API CountTokens

A API CountTokens calcula o número de tokens de entrada antes de enviar uma solicitação à API Gemini.

Use a API CountTokens para evitar que as solicitações excedam a janela de contexto do modelo e estime os possíveis custos com base em caracteres faturáveis.

A API CountTokens pode usar o mesmo parâmetro contents das solicitações de inferência da API Gemini.

Modelos com suporte:

Modelo Código
Gemini 1.5 Flash gemini-1.5-flash-002
gemini-1.5-flash-001
gemini-1.5-flash-preview-0514
Gemini 1.5 Pro gemini-1.5-pro-002
gemini-1.5-pro-001
gemini-1.5-pro-preview-0514
Gemini 1.0 Pro Vision gemini-1.0-pro-vision
gemini-1.0-pro-vision-001
Gemini 1.0 Pro gemini-1.0-pro
gemini-1.0-pro-001
gemini-1.0-pro-002
Gemini Experimental gemini-experimental

Limitações:

gemini-1.0-pro-vision-001 e gemini-1.0-ultra-vision-001 usam um número fixo de tokens para entradas de vídeo.

Exemplo de sintaxe

Sintaxe para enviar uma solicitação de contagem de tokens.

curl

curl -X POST \
  -H "Authorization: Bearer $(gcloud auth print-access-token)" \
  -H "Content-Type: application/json" \

https://${LOCATION}-aiplatform.googleapis.com/v1/projects/${PROJECT_ID}/locations/${LOCATION}/publishers/google/models/${MODEL_ID}:countTokens \
-d '{
  "contents": [{
    ...
  }],
  "system_instruction": {
  "role": "...",
  "parts": [{
      ...
    }],
  "tools": [{
      "function_declarations": [{
        ...
      }]
    }],
  }
}'

Python

gemini_model = GenerativeModel(MODEL_ID)
model_response = gemini_model.count_tokens([...])

Lista de parâmetros

Essa classe consiste em duas properties principais: role e parts. A property role indica o indivíduo que produz o conteúdo, enquanto a property parts contém vários elementos, cada um representando um segmento de dados em uma mensagem.

Parâmetros

role

Opcional: string

A identidade da entidade que cria a mensagem. Defina a string com uma das seguintes opções:

  • user: indica que a mensagem foi enviada por uma pessoa real. Por exemplo, uma mensagem gerada pelo usuário.
  • model: indica que a mensagem é gerada pelo modelo.

O valor model é usado para inserir mensagens do modelo na conversa durante conversas com vários turnos.

Para conversas que não têm vários turnos, esse campo pode ser deixado em branco ou sem definição.

parts

part

Uma lista de partes ordenadas que compõem uma única mensagem. Partes diferentes podem ter tipos MIME IANA distintos.

Part

Um tipo de dados que contém mídia que faz parte de uma mensagem Content de várias partes.

Parâmetros

text

Opcional: string

Um comando de texto ou snippet de código.

inline_data

Opcional: Blob

Dados inline em bytes brutos.

file_data

Opcional: FileData

Dados armazenados em um arquivo.

Blob

blob de conteúdo Se possível, envie como texto em vez de bytes brutos.

Parâmetros

mime_type

string

Tipo MIME IANA dos dados.

data

bytes

Bytes brutos.

FileData

Dados baseados em URI.

Parâmetros

mime_type

string

Tipo MIME IANA dos dados.

file_uri

string

O URI do Cloud Storage para o arquivo que armazena os dados.

system_instruction

Este campo é para system_instructions fornecido pelo usuário. Ele é igual a contents, mas com suporte limitado aos tipos de conteúdo.

Parâmetros

role

string

Tipo MIME IANA dos dados. Este campo é ignorado internamente.

parts

Part

Somente texto. Instruções que os usuários querem transmitir ao modelo.

FunctionDeclaration

Uma representação estruturada de uma declaração de função, conforme definido pela especificação OpenAPI 3.0 (link em inglês) que representa uma função em que o modelo pode gerar entradas JSON.

Parâmetros

name

string

O nome da função a ser chamada.

description

Opcional: string

Descrição e propósito da função.

parameters

Opcional: Schema

Descreve os parâmetros da função no formato de objeto de esquema JSON da OpenAPI: especificação OpenAPI 3.0.

response

Opcional: Schema

Descreve a saída da função no formato de objeto de esquema JSON da OpenAPI: especificação OpenAPI 3.0.

