Se usó la API de Cloud Translation para traducir esta página.
Switch to English

Actualiza la cantidad de nodos de un modelo

Implementa un modelo con un recuento de nodos actualizado.

Páginas de documentación que incluyen esta muestra de código

Para ver la muestra de código usada en contexto, consulta la siguiente documentación:

Muestra de código

Comienza a usarlo

import (
	"context"
	"fmt"
	"io"

	automl "cloud.google.com/go/automl/apiv1"
	automlpb "google.golang.org/genproto/googleapis/cloud/automl/v1"
)

// visionClassificationDeployModelWithNodeCount deploys a model with node count.
func visionClassificationDeployModelWithNodeCount(w io.Writer, projectID string, location string, modelID string) error {
	// projectID := "my-project-id"
	// location := "us-central1"
	// modelID := "ICN123456789..."

	ctx := context.Background()
	client, err := automl.NewClient(ctx)
	if err != nil {
		return fmt.Errorf("NewClient: %v", err)
	}
	defer client.Close()

	req := &automlpb.DeployModelRequest{
		Name: fmt.Sprintf("projects/%s/locations/%s/models/%s", projectID, location, modelID),
		ModelDeploymentMetadata: &automlpb.DeployModelRequest_ImageClassificationModelDeploymentMetadata{
			ImageClassificationModelDeploymentMetadata: &automlpb.ImageClassificationModelDeploymentMetadata{
				NodeCount: 2,
			},
		},
	}

	op, err := client.DeployModel(ctx, req)
	if err != nil {
		return fmt.Errorf("DeployModel: %v", err)
	}
	fmt.Fprintf(w, "Processing operation name: %q\n", op.Name())

	if err := op.Wait(ctx); err != nil {
		return fmt.Errorf("Wait: %v", err)
	}

	fmt.Fprintf(w, "Model deployed.\n")

	return nil
}

Java

import com.google.api.gax.longrunning.OperationFuture;
import com.google.cloud.automl.v1beta1.AutoMlClient;
import com.google.cloud.automl.v1beta1.DeployModelRequest;
import com.google.cloud.automl.v1beta1.ImageClassificationModelDeploymentMetadata;
import com.google.cloud.automl.v1beta1.ModelName;
import com.google.cloud.automl.v1beta1.OperationMetadata;
import com.google.protobuf.Empty;
import java.io.IOException;
import java.util.concurrent.ExecutionException;

class ClassificationDeployModelNodeCount {

  // Deploy a model with a specified node count
  static void classificationDeployModelNodeCount(String projectId, String modelId)
      throws IOException, ExecutionException, InterruptedException {
    // String projectId = "YOUR_PROJECT_ID";
    // String modelId = "YOUR_MODEL_ID";

    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (AutoMlClient client = AutoMlClient.create()) {
      // Get the full path of the model.
      ModelName modelFullId = ModelName.of(projectId, "us-central1", modelId);

      // Set how many nodes the model is deployed on
      ImageClassificationModelDeploymentMetadata deploymentMetadata =
          ImageClassificationModelDeploymentMetadata.newBuilder().setNodeCount(2).build();

      DeployModelRequest request =
          DeployModelRequest.newBuilder()
              .setName(modelFullId.toString())
              .setImageClassificationModelDeploymentMetadata(deploymentMetadata)
              .build();
      // Deploy the model
      OperationFuture<Empty, OperationMetadata> future = client.deployModelAsync(request);
      future.get();
      System.out.println("Model deployment on 2 nodes finished");
    }
  }
}

Node.js

/**
 * TODO(developer): Uncomment these variables before running the sample.
 */
// const projectId = 'YOUR_PROJECT_ID';
// const location = 'us-central1';
// const modelId = 'YOUR_MODEL_ID';

// Imports the Google Cloud AutoML library
const {AutoMlClient} = require('@google-cloud/automl').v1;

// Instantiates a client
const client = new AutoMlClient();

async function deployModelWithNodeCount() {
  // Construct request
  const request = {
    name: client.modelPath(projectId, location, modelId),
    imageClassificationModelDeploymentMetadata: {
      nodeCount: 2,
    },
  };

  const [operation] = await client.deployModel(request);

  // Wait for operation to complete.
  const [response] = await operation.promise();
  console.log(`Model deployment finished. ${response}`);
}

deployModelWithNodeCount();

Python

from google.cloud import automl

# TODO(developer): Uncomment and set the following variables
# project_id = "YOUR_PROJECT_ID"
# model_id = "YOUR_MODEL_ID"

client = automl.AutoMlClient()
# Get the full path of the model.
model_full_id = client.model_path(project_id, "us-central1", model_id)

# node count determines the number of nodes to deploy the model on.
# https://cloud.google.com/automl/docs/reference/rpc/google.cloud.automl.v1#imageclassificationmodeldeploymentmetadata
metadata = automl.ImageClassificationModelDeploymentMetadata(node_count=2)

request = automl.DeployModelRequest(
    name=model_full_id, image_classification_model_deployment_metadata=metadata
)
response = client.deploy_model(request=request)

print("Model deployment finished. {}".format(response.result()))

¿Qué sigue?

A fin de buscar y filtrar muestras de código para otros productos de Google Cloud, consulta el navegador de muestra de Google Cloud.