Quickstart: Using Client Libraries

This page shows you how to get started with the Cloud Video Intelligence API in your favorite programming language using the Google Cloud Client Libraries.

Before you begin

  1. Sign in to your Google Account.

    If you don't already have one, sign up for a new account.

  2. Select or create a Google Cloud Platform project.

    Go to the Manage resources page

  3. Make sure that billing is enabled for your Google Cloud Platform project.

    Learn how to enable billing

  4. Enable the Cloud Video Intelligence API API.

    Enable the API

  5. Set up authentication:
    1. In the GCP Console, go to the Create service account key page.

      Go to the Create Service Account Key page
    2. From the Service account list, select New service account.
    3. In the Service account name field, enter a name.
    4. From the Role list, select Project > Owner.

      Note: The Role field authorizes your service account to access resources. You can view and change this field later by using the GCP Console. If you are developing a production app, specify more granular permissions than Project > Owner. For more information, see granting roles to service accounts.
    5. Click Create. A JSON file that contains your key downloads to your computer.
  6. Set the environment variable GOOGLE_APPLICATION_CREDENTIALS to the file path of the JSON file that contains your service account key. This variable only applies to your current shell session, so if you open a new session, set the variable again.

Install the client library


For more on setting up your C# development environment, refer to the C# Development Environment Setup Guide.
Install-Package Google.Cloud.VideoIntelligence.V1 -Pre


go get -u cloud.google.com/go/videointelligence/apiv1


For more on setting up your Java development environment, refer to the Java Development Environment Setup Guide. If you are using Maven, add the following to your pom.xml file:
If you are using Gradle, add the following to your dependencies:
compile 'com.google.cloud:google-cloud-video-intelligence:0.92.0-beta'
If you are using SBT, add the following to your dependencies:
libraryDependencies += "com.google.cloud" % "google-cloud-video-intelligence" % "0.92.0-beta"

If you're using IntelliJ or Eclipse, you can add client libraries to your project using the following IDE plugins:

The plugins provide additional functionality, such as key management for service accounts. Refer to each plugin's documentation for details.


For more on setting up your Node.js development environment, refer to the Node.js Development Environment Setup Guide.
npm install --save @google-cloud/video-intelligence


composer require google/cloud-videointelligence


For more on setting up your Python development environment, refer to the Python Development Environment Setup Guide.
pip install --upgrade google-cloud-videointelligence


For more on setting up your Ruby development environment, refer to the Ruby Development Environment Setup Guide.
gem install google-cloud-video_intelligence

Label detection

Now you can use the Video Intelligence to request information from a video or video segment, such as label detection. Run the following code to perform your first video label detection request:


using Google.Cloud.VideoIntelligence.V1;
using System;

namespace GoogleCloudSamples.VideoIntelligence
    public class QuickStart
        public static void Main(string[] args)
            var client = VideoIntelligenceServiceClient.Create();
            var request = new AnnotateVideoRequest()
                InputUri = @"gs://cloud-samples-data/video/cat.mp4",
                Features = { Feature.LabelDetection }
            var op = client.AnnotateVideo(request).PollUntilCompleted();
            foreach (var result in op.Result.AnnotationResults)
                foreach (var annotation in result.SegmentLabelAnnotations)
                    Console.WriteLine($"Video label: {annotation.Entity.Description}");
                    foreach (var entity in annotation.CategoryEntities)
                        Console.WriteLine($"Video label category: {entity.Description}");
                    foreach (var segment in annotation.Segments)
                        Console.Write("Segment location: ");
                        System.Console.WriteLine($"Confidence: {segment.Confidence}");


// Sample video_quickstart uses the Google Cloud Video Intelligence API to label a video.
package main

import (


	video "cloud.google.com/go/videointelligence/apiv1"
	videopb "google.golang.org/genproto/googleapis/cloud/videointelligence/v1"

func main() {
	ctx := context.Background()

	// Creates a client.
	client, err := video.NewClient(ctx)
	if err != nil {
		log.Fatalf("Failed to create client: %v", err)

	op, err := client.AnnotateVideo(ctx, &videopb.AnnotateVideoRequest{
		InputUri: "gs://cloud-samples-data/video/cat.mp4",
		Features: []videopb.Feature{
	if err != nil {
		log.Fatalf("Failed to start annotation job: %v", err)

	resp, err := op.Wait(ctx)
	if err != nil {
		log.Fatalf("Failed to annotate: %v", err)

