Détecter les visages dans un fichier vidéo local

Détecter les visages dans un fichier vidéo local

Pages de documentation incluant cet exemple de code

Pour afficher l'exemple de code utilisé en contexte, consultez la documentation suivante :

Exemple de code


import com.google.api.gax.longrunning.OperationFuture;
import com.google.cloud.videointelligence.v1.AnnotateVideoProgress;
import com.google.cloud.videointelligence.v1.AnnotateVideoRequest;
import com.google.cloud.videointelligence.v1.AnnotateVideoResponse;
import com.google.cloud.videointelligence.v1.DetectedAttribute;
import com.google.cloud.videointelligence.v1.FaceDetectionAnnotation;
import com.google.cloud.videointelligence.v1.FaceDetectionConfig;
import com.google.cloud.videointelligence.v1.Feature;
import com.google.cloud.videointelligence.v1.TimestampedObject;
import com.google.cloud.videointelligence.v1.Track;
import com.google.cloud.videointelligence.v1.VideoAnnotationResults;
import com.google.cloud.videointelligence.v1.VideoContext;
import com.google.cloud.videointelligence.v1.VideoIntelligenceServiceClient;
import com.google.cloud.videointelligence.v1.VideoSegment;
import com.google.protobuf.ByteString;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;

public class DetectFaces {

  public static void detectFaces() throws Exception {
    // TODO(developer): Replace these variables before running the sample.
    String localFilePath = "resources/googlework_short.mp4";

  // Detects faces in a video stored in a local file using the Cloud Video Intelligence API.
  public static void detectFaces(String localFilePath) throws Exception {
    try (VideoIntelligenceServiceClient videoIntelligenceServiceClient =
        VideoIntelligenceServiceClient.create()) {
      // Reads a local video file and converts it to base64.
      Path path = Paths.get(localFilePath);
      byte[] data = Files.readAllBytes(path);
      ByteString inputContent = ByteString.copyFrom(data);

      FaceDetectionConfig faceDetectionConfig =
              // Must set includeBoundingBoxes to true to get facial attributes.
      VideoContext videoContext =

      AnnotateVideoRequest request =

      // Detects faces in a video
      OperationFuture<AnnotateVideoResponse, AnnotateVideoProgress> future =

      System.out.println("Waiting for operation to complete...");
      AnnotateVideoResponse response = future.get();

      // Gets annotations for video
      VideoAnnotationResults annotationResult = response.getAnnotationResultsList().get(0);

      // Annotations for list of faces detected, tracked and recognized in video.
      for (FaceDetectionAnnotation faceDetectionAnnotation :
          annotationResult.getFaceDetectionAnnotationsList()) {
        System.out.print("Face detected:\n");
        for (Track track : faceDetectionAnnotation.getTracksList()) {
          VideoSegment segment = track.getSegment();
              "\tStart: %d.%.0fs\n",
              segment.getStartTimeOffset().getNanos() / 1e6);
              "\tEnd: %d.%.0fs\n",
              segment.getEndTimeOffset().getSeconds(), segment.getEndTimeOffset().getNanos() / 1e6);

          // Each segment includes timestamped objects that
          // include characteristics of the face detected.
          TimestampedObject firstTimestampedObject = track.getTimestampedObjects(0);

          for (DetectedAttribute attribute : firstTimestampedObject.getAttributesList()) {
            // Attributes include glasses, headwear, smiling, direction of gaze
                "\tAttribute %s: %s %s\n",
                attribute.getName(), attribute.getValue(), attribute.getConfidence());


 * TODO(developer): Uncomment these variables before running the sample.
// const path = 'Local file to analyze, e.g. ./my-file.mp4';

// Imports the Google Cloud Video Intelligence library + Node's fs library
const Video = require('@google-cloud/video-intelligence').v1;
const fs = require('fs');

// Creates a client
const video = new Video.VideoIntelligenceServiceClient();

