Esta página foi traduzida pela API Cloud Translation.
Switch to English

Como gerenciar modelos

Como o AutoML Vision Object Detection cria um novo modelo sempre que você começa o treinamento, o projeto pode incluir vários modelos. É possível conseguir uma lista dos modelos no projeto, receber um modelo específico, atualizar o número de nós de um modelo ou excluir modelos de que você não precisa mais.

Observação: não é possível exportar modelos personalizados criados nos produtos do Cloud AutoML, a menos que o contrário seja especificado na documentação ou nos termos de serviço aplicáveis.

Como listar modelos

Um projeto pode incluir vários modelos. Nesta seção, descrevemos como recuperar uma lista dos modelos disponíveis para um projeto.

IU da Web

Para ver uma lista dos modelos disponíveis que usam a IU do AutoML Vision Object Detection, clique no link "Modelos" na parte superior do menu de navegação à esquerda.

Imagem com uma lista de modelos

Para ver os modelos de outro projeto, selecione-o na lista suspensa na parte superior à direita da barra de título.

REST e linha de comando

Antes de usar os dados da solicitação abaixo, faça as substituições a seguir:

  • project-id: o ID do projeto do GCP.

Método HTTP e URL:

GET https://automl.googleapis.com/v1/projects/project-id/locations/us-central1/models

Para enviar a solicitação, escolha uma destas opções:

curl

Execute o seguinte comando:

curl -X GET \
-H "Authorization: Bearer "$(gcloud auth application-default print-access-token) \
https://automl.googleapis.com/v1/projects/project-id/locations/us-central1/models

PowerShell

Execute o seguinte comando:

$cred = gcloud auth application-default print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method GET `
-Headers $headers `
-Uri "https://automl.googleapis.com/v1/projects/project-id/locations/us-central1/models" | Select-Object -Expand Content

Você receberá uma resposta JSON semelhante a esta. Essa resposta mostra informações sobre dois modelos hospedados no Cloud.



    {
  "model": [
    {
      "name": "projects/project-id/locations/us-central1/models/model-id-1",
      "displayName": "display-name-1",
      "datasetId": "dataset-id",
      "createTime": "2019-07-26T21:10:18.338846Z",
      "deploymentState": "UNDEPLOYED",
      "updateTime": "2019-08-07T22:24:07.720068Z",
      "imageObjectDetectionModelMetadata": {
        "modelType": "cloud-low-latency-1",
        "nodeQps": 1.2987012987012987,
        "stopReason": "MODEL_CONVERGED",
        "trainBudgetMilliNodeHours": "216000",
        "trainCostMilliNodeHours": "8230"
      }
    },
    {
      "name": "projects/project-id/locations/us-central1/models/model-id-2",
      "displayName": "display-name-2",
      "datasetId": "dataset-id",
      "createTime": "2019-07-22T18:35:06.881193Z",
      "deploymentState": "UNDEPLOYED",
      "updateTime": "2019-07-22T19:58:44.980357Z",
      "imageObjectDetectionModelMetadata": {
        "modelType": "mobile-versatile-1",
        "nodeQps": -1,
        "stopReason": "MODEL_CONVERGED",
        "trainBudgetMilliNodeHours": "24000",
        "trainCostMilliNodeHours": "9367"
      }
    },
    {
      "name": "projects/project-id/locations/us-central1/models/model-id-3",
      "displayName": "display-name-3",
      "datasetId": "dataset-id",
      "createTime": "2019-03-31T22:56:51.348238Z",
      "deploymentState": "UNDEPLOYED",
      "updateTime": "2019-07-22T18:42:44.594876Z",
      "imageObjectDetectionModelMetadata": {
        "modelType": "cloud-high-accuracy-1",
        "nodeQps": 0.6872852233676976
      }
    }
  ]
}

Go

Antes de testar esta amostra, siga as instruções de configuração dessa linguagem na página Bibliotecas de cliente.

import (
	"context"
	"fmt"
	"io"

	automl "cloud.google.com/go/automl/apiv1"
	"google.golang.org/api/iterator"
	automlpb "google.golang.org/genproto/googleapis/cloud/automl/v1"
)