Exemplos

Receber a contagem de tokens de um comando de texto

Este exemplo conta os tokens de um único comando de texto:

REST

Para conferir a contagem de tokens e o número de caracteres faturáveis de um comando usando a API do Vertex AI, envie uma solicitação POST para o endpoint do modelo do editor.

Antes de usar os dados da solicitação abaixo, faça as substituições a seguir:

  • LOCATION: a região para processar a solicitação. As opções disponíveis incluem:

    Clicar para abrir uma lista parcial das regiões disponíveis

    • us-central1
    • us-west4
    • northamerica-northeast1
    • us-east4
    • us-west1
    • asia-northeast3
    • asia-southeast1
    • asia-northeast1
  • PROJECT_ID: o ID do projeto.
  • MODEL_ID: o ID do modelo multimodal que você quer usar.
  • ROLE: o papel em uma conversa associada ao conteúdo. É necessário especificar um papel mesmo em casos de uso de turno único. Os valores aceitáveis são os seguintes:
    • USER: especifica o conteúdo que é enviado por você.
  • TEXT: as instruções de texto a serem incluídas no comando.

Método HTTP e URL:

POST https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/publishers/google/models/MODEL_ID:countTokens

Corpo JSON da solicitação:

{
  "contents": [{
    "role": "ROLE",
    "parts": [{
      "text": "TEXT"
    }]
  }]
}

Para enviar a solicitação, escolha uma destas opções:

curl

Salve o corpo da solicitação em um arquivo com o nome request.json e execute o comando a seguir:

curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/publishers/google/models/MODEL_ID:countTokens"

PowerShell

Salve o corpo da solicitação em um arquivo com o nome request.json e execute o comando a seguir:

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/publishers/google/models/MODEL_ID:countTokens" | Select-Object -Expand Content

Você receberá uma resposta JSON semelhante a seguinte.

Python

import vertexai
from vertexai.generative_models import GenerativeModel

# TODO(developer): Update and un-comment below line
# PROJECT_ID = "your-project-id"
vertexai.init(project=PROJECT_ID, location="us-central1")

model = GenerativeModel("gemini-1.5-flash-002")

prompt = "Why is the sky blue?"
# Prompt tokens count
response = model.count_tokens(prompt)
print(f"Prompt Token Count: {response.total_tokens}")
print(f"Prompt Character Count: {response.total_billable_characters}")

# Send text to Gemini
response = model.generate_content(prompt)

# Response tokens count
usage_metadata = response.usage_metadata
print(f"Prompt Token Count: {usage_metadata.prompt_token_count}")
print(f"Candidates Token Count: {usage_metadata.candidates_token_count}")
print(f"Total Token Count: {usage_metadata.total_token_count}")
# Example response:
# Prompt Token Count: 6
# Prompt Character Count: 16
# Prompt Token Count: 6
# Candidates Token Count: 315
# Total Token Count: 321

NodeJS

const {VertexAI} = require('@google-cloud/vertexai');

/**
 * TODO(developer): Update these variables before running the sample.
 */
async function countTokens(
  projectId = 'PROJECT_ID',
  location = 'us-central1',
  model = 'gemini-1.5-flash-001'
) {
  // Initialize Vertex with your Cloud project and location
  const vertexAI = new VertexAI({project: projectId, location: location});

  // Instantiate the model
  const generativeModel = vertexAI.getGenerativeModel({
    model: model,
  });

  const req = {
    contents: [{role: 'user', parts: [{text: 'How are you doing today?'}]}],
  };

  // Prompt tokens count
  const countTokensResp = await generativeModel.countTokens(req);
  console.log('Prompt tokens count: ', countTokensResp);

  // Send text to gemini
  const result = await generativeModel.generateContent(req);

  // Response tokens count
  const usageMetadata = result.response.usageMetadata;
  console.log('Response tokens count: ', usageMetadata);
}

