Quickstart

This page shows how to make a Video Intelligence API request with curl for projects that you own.

You can follow the steps on this page or try this quickstart as a Google Cloud Training lab.

Try it with a lab

Before you begin

  1. Sign in to your Google Cloud account. If you're new to Google Cloud, create an account to evaluate how our products perform in real-world scenarios. New customers also get $300 in free credits to run, test, and deploy workloads.
  2. In the Google Cloud Console, on the project selector page, select or create a Google Cloud project.

    Go to project selector

  3. Make sure that billing is enabled for your Cloud project. Learn how to confirm that billing is enabled for your project.

  4. Enable the required API.

    Enable the API

  5. Create a service account:

    1. In the Cloud Console, go to the Create service account page.

      Go to Create service account
    2. Select a project.
    3. In the Service account name field, enter a name. The Cloud Console fills in the Service account ID field based on this name.

      In the Service account description field, enter a description. For example, Service account for quickstart.

    4. Click Done to finish creating the service account.

      Do not close your browser window. You will use it in the next step.

  6. Create a service account key:

    1. In the Cloud Console, click the email address for the service account that you created.
    2. Click Keys.
    3. Click Add key, then click Create new key.
    4. Click Create. A JSON key file is downloaded to your computer.
    5. Click Close.
  7. Set the environment variable GOOGLE_APPLICATION_CREDENTIALS to the path of the JSON file that contains your service account key. This variable only applies to your current shell session, so if you open a new session, set the variable again.

  8. Install and initialize the Cloud SDK.

Make an Annotate Video Request

gcloud

Use the gcloud command line tool to call the detect-labels command on the path of the video to be analyzed.

gcloud ml video detect-labels gs://YOUR_BUCKET/YOUR_OBJECT

Command-line

  1. Use curl to make a POST request to the videos:annotate method, using the gcloud auth application-default print-access-token command to paste in an access token to your service account:

    curl -X POST \
      -H "Authorization: Bearer "$(gcloud auth application-default print-access-token) \
      -H "Content-Type: application/json; charset=utf-8" \
      --data '{"inputUri":"gs://YOUR_BUCKET/YOUR_OBJECT","features":["LABEL_DETECTION"]}'\
      "https://videointelligence.googleapis.com/v1/videos:annotate"
    
  2. The Video Intelligence API creates an operation to process your request. The response includes the operation name:

    {
      "name": "projects/PROJECT_NUMBER/locations/LOCATION_ID/operations/OPERATION_ID"
    }
    
  3. You can request information on the operation by calling the v1.operations endpoint, replacing OPERATION_NAME in the example below with the name returned in the previous step:

     curl -X GET \
       -H "Authorization: Bearer "$(gcloud auth application-default print-access-token) \
       https://videointelligence.googleapis.com/v1/OPERATION_NAME
    
  4. You'll see information related to your operation. If the operation has completed, a done field is included and set to true:

    {
      "name": "projects/PROJECT_NUMBER/locations/LOCATION_ID/operations/OPERATION_ID",
      "metadata": {
      "@type": "type.googleapis.com/google.cloud.videointelligence.v1.AnnotateVideoProgress",
        "annotationProgress": [
          {
            "inputUri": "/YOUR_BUCKET/YOUR_OBJECT",
            "progressPercent": 100,
            "startTime": "2020-04-01T22:13:17.978847Z",
            "updateTime": "2020-04-01T22:13:29.576004Z"
          }
        ]
      },
      "done": true,
     ...
    }
    

After giving the request some time (about a minute, typically), the same request returns annotation results:

{
  "name": "projects/PROJECT_NUMBER/locations/LOCATION_ID/operations/OPERATION_ID",
  "metadata": {
    "@type": "type.googleapis.com/google.cloud.videointelligence.v1.AnnotateVideoProgress",
    "annotationProgress": [
      {
        "inputUri": "YOUR_BUCKET/YOUR_OBJECT",
        "progressPercent": 100,
        "startTime": "2020-04-01T22:13:17.978847Z",
        "updateTime": "2020-04-01T22:13:29.576004Z"
      }
    ]
  },
  "done": true,
  "response": {
    "@type": "type.googleapis.com/google.cloud.videointelligence.v1.AnnotateVideoResponse",
    "annotationResults": [
      {
        "inputUri": "/YOUR_BUCKET/YOUR_OBJECT",
        "segmentLabelAnnotations": [
          {
            "entity": {
              "entityId": "/m/07bsy",
              "description": "transport",
              "languageCode": "en-US"
            },
            "segments": [
              {
                "segment": {
                  "startTimeOffset": "0s",
                  "endTimeOffset": "38.757872s"
                },
                "confidence": 0.81231534
              }
            ]
          },
         {
          "entity": {
              "entityId": "/m/01n32",
              "description": "city",
              "languageCode": "en-US"
            },
            "categoryEntities": [
              {
                "entityId": "/m/043rvww",
                "description": "geographical feature",
                "languageCode": "en-US"
              }
            ],
            "segments": [
              {
                "segment": {
                  "startTimeOffset": "0s",
                  "endTimeOffset": "38.757872s"
                },
                "confidence": 0.3942462
              }
            ]
          },
          ...
          {
            "entity": {
              "entityId": "/m/06gfj",
              "description": "road",
              "languageCode": "en-US"
            },
            "segments": [
              {
                "segment": {
                  "startTimeOffset": "0s",
                  "endTimeOffset": "38.757872s"
                },
                "confidence": 0.86698604
              }
            ]
          }
        ]
      }
    ]
  }
}
   

Congratulations! You've sent your first request to the Video Intelligence API.

Clean up

To avoid unnecessary Google Cloud Platform charges, use the Cloud Console to delete your project if you do not need it.

What's next