// listModels lists existing models.
func listModels(w io.Writer, projectID string, location string) error {
	// projectID := "my-project-id"
	// location := "us-central1"

	ctx := context.Background()
	client, err := automl.NewClient(ctx)
	if err != nil {
		return fmt.Errorf("NewClient: %v", err)
	}
	defer client.Close()

	req := &automlpb.ListModelsRequest{
		Parent: fmt.Sprintf("projects/%s/locations/%s", projectID, location),
	}

	it := client.ListModels(ctx, req)

	// Iterate over all results
	for {
		model, err := it.Next()
		if err == iterator.Done {
			break
		}
		if err != nil {
			return fmt.Errorf("ListModels.Next: %v", err)
		}

		// Retrieve deployment state.
		deploymentState := "undeployed"
		if model.GetDeploymentState() == automlpb.Model_DEPLOYED {
			deploymentState = "deployed"
		}

		// Display the model information.
		fmt.Fprintf(w, "Model name: %v\n", model.GetName())
		fmt.Fprintf(w, "Model display name: %v\n", model.GetDisplayName())
		fmt.Fprintf(w, "Model create time:\n")
		fmt.Fprintf(w, "\tseconds: %v\n", model.GetCreateTime().GetSeconds())
		fmt.Fprintf(w, "\tnanos: %v\n", model.GetCreateTime().GetNanos())
		fmt.Fprintf(w, "Model deployment state: %v\n", deploymentState)
	}

	return nil
}

Java

Antes de testar esta amostra, siga as instruções de configuração dessa linguagem na página Bibliotecas de cliente.

import com.google.cloud.automl.v1.AutoMlClient;
import com.google.cloud.automl.v1.AutoMlSettings;
import com.google.cloud.automl.v1.ListModelsRequest;
import com.google.cloud.automl.v1.LocationName;
import com.google.cloud.automl.v1.Model;
import java.io.IOException;
import org.threeten.bp.Duration;

class ListModels {

  static void listModels() throws IOException {
    // TODO(developer): Replace these variables before running the sample.
    String projectId = "YOUR_PROJECT_ID";
    listModels(projectId);
  }

  // List the models available in the specified location
  static void listModels(String projectId) throws IOException {
    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (AutoMlClient client = AutoMlClient.create()) {
      // A resource that represents Google Cloud Platform location.
      LocationName projectLocation = LocationName.of(projectId, "us-central1");

      // Create list models request.
      ListModelsRequest listModelsRequest =
          ListModelsRequest.newBuilder()
              .setParent(projectLocation.toString())
              .setFilter("")
              .build();

      // List all the models available in the region by applying filter.
      System.out.println("List of models:");
      for (Model model : client.listModels(listModelsRequest).iterateAll()) {
        // Display the model information.
        System.out.format("Model name: %s\n", model.getName());
        // To get the model id, you have to parse it out of the `name` field. As models Ids are
        // required for other methods.
        // Name Format: `projects/{project_id}/locations/{location_id}/models/{model_id}`
        String[] names = model.getName().split("/");
        String retrievedModelId = names[names.length - 1];
        System.out.format("Model id: %s\n", retrievedModelId);
        System.out.format("Model display name: %s\n", model.getDisplayName());
        System.out.println("Model create time:");
        System.out.format("\tseconds: %s\n", model.getCreateTime().getSeconds());
        System.out.format("\tnanos: %s\n", model.getCreateTime().getNanos());
        System.out.format("Model deployment state: %s\n", model.getDeploymentState());
      }
    }
  }
}

Node.js

Antes de testar esta amostra, siga as instruções de configuração dessa linguagem na página Bibliotecas de cliente.

