Detectar conteúdo explícito em vídeos

A detecção de conteúdo explícito detecta conteúdo adulto em vídeos. O conteúdo adulto geralmente é impróprio para menores de 18 anos e inclui, mas não está limitado a,: nudez, atividade sexual e pornografia. Esse tipo de conteúdo também será identificado se for detectado em desenhos ou animações.

A resposta inclui um valor de probabilidade em intervalos de VERY_UNLIKELY a VERY_LIKELY.

Quando um vídeo é avaliado na detecção de conteúdo explícito, isso é feito por quadro e é considerado somente o conteúdo visual. O componente de áudio do vídeo não é usado na avaliação em termos de conteúdo explícito.

Veja um exemplo de análise de vídeo para recursos de detecção de conteúdo explícito em um arquivo localizado no Cloud Storage.

REST e LINHA DE CMD

Enviar solicitação de anotação de vídeo

Veja a seguir como enviar uma solicitação POST para o método videos:annotate. O exemplo utiliza o token de acesso para uma conta de serviço configurada para o projeto com o SDK do Cloud. Consulte o Guia de início rápido da API Video Intelligence para instruções de como instalar o SDK do Cloud, configurar um projeto com uma conta de serviço e conseguir um token de acesso.

Antes de usar os dados da solicitação abaixo, faça as substituições a seguir:

  • INPUT_URI: um bucket do Cloud Storage que contém o arquivo que você quer anotar, incluindo o nome do arquivo. É necessário começar com gs://.
    Exemplo: "inputUri": "gs://cloud-videointelligence-demo/assistant.mp4",

Método HTTP e URL:

POST https://videointelligence.googleapis.com/v1/videos:annotate

Corpo JSON da solicitação:

{
  "inputUri": "INPUT_URI",
  "features": ["EXPLICIT_CONTENT_DETECTION"]
}

Para enviar a solicitação, expanda uma destas opções:

Você receberá uma resposta JSON semelhante a esta:

{
  "name": "projects/PROJECT_NUMBER/locations/LOCATION_ID/operations/OPERATION_ID"
}

Se a resposta for bem-sucedida, a API Video Intelligence retornará o name para sua operação. O exemplo acima mostra um exemplo dessa resposta, em que:

  • PROJECT_NUMBER: o número do seu projeto
  • LOCATION_ID: a região do Cloud em que a anotação deve ocorrer. As regiões de nuvem compatíveis são: us-east1, us-west1, europe-west1 e asia-east1. Se nenhuma região for especificada, uma região será determinada com base na localização do arquivo de vídeo.
  • OPERATION_ID: o ID da operação de longa duração criada para a solicitação e fornecida na resposta quando você iniciou a operação. Por exemplo, 12345...

Ver os resultados de anotação

Para recuperar o resultado da operação, faça uma solicitação GET usando o nome da operação retornado da chamada para videos:annotate, conforme mostrado no exemplo a seguir.

Antes de usar os dados da solicitação abaixo, faça as substituições a seguir:

  • OPERATION_NAME: o nome da operação, conforme retornado pela API Video Intelligence. O nome da operação tem o formato projects/PROJECT_NUMBER/locations/LOCATION_ID/operations/OPERATION_ID.

Método HTTP e URL:

GET https://videointelligence.googleapis.com/v1/OPERATION_NAME

Para enviar a solicitação, expanda uma destas opções:

Você receberá uma resposta JSON semelhante a esta:

{
  "name": "projects/PROJECT_NUMBER/locations/LOCATION_ID/operations/OPERATION_ID",
  "metadata": {
    "@type": "type.googleapis.com/google.cloud.videointelligence.v1.AnnotateVideoProgress",
    "annotationProgress": [
     {
      "inputUri": "/demomaker/gbikes_dinosaur.mp4",
      "progressPercent": 100,
      "startTime": "2020-03-26T00:16:35.112404Z",
      "updateTime": "2020-03-26T00:16:55.937889Z"
     }
    ]
   },
   "done": true,
   "response": {
    "@type": "type.googleapis.com/google.cloud.videointelligence.v1.AnnotateVideoResponse",
    "annotationResults": [
     {
      "inputUri": "/demomaker/gbikes_dinosaur.mp4",
      "explicitAnnotation": {
       "frames": [
        {
         "timeOffset": "0.056149s",
         "pornographyLikelihood": "VERY_UNLIKELY"
        },
        {
         "timeOffset": "1.166841s",
         "pornographyLikelihood": "VERY_UNLIKELY"
        },
            ...
        {
         "timeOffset": "41.678209s",
         "pornographyLikelihood": "VERY_UNLIKELY"
        },
        {
         "timeOffset": "42.596413s",
         "pornographyLikelihood": "VERY_UNLIKELY"
        }
       ]
      }
     }
    ]
   }
  }
As anotações da detecção de enquadramento são retornadas como uma lista de shotAnnotations. Observação: o campo done só é retornado quando o valor dele é True. Ele não é incluído nas respostas de uma operação não concluída.

Fazer o download dos resultados da anotação

Copie a anotação da origem e a cole no bucket de destino: consulte Copiar arquivos e objetos

gsutil cp gcs_uri gs://my-bucket

Observação: se o URI de saída do GCS for fornecido pelo usuário, a anotação será armazenada nesse URI.

