TextEmbeddingModel(model_id: str, endpoint_name: typing.Optional[str] = None)
Creates a LanguageModel.
This constructor should not be called directly.
Use LanguageModel.from_pretrained(model_name=...)
instead.
Parameters |
|
---|---|
Name | Description |
model_id |
str
Identifier of a Vertex LLM. Example: "text-bison@001" |
endpoint_name |
typing.Optional[str]
Vertex Endpoint resource name for the model |
Methods
count_tokens
count_tokens(
prompts: typing.List[str],
) -> vertexai.preview.language_models.CountTokensResponse
Counts the tokens and billable characters for a given prompt.
Note: this does not make a prediction request to the model, it only counts the tokens in the request.
Parameter | |
---|---|
Name | Description |
prompts |
List[str]
Required. A list of prompts to ask the model. For example: ["What should I do today?", "How's it going?"] |
deploy_tuned_model
deploy_tuned_model(
tuned_model_name: str,
machine_type: typing.Optional[str] = None,
accelerator: typing.Optional[str] = None,
accelerator_count: typing.Optional[int] = None,
) -> vertexai.language_models._language_models._LanguageModel
Loads the specified tuned language model.
Parameters | |
---|---|
Name | Description |
machine_type |
typing.Optional[str]
Machine type. E.g., "a2-highgpu-1g". See also: https://cloud.google.com/vertex-ai/docs/training/configure-compute. |
accelerator |
typing.Optional[str]
Kind of accelerator. E.g., "NVIDIA_TESLA_A100". See also: https://cloud.google.com/vertex-ai/docs/training/configure-compute. |
accelerator_count |
typing.Optional[int]
Count of accelerators. |
from_pretrained
from_pretrained(model_name: str) -> vertexai._model_garden._model_garden_models.T
Loads a _ModelGardenModel.
Parameter | |
---|---|
Name | Description |
model_name |
str
Name of the model. |
Exceptions | |
---|---|
Type | Description |
ValueError |
If model_name is unknown. |
ValueError |
If model does not support this class. |
get_embeddings
get_embeddings(
texts: typing.List[typing.Union[str, vertexai.language_models.TextEmbeddingInput]],
*,
auto_truncate: bool = True,
output_dimensionality: typing.Optional[int] = None
) -> typing.List[vertexai.language_models.TextEmbedding]
Calculates embeddings for the given texts.
Parameter | |
---|---|
Name | Description |
texts |
typing.List[typing.Union[str, vertexai.language_models.TextEmbeddingInput]]
A list of texts or |
get_embeddings_async
get_embeddings_async(
texts: typing.List[typing.Union[str, vertexai.language_models.TextEmbeddingInput]],
*,
auto_truncate: bool = True,
output_dimensionality: typing.Optional[int] = None
) -> typing.List[vertexai.language_models.TextEmbedding]
Asynchronously calculates embeddings for the given texts.
Parameter | |
---|---|
Name | Description |
texts |
typing.List[typing.Union[str, vertexai.language_models.TextEmbeddingInput]]
A list of texts or |
get_tuned_model
get_tuned_model(*args, **kwargs)
Loads the specified tuned language model.
list_tuned_model_names
list_tuned_model_names() -> typing.Sequence[str]
Lists the names of tuned models.
tune_model
tune_model(
*,
training_data: typing.Optional[str] = None,
corpus_data: typing.Optional[str] = None,
queries_data: typing.Optional[str] = None,
test_data: typing.Optional[str] = None,
validation_data: typing.Optional[str] = None,
batch_size: typing.Optional[int] = None,
train_steps: typing.Optional[int] = None,
tuned_model_location: typing.Optional[str] = None,
model_display_name: typing.Optional[str] = None,
task_type: typing.Optional[str] = None,
machine_type: typing.Optional[str] = None,
accelerator: typing.Optional[str] = None,
accelerator_count: typing.Optional[int] = None,
output_dimensionality: typing.Optional[int] = None,
learning_rate_multiplier: typing.Optional[float] = None
) -> vertexai.language_models._language_models._TextEmbeddingModelTuningJob
Tunes a model based on training data.
This method launches and returns an asynchronous model tuning job. Usage:
tuning_job = model.tune_model(...)
... do some other work
tuned_model = tuning_job.deploy_tuned_model() # Blocks until tuning is complete
Exceptions | |
---|---|
Type | Description |
ValueError |
If the provided parameter combinations or values are not supported. |
RuntimeError |
If the model does not support tuning |