/**
 * TODO(developer): Uncomment these variables before running the sample.
 */
// const projectId = 'YOUR_PROJECT_ID';
// const location = 'us-central1';

// Imports the Google Cloud AutoML library
const {AutoMlClient} = require('@google-cloud/automl').v1;

// Instantiates a client
const client = new AutoMlClient();

async function listModels() {
  // Construct request
  const request = {
    parent: client.locationPath(projectId, location),
    filter: 'translation_model_metadata:*',
  };

  const [response] = await client.listModels(request);

  console.log('List of models:');
  for (const model of response) {
    console.log(`Model name: ${model.name}`);
    console.log(`
      Model id: ${model.name.split('/')[model.name.split('/').length - 1]}`);
    console.log(`Model display name: ${model.displayName}`);
    console.log('Model create time');
    console.log(`\tseconds ${model.createTime.seconds}`);
    console.log(`\tnanos ${model.createTime.nanos / 1e9}`);
    console.log(`Model deployment state: ${model.deploymentState}`);
  }
}

listModels();

Python

Antes de testar esta amostra, siga as instruções de configuração dessa linguagem na página Bibliotecas de cliente.

from google.cloud import automl

# TODO(developer): Uncomment and set the following variables
# project_id = "YOUR_PROJECT_ID"

client = automl.AutoMlClient()
# A resource that represents Google Cloud Platform location.
project_location = f"projects/{project_id}/locations/us-central1"

request = automl.ListModelsRequest(parent=project_location, filter="")
response = client.list_models(request=request)

print("List of models:")
for model in response:
    # Display the model information.
    if model.deployment_state == automl.Model.DeploymentState.DEPLOYED:
        deployment_state = "deployed"
    else:
        deployment_state = "undeployed"

    print("Model name: {}".format(model.name))
    print("Model id: {}".format(model.name.split("/")[-1]))
    print("Model display name: {}".format(model.display_name))
    print("Model create time: {}".format(model.create_time))
    print("Model deployment state: {}".format(deployment_state))

Outros idiomas

C# : Siga o Instruções de configuração do C# na página de bibliotecas de cliente e acesse aDocumentação de referência do AutoML Vision Object Detection para .NET.

PHP : Siga as instruções: Instruções de configuração do PHP na página de bibliotecas de cliente e acesse aDocumentação de referência da detecção de objetos do AutoML Vision para PHP.

Raquel : Siga as instruções: Instruções de configuração do Ruby na página de bibliotecas de cliente e acesse aDocumentação de referência do AutoML Vision Object Detection para Ruby.

Conseguir um modelo

É possível conseguir um modelo treinado específico para modificar ou prever.

IU da Web

Para ver uma lista dos modelos disponíveis que usam a IU do AutoML Vision Object Detection, clique no link "Modelos" na parte superior do menu de navegação à esquerda.

Imagem com uma lista de modelos

Para ver os modelos de outro projeto, selecione-o na lista suspensa na parte superior à direita da barra de título.

REST e linha de comando

Antes de usar os dados da solicitação abaixo, faça as substituições a seguir:

  • project-id: o ID do projeto do GCP.
  • model-id: o ID do seu modelo, a partir da resposta de quando você o criou. Ele é o último elemento no nome do modelo. Por exemplo:
    • Nome do modelo: projects/project-id/locations/location-id/models/IOD4412217016962778756
    • ID do modelo: IOD4412217016962778756

Método HTTP e URL:

GET https://automl.googleapis.com/v1/projects/project-id/locations/us-central1/models/model-id

Para enviar a solicitação, escolha uma destas opções:

curl

Execute o seguinte comando:

curl -X GET \
-H "Authorization: Bearer "$(gcloud auth application-default print-access-token) \
https://automl.googleapis.com/v1/projects/project-id/locations/us-central1/models/model-id

PowerShell

Execute o seguinte comando:

$cred = gcloud auth application-default print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method GET `
-Headers $headers `
-Uri "https://automl.googleapis.com/v1/projects/project-id/locations/us-central1/models/model-id" | Select-Object -Expand Content

Você receberá uma resposta JSON semelhante a esta:



    {
  "name": "projects/project-id/locations/us-central1/models/model-id",
  "displayName": "display-name",
  "datasetId": "dataset-id",
  "createTime": "2019-07-26T21:10:18.338846Z",
  "deploymentState": "UNDEPLOYED",
  "updateTime": "2019-07-26T22:28:57.464076Z",
  "imageObjectDetectionModelMetadata": {
    "modelType": "cloud-low-latency-1",
    "nodeQps": 1.2987012987012987,
    "stopReason": "MODEL_CONVERGED",
    "trainBudgetMilliNodeHours": "216000",
    "trainCostMilliNodeHours": "8230"
  }
}