Go


func explicitContentURI(w io.Writer, file string) error {
	ctx := context.Background()
	client, err := video.NewClient(ctx)
	if err != nil {
		return err
	}
	defer client.Close()

	op, err := client.AnnotateVideo(ctx, &videopb.AnnotateVideoRequest{
		Features: []videopb.Feature{
			videopb.Feature_EXPLICIT_CONTENT_DETECTION,
		},
		InputUri: file,
	})
	if err != nil {
		return err
	}
	resp, err := op.Wait(ctx)
	if err != nil {
		return err
	}

	// A single video was processed. Get the first result.
	result := resp.AnnotationResults[0].ExplicitAnnotation

	for _, frame := range result.Frames {
		offset, _ := ptypes.Duration(frame.TimeOffset)
		fmt.Fprintf(w, "%s - %s\n", offset, frame.PornographyLikelihood.String())
	}

	return nil
}

Java

// Instantiate a com.google.cloud.videointelligence.v1.VideoIntelligenceServiceClient
try (VideoIntelligenceServiceClient client = VideoIntelligenceServiceClient.create()) {
  // Create an operation that will contain the response when the operation completes.
  AnnotateVideoRequest request =
      AnnotateVideoRequest.newBuilder()
          .setInputUri(gcsUri)
          .addFeatures(Feature.EXPLICIT_CONTENT_DETECTION)
          .build();

  OperationFuture<AnnotateVideoResponse, AnnotateVideoProgress> response =
      client.annotateVideoAsync(request);

  System.out.println("Waiting for operation to complete...");
  // Print detected annotations and their positions in the analyzed video.
  for (VideoAnnotationResults result : response.get().getAnnotationResultsList()) {
    for (ExplicitContentFrame frame : result.getExplicitAnnotation().getFramesList()) {
      double frameTime =
          frame.getTimeOffset().getSeconds() + frame.getTimeOffset().getNanos() / 1e9;
      System.out.printf("Location: %.3fs\n", frameTime);
      System.out.println("Adult: " + frame.getPornographyLikelihood());
    }
  }

Node.js

// Imports the Google Cloud Video Intelligence library
const video = require('@google-cloud/video-intelligence').v1;

// Creates a client
const client = new video.VideoIntelligenceServiceClient();

/**
 * TODO(developer): Uncomment the following line before running the sample.
 */
// const gcsUri = 'GCS URI of video to analyze, e.g. gs://my-bucket/my-video.mp4';

const request = {
  inputUri: gcsUri,
  features: ['EXPLICIT_CONTENT_DETECTION'],
};

// Human-readable likelihoods
const likelihoods = [
  'UNKNOWN',
  'VERY_UNLIKELY',
  'UNLIKELY',
  'POSSIBLE',
  'LIKELY',
  'VERY_LIKELY',
];

// Detects unsafe content
const [operation] = await client.annotateVideo(request);
console.log('Waiting for operation to complete...');
const [operationResult] = await operation.promise();
// Gets unsafe content
const explicitContentResults =
  operationResult.annotationResults[0].explicitAnnotation;
console.log('Explicit annotation results:');
explicitContentResults.frames.forEach(result => {
  if (result.timeOffset === undefined) {
    result.timeOffset = {};
  }
  if (result.timeOffset.seconds === undefined) {
    result.timeOffset.seconds = 0;
  }
  if (result.timeOffset.nanos === undefined) {
    result.timeOffset.nanos = 0;
  }
  console.log(
    `\tTime: ${result.timeOffset.seconds}` +
      `.${(result.timeOffset.nanos / 1e6).toFixed(0)}s`
  );
  console.log(
    `\t\tPornography likelihood: ${likelihoods[result.pornographyLikelihood]}`
  );
});

Python

Para mais informações sobre como instalar e usar a biblioteca de cliente da API Cloud Video Intelligence para Python, consulte Bibliotecas de cliente da API Cloud Video Intelligence.
""" Detects explicit content from the GCS path to a video. """
video_client = videointelligence.VideoIntelligenceServiceClient()
features = [videointelligence.Feature.EXPLICIT_CONTENT_DETECTION]

operation = video_client.annotate_video(
    request={"features": features, "input_uri": path}
)
print("\nProcessing video for explicit content annotations:")

result = operation.result(timeout=90)
print("\nFinished processing.")

# Retrieve first result because a single video was processed
for frame in result.annotation_results[0].explicit_annotation.frames:
    likelihood = videointelligence.Likelihood(frame.pornography_likelihood)
    frame_time = frame.time_offset.seconds + frame.time_offset.microseconds / 1e6
    print("Time: {}s".format(frame_time))
    print("\tpornography: {}".format(likelihood.name))

Outros idiomas

C# : Siga as instruções: Instruções de configuração do C# na página de bibliotecas de cliente e acesse aDocumentação de referência do Video Intelligence para .NET.

PHP : Siga as instruções: Instruções de configuração do PHP na página de bibliotecas de cliente e acesse aDocumentação de referência da Video Intelligence para PHP.

Raquel : Siga as instruções: Instruções de configuração do Ruby na página de bibliotecas de cliente e acesse aDocumentação de referência da Video Intelligence para Ruby.