	// Only one video was processed, so get the first result.
	result := resp.GetAnnotationResults()[0]

	for _, annotation := range result.SegmentLabelAnnotations {
		fmt.Printf("Description: %s\n", annotation.Entity.Description)

		for _, category := range annotation.CategoryEntities {
			fmt.Printf("\tCategory: %s\n", category.Description)

		for _, segment := range annotation.Segments {
			start, _ := ptypes.Duration(segment.Segment.StartTimeOffset)
			end, _ := ptypes.Duration(segment.Segment.EndTimeOffset)
			fmt.Printf("\tSegment: %s to %s\n", start, end)
			fmt.Printf("\tConfidence: %v\n", segment.Confidence)


import com.google.api.gax.longrunning.OperationFuture;
import com.google.cloud.videointelligence.v1.AnnotateVideoProgress;
import com.google.cloud.videointelligence.v1.AnnotateVideoRequest;
import com.google.cloud.videointelligence.v1.AnnotateVideoResponse;
import com.google.cloud.videointelligence.v1.Entity;
import com.google.cloud.videointelligence.v1.Feature;
import com.google.cloud.videointelligence.v1.LabelAnnotation;
import com.google.cloud.videointelligence.v1.LabelSegment;
import com.google.cloud.videointelligence.v1.VideoAnnotationResults;
import com.google.cloud.videointelligence.v1.VideoIntelligenceServiceClient;
import java.util.List;

public class QuickstartSample {

   * Demonstrates using the video intelligence client to detect labels in a video file.
  public static void main(String[] args) throws Exception {
    // Instantiate a video intelligence client
    try (VideoIntelligenceServiceClient client = VideoIntelligenceServiceClient.create()) {
      // The Google Cloud Storage path to the video to annotate.
      String gcsUri = "gs://demomaker/cat.mp4";

      // Create an operation that will contain the response when the operation completes.
      AnnotateVideoRequest request = AnnotateVideoRequest.newBuilder()

      OperationFuture<AnnotateVideoResponse, AnnotateVideoProgress> response =

      System.out.println("Waiting for operation to complete...");

      List<VideoAnnotationResults> results = response.get().getAnnotationResultsList();
      if (results.isEmpty()) {
        System.out.println("No labels detected in " + gcsUri);
      for (VideoAnnotationResults result : results) {
        // get video segment label annotations
        for (LabelAnnotation annotation : result.getSegmentLabelAnnotationsList()) {
              .println("Video label description : " + annotation.getEntity().getDescription());
          // categories
          for (Entity categoryEntity : annotation.getCategoryEntitiesList()) {
            System.out.println("Label Category description : " + categoryEntity.getDescription());
          // segments
          for (LabelSegment segment : annotation.getSegmentsList()) {
            double startTime = segment.getSegment().getStartTimeOffset().getSeconds()
                + segment.getSegment().getStartTimeOffset().getNanos() / 1e9;
            double endTime = segment.getSegment().getEndTimeOffset().getSeconds()
                + segment.getSegment().getEndTimeOffset().getNanos() / 1e9;
            System.out.printf("Segment location : %.3f:%.3f\n", startTime, endTime);
            System.out.println("Confidence : " + segment.getConfidence());


// Imports the Google Cloud Video Intelligence library
const videoIntelligence = require('@google-cloud/video-intelligence');

// Creates a client
const client = new videoIntelligence.VideoIntelligenceServiceClient();

// The GCS uri of the video to analyze
const gcsUri = 'gs://nodejs-docs-samples-video/quickstart_short.mp4';

// Construct request
const request = {
  inputUri: gcsUri,
  features: ['LABEL_DETECTION'],

// Execute request
const [operation] = await client.annotateVideo(request);

  'Waiting for operation to complete... (this may take a few minutes)'

const [operationResult] = await operation.promise();

// Gets annotations for video
const annotations = operationResult.annotationResults[0];

// Gets labels for video from its annotations
const labels = annotations.segmentLabelAnnotations;
labels.forEach(label => {
  console.log(`Label ${label.entity.description} occurs at:`);
  label.segments.forEach(segment => {
    segment = segment.segment;
    if (segment.startTimeOffset.seconds === undefined) {
      segment.startTimeOffset.seconds = 0;
    if (segment.startTimeOffset.nanos === undefined) {
      segment.startTimeOffset.nanos = 0;
    if (segment.endTimeOffset.seconds === undefined) {
      segment.endTimeOffset.seconds = 0;
    if (segment.endTimeOffset.nanos === undefined) {
      segment.endTimeOffset.nanos = 0;
      `\tStart: ${segment.startTimeOffset.seconds}` +
        `.${(segment.startTimeOffset.nanos / 1e6).toFixed(0)}s`
      `\tEnd: ${segment.endTimeOffset.seconds}.` +
        `${(segment.endTimeOffset.nanos / 1e6).toFixed(0)}s`


use Google\Cloud\VideoIntelligence\V1\VideoIntelligenceServiceClient;
use Google\Cloud\VideoIntelligence\V1\Feature;