Java

Antes de testar esta amostra, siga as instruções de configuração dessa linguagem na página Bibliotecas de cliente.

import com.google.cloud.automl.v1.AutoMlClient;
import com.google.cloud.automl.v1.Model;
import com.google.cloud.automl.v1.ModelName;
import java.io.IOException;

class GetModel {

  static void getModel() throws IOException {
    // TODO(developer): Replace these variables before running the sample.
    String projectId = "YOUR_PROJECT_ID";
    String modelId = "YOUR_MODEL_ID";
    getModel(projectId, modelId);
  }

  // Get a model
  static void getModel(String projectId, String modelId) throws IOException {
    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (AutoMlClient client = AutoMlClient.create()) {
      // Get the full path of the model.
      ModelName modelFullId = ModelName.of(projectId, "us-central1", modelId);
      Model model = client.getModel(modelFullId);

      // Display the model information.
      System.out.format("Model name: %s\n", model.getName());
      // To get the model id, you have to parse it out of the `name` field. As models Ids are
      // required for other methods.
      // Name Format: `projects/{project_id}/locations/{location_id}/models/{model_id}`
      String[] names = model.getName().split("/");
      String retrievedModelId = names[names.length - 1];
      System.out.format("Model id: %s\n", retrievedModelId);
      System.out.format("Model display name: %s\n", model.getDisplayName());
      System.out.println("Model create time:");
      System.out.format("\tseconds: %s\n", model.getCreateTime().getSeconds());
      System.out.format("\tnanos: %s\n", model.getCreateTime().getNanos());
      System.out.format("Model deployment state: %s\n", model.getDeploymentState());
    }
  }
}

Node.js

Antes de testar esta amostra, siga as instruções de configuração dessa linguagem na página Bibliotecas de cliente.

/**
 * TODO(developer): Uncomment these variables before running the sample.
 */
// const projectId = 'YOUR_PROJECT_ID';
// const location = 'us-central1';
// const modelId = 'YOUR_MODEL_ID';

// Imports the Google Cloud AutoML library
const {AutoMlClient} = require('@google-cloud/automl').v1;

// Instantiates a client
const client = new AutoMlClient();

async function getModel() {
  // Construct request
  const request = {
    name: client.modelPath(projectId, location, modelId),
  };

  const [response] = await client.getModel(request);

  console.log(`Model name: ${response.name}`);
  console.log(
    `Model id: ${
      response.name.split('/')[response.name.split('/').length - 1]
    }`
  );
  console.log(`Model display name: ${response.displayName}`);
  console.log('Model create time');
  console.log(`\tseconds ${response.createTime.seconds}`);
  console.log(`\tnanos ${response.createTime.nanos / 1e9}`);
  console.log(`Model deployment state: ${response.deploymentState}`);
}

getModel();

Python

Antes de testar esta amostra, siga as instruções de configuração dessa linguagem na página Bibliotecas de cliente.

from google.cloud import automl

# TODO(developer): Uncomment and set the following variables
# project_id = "YOUR_PROJECT_ID"
# model_id = "YOUR_MODEL_ID"

client = automl.AutoMlClient()
# Get the full path of the model.
model_full_id = client.model_path(project_id, "us-central1", model_id)
model = client.get_model(name=model_full_id)

# Retrieve deployment state.
if model.deployment_state == automl.Model.DeploymentState.DEPLOYED:
    deployment_state = "deployed"
else:
    deployment_state = "undeployed"

# Display the model information.
print("Model name: {}".format(model.name))
print("Model id: {}".format(model.name.split("/")[-1]))
print("Model display name: {}".format(model.display_name))
print("Model create time: {}".format(model.create_time))
print("Model deployment state: {}".format(deployment_state))

Outros idiomas

C# : Siga o Instruções de configuração do C# na página de bibliotecas de cliente e acesse aDocumentação de referência do AutoML Vision Object Detection para .NET.

PHP : Siga as instruções: Instruções de configuração do PHP na página de bibliotecas de cliente e acesse aDocumentação de referência da detecção de objetos do AutoML Vision para PHP.

