请参阅 Vertex AI 文档

取消部署模型

部署和预测后,您可手动取消部署模型,以避免产生更多费用。

通过取消部署模型,您可以避免产生更多的模型托管使用费用。 如需了解详情,请参阅价格页面

网页界面

  1. 打开 AutoML Vision Object Detection UI,然后在左侧导航栏中选择模型标签页(带有灯泡图标)以显示可用的模型。

    如需查看其他项目的模型,请从标题栏右上角的下拉列表中选择该项目。

  2. 选择要用于标记图片的模型所对应的行。
  3. 选择标题栏正下方的测试和使用标签页。
  4. 从模型名称下方的横幅中选择移除部署,以打开取消部署选项窗口。

    取消部署弹出式菜单
  5. 选择删除部署以取消部署该模型。

    模型部署
  6. 模型取消部署完成后,您会收到电子邮件通知。

    “部署已完成”电子邮件

REST 和命令行

在使用任何请求数据之前,请先进行以下替换:

  • project-id:您的 GCP 项目 ID。
  • model-id:您的模型的 ID(从创建模型时返回的响应中获取)。此 ID 是模型名称的最后一个元素。 例如:
    • 模型名称:projects/project-id/locations/location-id/models/IOD4412217016962778756
    • 模型 ID:IOD4412217016962778756

HTTP 方法和网址:

POST https://automl.googleapis.com/v1/projects/project-id/locations/us-central1/models/model-id:undeploy

如需发送请求,请选择以下方式之一:

curl

执行以下命令:

curl -X POST \
-H "Authorization: Bearer "$(gcloud auth application-default print-access-token) \
-H "Content-Type: application/json; charset=utf-8" \
-d "" \
"https://automl.googleapis.com/v1/projects/project-id/locations/us-central1/models/model-id:undeploy"

PowerShell

执行以下命令:

$cred = gcloud auth application-default print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-Uri "https://automl.googleapis.com/v1/projects/project-id/locations/us-central1/models/model-id:undeploy" | Select-Object -Expand Content
您应该会收到包含部署操作 ID 的响应:
{
  "name": "projects/project-id/locations/us-central1/operations/operation-id",
  "metadata": {
    "@type": "type.googleapis.com/google.cloud.automl.v1.OperationMetadata",
    "createTime": "2019-08-07T22:19:50.828033Z",
    "updateTime": "2019-08-07T22:19:50.828033Z",
    "undeployModelDetails": {}
  }
}

您可以通过以下 HTTP 方法和网址获取操作的状态:

GET https://automl.googleapis.com/v1/projects/project-id/locations/us-central1/operations/operation-id

操作完成的状态将类似于以下内容:

{
  "name": "projects/project-id/locations/us-central1/operations/operation-id",
  "metadata": {
    "@type": "type.googleapis.com/google.cloud.automl.v1.OperationMetadata",
    "createTime": "2019-06-21T16:47:21.704674Z",
    "updateTime": "2019-06-21T17:01:00.802505Z",
    "deployModelDetails": {}
  },
  "done": true,
  "response": {
    "@type": "type.googleapis.com/google.protobuf.Empty"
  }
}

Go

在试用此示例之前,请按照客户端库页面中与此编程语言对应的设置说明执行操作。

import (
	"context"
	"fmt"
	"io"

	automl "cloud.google.com/go/automl/apiv1"
	automlpb "google.golang.org/genproto/googleapis/cloud/automl/v1"
)

// undeployModel deploys a model.
func undeployModel(w io.Writer, projectID string, location string, modelID string) error {
	// projectID := "my-project-id"
	// location := "us-central1"
	// modelID := "TRL123456789..."

	ctx := context.Background()
	client, err := automl.NewClient(ctx)
	if err != nil {
		return fmt.Errorf("NewClient: %v", err)
	}
	defer client.Close()

	req := &automlpb.UndeployModelRequest{
		Name: fmt.Sprintf("projects/%s/locations/%s/models/%s", projectID, location, modelID),
	}

	op, err := client.UndeployModel(ctx, req)
	if err != nil {
		return fmt.Errorf("DeployModel: %v", err)
	}
	fmt.Fprintf(w, "Processing operation name: %q\n", op.Name())

	if err := op.Wait(ctx); err != nil {
		return fmt.Errorf("Wait: %v", err)
	}

	fmt.Fprintf(w, "Model undeployed.\n")

	return nil
}

Java

在试用此示例之前,请按照客户端库页面中与此编程语言对应的设置说明执行操作。

import com.google.api.gax.longrunning.OperationFuture;
import com.google.cloud.automl.v1.AutoMlClient;
import com.google.cloud.automl.v1.ModelName;
import com.google.cloud.automl.v1.OperationMetadata;
import com.google.cloud.automl.v1.UndeployModelRequest;
import com.google.protobuf.Empty;
import java.io.IOException;
import java.util.concurrent.ExecutionException;

class UndeployModel {

  static void undeployModel() throws IOException, ExecutionException, InterruptedException {
    // TODO(developer): Replace these variables before running the sample.
    String projectId = "YOUR_PROJECT_ID";
    String modelId = "YOUR_MODEL_ID";
    undeployModel(projectId, modelId);
  }

  // Undeploy a model from prediction
  static void undeployModel(String projectId, String modelId)
      throws IOException, ExecutionException, InterruptedException {
    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (AutoMlClient client = AutoMlClient.create()) {
      // Get the full path of the model.
      ModelName modelFullId = ModelName.of(projectId, "us-central1", modelId);
      UndeployModelRequest request =
          UndeployModelRequest.newBuilder().setName(modelFullId.toString()).build();
      OperationFuture<Empty, OperationMetadata> future = client.undeployModelAsync(request);

      future.get();
      System.out.println("Model undeployment finished");
    }
  }
}

Node.js

在试用此示例之前,请按照客户端库页面中与此编程语言对应的设置说明执行操作。

/**
 * TODO(developer): Uncomment these variables before running the sample.
 */
// const projectId = 'YOUR_PROJECT_ID';
// const location = 'us-central1';
// const modelId = 'YOUR_MODEL_ID';

// Imports the Google Cloud AutoML library
const {AutoMlClient} = require('@google-cloud/automl').v1;

// Instantiates a client
const client = new AutoMlClient();

async function undeployModel() {
  // Construct request
  const request = {
    name: client.modelPath(projectId, location, modelId),
  };

  const [operation] = await client.undeployModel(request);

  // Wait for operation to complete.
  const [response] = await operation.promise();
  console.log(`Model undeployment finished. ${response}`);
}

undeployModel();

Python

在试用此示例之前,请按照客户端库页面中与此编程语言对应的设置说明执行操作。

from google.cloud import automl

# TODO(developer): Uncomment and set the following variables
# project_id = "YOUR_PROJECT_ID"
# model_id = "YOUR_MODEL_ID"

client = automl.AutoMlClient()
# Get the full path of the model.
model_full_id = client.model_path(project_id, "us-central1", model_id)
response = client.undeploy_model(name=model_full_id)

print("Model undeployment finished. {}".format(response.result()))

其他语言

C#: 请按照客户端库页面上的 C# 设置说明操作,然后访问 .NET 版 AutoML Vision Object Detection 参考文档。

PHP: 请按照客户端库页面上的 PHP 设置说明操作,然后访问 PHP 版 AutoML Vision Object Detection 参考文档。

Ruby 版: 请按照客户端库页面上的 Ruby 设置说明操作,然后访问 Ruby 版 AutoML Vision Object Detection 参考文档。