# Instantiate a client.
$video = new VideoIntelligenceServiceClient();

# Execute a request.
$options = [
    'inputUri' => 'gs://cloud-samples-data/video/cat.mp4',
    'features' => [Feature::LABEL_DETECTION]
$operation = $video->annotateVideo($options);

# Wait for the request to complete.

# Print the result.
if ($operation->operationSucceeded()) {
    $results = $operation->getResult()->getAnnotationResults()[0];
    # Process video/segment level label annotations
    foreach ($results->getSegmentLabelAnnotations() as $label) {
        printf('Video label description: %s' . PHP_EOL, $label->getEntity()->getDescription());
        foreach ($label->getCategoryEntities() as $categoryEntity) {
            printf('  Category: %s' . PHP_EOL, $categoryEntity->getDescription());
        foreach ($label->getSegments() as $segment) {
            $start = $segment->getSegment()->getStartTimeOffset();
            $end = $segment->getSegment()->getEndTimeOffset();
            printf('  Segment: %ss to %ss' . PHP_EOL,
                $start->getSeconds() + $start->getNanos()/1000000000.0,
                $end->getSeconds() + $end->getNanos()/1000000000.0
            printf('  Confidence: %f' . PHP_EOL, $segment->getConfidence());
} else {


from google.cloud import videointelligence

video_client = videointelligence.VideoIntelligenceServiceClient()
features = [videointelligence.enums.Feature.LABEL_DETECTION]
operation = video_client.annotate_video(
    'gs://demomaker/cat.mp4', features=features)
print('\nProcessing video for label annotations:')

result = operation.result(timeout=120)
print('\nFinished processing.')

# first result is retrieved because a single video was processed
segment_labels = result.annotation_results[0].segment_label_annotations
for i, segment_label in enumerate(segment_labels):
    print('Video label description: {}'.format(
    for category_entity in segment_label.category_entities:
        print('\tLabel category description: {}'.format(

    for i, segment in enumerate(segment_label.segments):
        start_time = (segment.segment.start_time_offset.seconds +
                      segment.segment.start_time_offset.nanos / 1e9)
        end_time = (segment.segment.end_time_offset.seconds +
                    segment.segment.end_time_offset.nanos / 1e9)
        positions = '{}s to {}s'.format(start_time, end_time)
        confidence = segment.confidence
        print('\tSegment {}: {}'.format(i, positions))
        print('\tConfidence: {}'.format(confidence))


require "google/cloud/video_intelligence"

video_client = Google::Cloud::VideoIntelligence.new
features     = [:LABEL_DETECTION]
path         = "gs://cloud-samples-data/video/cat.mp4"

# Register a callback during the method call
operation = video_client.annotate_video input_uri: path, features: features do |operation|
  raise operation.results.message? if operation.error?
  puts "Finished Processing."

  labels = operation.results.annotation_results.first.segment_label_annotations

  labels.each do |label|
    puts "Label description: #{label.entity.description}"

    label.category_entities.each do |category_entity|
      puts "Label category description: #{category_entity.description}"

    label.segments.each do |segment|
      start_time = (segment.segment.start_time_offset.seconds +
                     segment.segment.start_time_offset.nanos / 1e9)
      end_time =   (segment.segment.end_time_offset.seconds +
                     segment.segment.end_time_offset.nanos / 1e9)

      puts "Segment: #{start_time} to #{end_time}"
      puts "Confidence: #{segment.confidence}"

puts "Processing video for label annotations:"

Congratulations! You've sent your first request to the Video Intelligence.

Clean up

To avoid incurring charges to your Google Cloud Platform account for the resources used in this quickstart:

  • Use the GCP Console to delete your project if you do not need it.

What's next

Find out more about our Cloud Video Intelligence API Client Libraries.

Kunde den här sidan hjälpa dig? Berätta:

Skicka feedback om ...

Cloud Video Intelligence API