Raquel : Siga as instruções: Instruções de configuração do Ruby na página de bibliotecas de cliente e acesse aDocumentação de referência do AutoML Vision Object Detection para Ruby.

Atualizar o número do nó de um modelo

Depois de ter um modelo implantado treinado, atualize o número de nós em que o modelo é implantado para responder à sua quantidade específica de tráfego. Por exemplo, se você tiver uma quantidade maior de consultas por segundo (QPS) do que o esperado.

É possível alterar este número de nós sem ter que desfazer a implantação do modelo primeiro. A atualização da implantação alterará o número de nós sem interromper o tráfego de previsão exibido.

IU da Web

  1. Em AutoML Vision Object Detection UI e selecionando a guia Modelos (com o ícone de lâmpada) na barra de navegação esquerda, você verá os modelos disponíveis.

    Para ver os modelos de outro projeto, selecione o projeto na lista suspensa na parte superior direita da barra de título.

  2. Selecione o modelo treinado que foi implantado.
  3. Selecione a guia Testar e usar logo abaixo da barra de título.
  4. Uma mensagem é exibida em uma caixa na parte superior da página que diz "Seu modelo foi implantado e está disponível para solicitações de previsão on-line". Selecione a opção Atualizar implantação na parte lateral deste texto.

    imagem do botão de atualização da implantação
  5. Na janela Atualizar implantação que é aberta, selecione o novo número de nó para implantar o modelo na lista. Números de nós exibem as consultas de previsão estimadas por segundo (QPS, na sigla em inglês). imagem da janela pop-up de implantação de atualização
  6. Depois de selecionar um novo número de nó na lista, selecione Atualizar implantação para atualizar o número do nó no qual o modelo é implantado.

    atualizar janela de implantação depois de selecionar um novo número de nó
  7. Você retornará à janela Testar e usar e verá a caixa de texto exibindo "Implantando modelo...". implantação do modelo
  8. Depois que seu modelo for implantado com sucesso no novo número de nó, você receberá um e-mail no endereço associado ao projeto.

REST e LINHA DE CMD

O mesmo método usado inicialmente para implantar um modelo é usado para alterar o número do nó do modelo implantado.

Antes de usar os dados da solicitação abaixo, faça as substituições a seguir:

  • project-id: o ID do projeto do GCP.
  • model-id: o ID do seu modelo, a partir da resposta de quando você o criou. Ele é o último elemento no nome do modelo. Por exemplo:
    • Nome do modelo: projects/project-id/locations/location-id/models/IOD4412217016962778756
    • ID do modelo: IOD4412217016962778756

Considerações de campo:

  • nodeCount: o número de nós para implantar o modelo. O valor precisa estar entre 1 e 100, inclusive nas duas extremidades. Um nó é uma abstração de um recurso de máquina que pode processar consultas de previsão por segundo (QPS) on-line, conforme fornecido no qps_per_node do modelo.

Método HTTP e URL:

POST https://automl.googleapis.com/v1/projects/project-id/locations/us-central1/models/model-id:deploy

Corpo JSON da solicitação:

{
  "imageObjectDetectionModelDeploymentMetadata": {
    "nodeCount": 2
  }
}

Para enviar a solicitação, escolha uma destas opções:

curl

Salve o corpo da solicitação em um arquivo chamado request.json e execute o comando a seguir:

curl -X POST \
-H "Authorization: Bearer "$(gcloud auth application-default print-access-token) \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
https://automl.googleapis.com/v1/projects/project-id/locations/us-central1/models/model-id:deploy

PowerShell

Salve o corpo da solicitação em um arquivo chamado request.json e execute o comando a seguir:

$cred = gcloud auth application-default print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://automl.googleapis.com/v1/projects/project-id/locations/us-central1/models/model-id:deploy" | Select-Object -Expand Content

Será exibido um código semelhante a este. É possível usar o ID da operação para saber o status da tarefa. Veja um exemplo em Como trabalhar com operações de longa duração.

