Cette page a été traduite par l'API Cloud Translation.
Switch to English

Prédire la classification d'images

Prédit la classification d'images.

Pages de documentation incluant cet exemple de code

Pour afficher l'exemple de code utilisé en contexte, consultez la documentation suivante :

Exemple de code


import (

	automl "cloud.google.com/go/automl/apiv1"
	automlpb "google.golang.org/genproto/googleapis/cloud/automl/v1"

// visionClassificationPredict does a prediction for image classification.
func visionClassificationPredict(w io.Writer, projectID string, location string, modelID string, filePath string) error {
	// projectID := "my-project-id"
	// location := "us-central1"
	// modelID := "ICN123456789..."
	// filePath := "path/to/image.jpg"

	ctx := context.Background()
	client, err := automl.NewPredictionClient(ctx)
	if err != nil {
		return fmt.Errorf("NewPredictionClient: %v", err)
	defer client.Close()

	file, err := os.Open(filePath)
	if err != nil {
		return fmt.Errorf("Open: %v", err)
	defer file.Close()
	bytes, err := ioutil.ReadAll(file)
	if err != nil {
		return fmt.Errorf("ReadAll: %v", err)

	req := &automlpb.PredictRequest{
		Name: fmt.Sprintf("projects/%s/locations/%s/models/%s", projectID, location, modelID),
		Payload: &automlpb.ExamplePayload{
			Payload: &automlpb.ExamplePayload_Image{
				Image: &automlpb.Image{
					Data: &automlpb.Image_ImageBytes{
						ImageBytes: bytes,
		// Params is additional domain-specific parameters.
		Params: map[string]string{
			// score_threshold is used to filter the result.
			"score_threshold": "0.8",

	resp, err := client.Predict(ctx, req)
	if err != nil {
		return fmt.Errorf("Predict: %v", err)

	for _, payload := range resp.GetPayload() {
		fmt.Fprintf(w, "Predicted class name: %v\n", payload.GetDisplayName())
		fmt.Fprintf(w, "Predicted class score: %v\n", payload.GetClassification().GetScore())

	return nil


import com.google.cloud.automl.v1.AnnotationPayload;
import com.google.cloud.automl.v1.ExamplePayload;
import com.google.cloud.automl.v1.Image;
import com.google.cloud.automl.v1.ModelName;
import com.google.cloud.automl.v1.PredictRequest;
import com.google.cloud.automl.v1.PredictResponse;
import com.google.cloud.automl.v1.PredictionServiceClient;
import com.google.protobuf.ByteString;
import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Paths;

class VisionClassificationPredict {

  public static void main(String[] args) throws IOException {
    // TODO(developer): Replace these variables before running the sample.
    String projectId = "YOUR_PROJECT_ID";
    String modelId = "YOUR_MODEL_ID";
    String filePath = "path_to_local_file.jpg";
    predict(projectId, modelId, filePath);

  static void predict(String projectId, String modelId, String filePath) throws IOException {
    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (PredictionServiceClient client = PredictionServiceClient.create()) {
      // Get the full path of the model.
      ModelName name = ModelName.of(projectId, "us-central1", modelId);
      ByteString content = ByteString.copyFrom(Files.readAllBytes(Paths.get(filePath)));
      Image image = Image.newBuilder().setImageBytes(content).build();
      ExamplePayload payload = ExamplePayload.newBuilder().setImage(image).build();
      PredictRequest predictRequest =
                  "score_threshold", "0.8") // [0.0-1.0] Only produce results higher than this value

      PredictResponse response = client.predict(predictRequest);

      for (AnnotationPayload annotationPayload : response.getPayloadList()) {
        System.out.format("Predicted class name: %s\n", annotationPayload.getDisplayName());
            "Predicted class score: %.2f\n", annotationPayload.getClassification().getScore());


 * TODO(developer): Uncomment these variables before running the sample.
// const projectId = 'YOUR_PROJECT_ID';
// const location = 'us-central1';
// const modelId = 'YOUR_MODEL_ID';
// const filePath = 'path_to_local_file.jpg';

// Imports the Google Cloud AutoML library
const {PredictionServiceClient} = require('@google-cloud/automl').v1;
const fs = require('fs');

// Instantiates a client
const client = new PredictionServiceClient();

// Read the file content for translation.
const content = fs.readFileSync(filePath);

async function predict() {
  // Construct request
  // params is additional domain-specific parameters.
  // score_threshold is used to filter the result
  const request = {
    name: client.modelPath(projectId, location, modelId),
    payload: {
      image: {
        imageBytes: content,

  const [response] = await client.predict(request);

  for (const annotationPayload of response.payload) {
    console.log(`Predicted class name: ${annotationPayload.displayName}`);
      `Predicted class score: ${annotationPayload.classification.score}`



from google.cloud import automl

# TODO(developer): Uncomment and set the following variables
# project_id = "YOUR_PROJECT_ID"
# model_id = "YOUR_MODEL_ID"
# file_path = "path_to_local_file.jpg"

prediction_client = automl.PredictionServiceClient()

# Get the full path of the model.
model_full_id = automl.AutoMlClient.model_path(project_id, "us-central1", model_id)

# Read the file.
with open(file_path, "rb") as content_file:
    content = content_file.read()

image = automl.Image(image_bytes=content)
payload = automl.ExamplePayload(image=image)

# params is additional domain-specific parameters.
# score_threshold is used to filter the result
# https://cloud.google.com/automl/docs/reference/rpc/google.cloud.automl.v1#predictrequest
params = {"score_threshold": "0.8"}

request = automl.PredictRequest(name=model_full_id, payload=payload, params=params)
response = prediction_client.predict(request=request)

print("Prediction results:")
for result in response.payload:
    print("Predicted class name: {}".format(result.display_name))
    print("Predicted class score: {}".format(result.classification.score))

Étape suivante

Pour rechercher et filtrer des exemples de code pour d'autres produits Google Cloud, consultez l'exemple de navigateur Google Cloud.