// Reads a local video file and converts it to base64
const file = fs.readFileSync(path);
const inputContent = file.toString('base64');

async function detectFaces() {
  const request = {
    inputContent: inputContent,
    features: ['FACE_DETECTION'],
    videoContext: {
      faceDetectionConfig: {
        // Must set includeBoundingBoxes to true to get facial attributes.
        includeBoundingBoxes: true,
        includeAttributes: true,
  // Detects faces in a video
  // We get the first result because we only process 1 video
  const [operation] = await video.annotateVideo(request);
  const results = await operation.promise();
  console.log('Waiting for operation to complete...');

  // Gets annotations for video
  const faceAnnotations =
  for (const {tracks} of faceAnnotations) {
    console.log('Face detected:');
    for (const {segment, timestampedObjects} of tracks) {
      if (segment.startTimeOffset.seconds === undefined) {
        segment.startTimeOffset.seconds = 0;
      if (segment.startTimeOffset.nanos === undefined) {
        segment.startTimeOffset.nanos = 0;
      if (segment.endTimeOffset.seconds === undefined) {
        segment.endTimeOffset.seconds = 0;
      if (segment.endTimeOffset.nanos === undefined) {
        segment.endTimeOffset.nanos = 0;
        `\tStart: ${segment.startTimeOffset.seconds}` +
          `.${(segment.startTimeOffset.nanos / 1e6).toFixed(0)}s`
        `\tEnd: ${segment.endTimeOffset.seconds}.` +
          `${(segment.endTimeOffset.nanos / 1e6).toFixed(0)}s`

      // Each segment includes timestamped objects that
      // include characteristics of the face detected.
      const [firstTimestapedObject] = timestampedObjects;

      for (const {name} of firstTimestapedObject.attributes) {
        // Attributes include 'glasses', 'headwear', 'smiling'.
        console.log(`\tAttribute: ${name}; `);



import io

from google.cloud import videointelligence_v1 as videointelligence

def detect_faces(local_file_path="path/to/your/video-file.mp4"):
    """Detects faces in a video from a local file."""

    client = videointelligence.VideoIntelligenceServiceClient()

    with io.open(local_file_path, "rb") as f:
        input_content = f.read()

    # Configure the request
    config = videointelligence.FaceDetectionConfig(
        include_bounding_boxes=True, include_attributes=True
    context = videointelligence.VideoContext(face_detection_config=config)

    # Start the asynchronous request
    operation = client.annotate_video(
            "features": [videointelligence.Feature.FACE_DETECTION],
            "input_content": input_content,
            "video_context": context,

    print("\nProcessing video for face detection annotations.")
    result = operation.result(timeout=300)

    print("\nFinished processing.\n")

    # Retrieve the first result, because a single video was processed.
    annotation_result = result.annotation_results[0]

    for annotation in annotation_result.face_detection_annotations:
        print("Face detected:")
        for track in annotation.tracks:
                "Segment: {}s to {}s".format(
                    + track.segment.start_time_offset.microseconds / 1e6,
                    + track.segment.end_time_offset.microseconds / 1e6,

            # Each segment includes timestamped faces that include
            # characteristics of the face detected.
            # Grab the first timestamped face
            timestamped_object = track.timestamped_objects[0]
            box = timestamped_object.normalized_bounding_box
            print("Bounding box:")
            print("\tleft  : {}".format(box.left))
            print("\ttop   : {}".format(box.top))
            print("\tright : {}".format(box.right))
            print("\tbottom: {}".format(box.bottom))

            # Attributes include glasses, headwear, smiling, direction of gaze
            for attribute in timestamped_object.attributes:
                    "\t{}:{} {}".format(
                        attribute.name, attribute.value, attribute.confidence

Étape suivante

Pour rechercher et filtrer des exemples de code pour d'autres produits Google Cloud, consultez l'exemple de navigateur Google Cloud.