{
  "name": "projects/project-id/locations/us-central1/operations/operation-id",
  "metadata": {
    "@type": "type.googleapis.com/google.cloud.automl.v1.OperationMetadata",
    "createTime": "2019-08-07T22:00:20.692109Z",
    "updateTime": "2019-08-07T22:00:20.692109Z",
    "deployModelDetails": {}
  }
}

Go

Antes de testar esta amostra, siga as instruções de configuração dessa linguagem na página Bibliotecas de cliente.

import (
	"context"
	"fmt"
	"io"

	automl "cloud.google.com/go/automl/apiv1"
	automlpb "google.golang.org/genproto/googleapis/cloud/automl/v1"
)

// visionObjectDetectionDeployModelWithNodeCount deploys a model with node count.
func visionObjectDetectionDeployModelWithNodeCount(w io.Writer, projectID string, location string, modelID string) error {
	// projectID := "my-project-id"
	// location := "us-central1"
	// modelID := "IOD123456789..."

	ctx := context.Background()
	client, err := automl.NewClient(ctx)
	if err != nil {
		return fmt.Errorf("NewClient: %v", err)
	}
	defer client.Close()

	req := &automlpb.DeployModelRequest{
		Name: fmt.Sprintf("projects/%s/locations/%s/models/%s", projectID, location, modelID),
		ModelDeploymentMetadata: &automlpb.DeployModelRequest_ImageObjectDetectionModelDeploymentMetadata{
			ImageObjectDetectionModelDeploymentMetadata: &automlpb.ImageObjectDetectionModelDeploymentMetadata{
				NodeCount: 2,
			},
		},
	}

	op, err := client.DeployModel(ctx, req)
	if err != nil {
		return fmt.Errorf("DeployModel: %v", err)
	}
	fmt.Fprintf(w, "Processing operation name: %q\n", op.Name())

	if err := op.Wait(ctx); err != nil {
		return fmt.Errorf("Wait: %v", err)
	}

	fmt.Fprintf(w, "Model deployed.\n")

	return nil
}

Java

Antes de testar esta amostra, siga as instruções de configuração dessa linguagem na página Bibliotecas de cliente.

import com.google.api.gax.longrunning.OperationFuture;
import com.google.cloud.automl.v1.AutoMlClient;
import com.google.cloud.automl.v1.DeployModelRequest;
import com.google.cloud.automl.v1.ImageObjectDetectionModelDeploymentMetadata;
import com.google.cloud.automl.v1.ModelName;
import com.google.cloud.automl.v1.OperationMetadata;
import com.google.protobuf.Empty;
import java.io.IOException;
import java.util.concurrent.ExecutionException;

class VisionObjectDetectionDeployModelNodeCount {

  static void visionObjectDetectionDeployModelNodeCount()
      throws InterruptedException, ExecutionException, IOException {
    // TODO(developer): Replace these variables before running the sample.
    String projectId = "YOUR_PROJECT_ID";
    String modelId = "YOUR_MODEL_ID";
    visionObjectDetectionDeployModelNodeCount(projectId, modelId);
  }

  // Deploy a model for prediction with a specified node count (can be used to redeploy a model)
  static void visionObjectDetectionDeployModelNodeCount(String projectId, String modelId)
      throws IOException, ExecutionException, InterruptedException {
    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (AutoMlClient client = AutoMlClient.create()) {
      // Get the full path of the model.
      ModelName modelFullId = ModelName.of(projectId, "us-central1", modelId);
      ImageObjectDetectionModelDeploymentMetadata metadata =
          ImageObjectDetectionModelDeploymentMetadata.newBuilder().setNodeCount(2).build();
      DeployModelRequest request =
          DeployModelRequest.newBuilder()
              .setName(modelFullId.toString())
              .setImageObjectDetectionModelDeploymentMetadata(metadata)
              .build();
      OperationFuture<Empty, OperationMetadata> future = client.deployModelAsync(request);

      future.get();
      System.out.println("Model deployment finished");
    }
  }
}

Node.js

Antes de testar esta amostra, siga as instruções de configuração dessa linguagem na página Bibliotecas de cliente.

/**
 * TODO(developer): Uncomment these variables before running the sample.
 */
// const projectId = 'YOUR_PROJECT_ID';
// const location = 'us-central1';
// const modelId = 'YOUR_MODEL_ID';

// Imports the Google Cloud AutoML library
const {AutoMlClient} = require('@google-cloud/automl').v1;

// Instantiates a client
const client = new AutoMlClient();

async function deployModelWithNodeCount() {
  // Construct request
  const request = {
    name: client.modelPath(projectId, location, modelId),
    imageObjectDetectionModelDeploymentMetadata: {
      nodeCount: 2,
    },
  };

  const [operation] = await client.deployModel(request);

  // Wait for operation to complete.
  const [response] = await operation.promise();
  console.log(`Model deployment finished. ${response}`);
}

deployModelWithNodeCount();

Python

Antes de testar esta amostra, siga as instruções de configuração dessa linguagem na página Bibliotecas de cliente.

from google.cloud import automl

# TODO(developer): Uncomment and set the following variables
# project_id = "YOUR_PROJECT_ID"
# model_id = "YOUR_MODEL_ID"

client = automl.AutoMlClient()
# Get the full path of the model.
model_full_id = client.model_path(project_id, "us-central1", model_id)

# node count determines the number of nodes to deploy the model on.
# https://cloud.google.com/automl/docs/reference/rpc/google.cloud.automl.v1#imageobjectdetectionmodeldeploymentmetadata
metadata = automl.ImageObjectDetectionModelDeploymentMetadata(node_count=2)

request = automl.DeployModelRequest(
    name=model_full_id,
    image_object_detection_model_deployment_metadata=metadata,
)
response = client.deploy_model(request=request)

print("Model deployment finished. {}".format(response.result()))

Outros idiomas

C# : Siga as instruções: Instruções de configuração do C# na página de bibliotecas de cliente e acesse aDocumentação de referência do AutoML Vision Object Detection para .NET.

PHP : Siga as instruções: Instruções de configuração do PHP na página de bibliotecas de cliente e acesse aDocumentação de referência da detecção de objetos do AutoML Vision para PHP.

Raquel : Siga as instruções: Instruções de configuração do Ruby na página de bibliotecas de cliente e acesse aDocumentação de referência do AutoML Vision Object Detection para Ruby.

Como excluir um modelo

É possível excluir um recurso de modelo usando o ID do modelo.

IU da Web

  1. Na IU do AutoML Vision Object Detection, clique no ícone de lâmpada no menu de navegação à esquerda para exibir a lista de modelos disponíveis.

  2. Clique no menu de três pontos à extrema direita da linha que você quer excluir e selecione Excluir modelo.

  3. Clique em Excluir na caixa de diálogo de confirmação.

    Imagem da exclusão de um modelo

REST e LINHA DE CMD

Antes de usar os dados da solicitação abaixo, faça as substituições a seguir:

  • project-id: o ID do projeto do GCP.
  • model-id: o ID do seu modelo, a partir da resposta de quando você o criou. Ele é o último elemento no nome do modelo. Por exemplo:
    • Nome do modelo: projects/project-id/locations/location-id/models/IOD4412217016962778756
    • ID do modelo: IOD4412217016962778756

Método HTTP e URL:

DELETE https://automl.googleapis.com/v1/projects/project-id/locations/us-central1/models/model-id

Para enviar a solicitação, escolha uma destas opções:

curl

Execute o seguinte comando:

curl -X DELETE \
-H "Authorization: Bearer "$(gcloud auth application-default print-access-token) \
https://automl.googleapis.com/v1/projects/project-id/locations/us-central1/models/model-id

PowerShell

Execute o seguinte comando:

$cred = gcloud auth application-default print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method DELETE `
-Headers $headers `
-Uri "https://automl.googleapis.com/v1/projects/project-id/locations/us-central1/models/model-id" | Select-Object -Expand Content

Será exibido um código semelhante a este. É possível usar o ID da operação para saber o status da tarefa. Veja um exemplo em Como trabalhar com operações de longa duração.

{
  "name": "projects/project-id/locations/us-central1/operations/operation-id",
  "metadata": {
    "@type": "type.googleapis.com/google.cloud.automl.v1.OperationMetadata",
    "createTime": "2018-11-01T15:59:36.196506Z",
    "updateTime": "2018-11-01T15:59:36.196506Z",
    "deleteDetails": {}
  }
}

Go

Antes de testar esta amostra, siga as instruções de configuração dessa linguagem na página Bibliotecas de cliente.

import (
	"context"
	"fmt"
	"io"

	automl "cloud.google.com/go/automl/apiv1"
	automlpb "google.golang.org/genproto/googleapis/cloud/automl/v1"
)

// deleteModel deletes a model.
func deleteModel(w io.Writer, projectID string, location string, modelID string) error {
	// projectID := "my-project-id"
	// location := "us-central1"
	// modelID := "TRL123456789..."

	ctx := context.Background()
	client, err := automl.NewClient(ctx)
	if err != nil {
		return fmt.Errorf("NewClient: %v", err)
	}
	defer client.Close()

	req := &automlpb.DeleteModelRequest{
		Name: fmt.Sprintf("projects/%s/locations/%s/models/%s", projectID, location, modelID),
	}

	op, err := client.DeleteModel(ctx, req)
	if err != nil {
		return fmt.Errorf("DeleteModel: %v", err)
	}
	fmt.Fprintf(w, "Processing operation name: %q\n", op.Name())

	if err := op.Wait(ctx); err != nil {
		return fmt.Errorf("Wait: %v", err)
	}

	fmt.Fprintf(w, "Model deleted.\n")

	return nil
}

Java

Antes de testar esta amostra, siga as instruções de configuração dessa linguagem na página Bibliotecas de cliente.

import com.google.cloud.automl.v1.AutoMlClient;
import com.google.cloud.automl.v1.ModelName;
import com.google.protobuf.Empty;
import java.io.IOException;
import java.util.concurrent.ExecutionException;

class DeleteModel {

  public static void main(String[] args)
      throws IOException, ExecutionException, InterruptedException {
    // TODO(developer): Replace these variables before running the sample.
    String projectId = "YOUR_PROJECT_ID";
    String modelId = "YOUR_MODEL_ID";
    deleteModel(projectId, modelId);
  }

  // Delete a model
  static void deleteModel(String projectId, String modelId)
      throws IOException, ExecutionException, InterruptedException {
    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (AutoMlClient client = AutoMlClient.create()) {
      // Get the full path of the model.
      ModelName modelFullId = ModelName.of(projectId, "us-central1", modelId);

      // Delete a model.
      Empty response = client.deleteModelAsync(modelFullId).get();

      System.out.println("Model deletion started...");
      System.out.println(String.format("Model deleted. %s", response));
    }
  }
}

Node.js

Antes de testar esta amostra, siga as instruções de configuração dessa linguagem na página Bibliotecas de cliente.

/**
 * TODO(developer): Uncomment these variables before running the sample.
 */
// const projectId = 'YOUR_PROJECT_ID';
// const location = 'us-central1';
// const modelId = 'YOUR_MODEL_ID';

// Imports the Google Cloud AutoML library
const {AutoMlClient} = require('@google-cloud/automl').v1;

// Instantiates a client
const client = new AutoMlClient();

async function deleteModel() {
  // Construct request
  const request = {
    name: client.modelPath(projectId, location, modelId),
  };

  const [response] = await client.deleteModel(request);
  console.log(`Model deleted: ${response}`);
}

deleteModel();

Python

Antes de testar esta amostra, siga as instruções de configuração dessa linguagem na página Bibliotecas de cliente.

from google.cloud import automl

# TODO(developer): Uncomment and set the following variables
# project_id = "YOUR_PROJECT_ID"
# model_id = "YOUR_MODEL_ID"

client = automl.AutoMlClient()
# Get the full path of the model.
model_full_id = client.model_path(project_id, "us-central1", model_id)
response = client.delete_model(name=model_full_id)

print("Model deleted. {}".format(response.result()))

Outros idiomas

C# : Siga o Instruções de configuração do C# na página de bibliotecas de cliente e acesse aDocumentação de referência do AutoML Vision Object Detection para .NET.

PHP : Siga as instruções: Instruções de configuração do PHP na página de bibliotecas de cliente e acesse aDocumentação de referência da detecção de objetos do AutoML Vision para PHP.

Raquel : Siga as instruções: Instruções de configuração do Ruby na página de bibliotecas de cliente e acesse aDocumentação de referência do AutoML Vision Object Detection para Ruby.