Java

import com.google.cloud.vertexai.VertexAI;
import com.google.cloud.vertexai.api.CountTokensResponse;
import com.google.cloud.vertexai.api.GenerateContentResponse;
import com.google.cloud.vertexai.generativeai.GenerativeModel;
import java.io.IOException;

public class GetTokenCount {
  public static void main(String[] args) throws IOException {
    // TODO(developer): Replace these variables before running the sample.
    String projectId = "your-google-cloud-project-id";
    String location = "us-central1";
    String modelName = "gemini-1.5-flash-001";

    getTokenCount(projectId, location, modelName);
  }

  // Gets the number of tokens for the prompt and the model's response.
  public static int getTokenCount(String projectId, String location, String modelName)
      throws IOException {
    // Initialize client that will be used to send requests.
    // This client only needs to be created once, and can be reused for multiple requests.
    try (VertexAI vertexAI = new VertexAI(projectId, location)) {
      GenerativeModel model = new GenerativeModel(modelName, vertexAI);

      String textPrompt = "Why is the sky blue?";
      CountTokensResponse response = model.countTokens(textPrompt);

      int promptTokenCount = response.getTotalTokens();
      int promptCharCount = response.getTotalBillableCharacters();

      System.out.println("Prompt token Count: " + promptTokenCount);
      System.out.println("Prompt billable character count: " + promptCharCount);

      GenerateContentResponse contentResponse = model.generateContent(textPrompt);

      int tokenCount = contentResponse.getUsageMetadata().getPromptTokenCount();
      int candidateTokenCount = contentResponse.getUsageMetadata().getCandidatesTokenCount();
      int totalTokenCount = contentResponse.getUsageMetadata().getTotalTokenCount();

      System.out.println("Prompt token Count: " + tokenCount);
      System.out.println("Candidate Token Count: " + candidateTokenCount);
      System.out.println("Total token Count: " + totalTokenCount);

      return promptTokenCount;
    }
  }
}

Go

import (
	"context"
	"fmt"
	"io"

	"cloud.google.com/go/vertexai/genai"
)

// countTokens returns the number of tokens for this prompt.
func countTokens(w io.Writer, projectID, location, modelName string) error {
	// location := "us-central1"
	// modelName := "gemini-1.5-flash-001"

	ctx := context.Background()
	prompt := genai.Text("Why is the sky blue?")

	client, err := genai.NewClient(ctx, projectID, location)
	if err != nil {
		return fmt.Errorf("unable to create client: %w", err)
	}
	defer client.Close()

	model := client.GenerativeModel(modelName)

	resp, err := model.CountTokens(ctx, prompt)
	if err != nil {
		return err
	}

	fmt.Fprintf(w, "Number of tokens for the prompt: %d\n", resp.TotalTokens)

	resp2, err := model.GenerateContent(ctx, prompt)
	if err != nil {
		return err
	}
	fmt.Fprintf(w, "Number of tokens for the prompt: %d\n", resp2.UsageMetadata.PromptTokenCount)
	fmt.Fprintf(w, "Number of tokens for the candidates: %d\n", resp2.UsageMetadata.CandidatesTokenCount)
	fmt.Fprintf(w, "Total number of tokens: %d\n", resp2.UsageMetadata.TotalTokenCount)

	return nil
}

Receber a contagem de tokens do comando de mídia

Neste exemplo, os tokens de um comando que usa vários tipos de mídia são contados.

REST

Para conferir a contagem de tokens e o número de caracteres faturáveis de um comando usando a API do Vertex AI, envie uma solicitação POST para o endpoint do modelo do editor.

Antes de usar os dados da solicitação abaixo, faça as substituições a seguir:

  • LOCATION: a região para processar a solicitação. As opções disponíveis incluem:

    Clicar para abrir uma lista parcial das regiões disponíveis

    • us-central1
    • us-west4
    • northamerica-northeast1
    • us-east4
    • us-west1
    • asia-northeast3
    • asia-southeast1
    • asia-northeast1
  • PROJECT_ID: o ID do projeto.
  • MODEL_ID: o ID do modelo multimodal que você quer usar.
  • ROLE: o papel em uma conversa associada ao conteúdo. É necessário especificar um papel mesmo em casos de uso de turno único. Os valores aceitáveis são os seguintes:
    • USER: especifica o conteúdo que é enviado por você.
  • TEXT: as instruções de texto a serem incluídas no comando.
  • FILE_URI: o URI ou URL do arquivo a ser incluído no comando. Os valores aceitáveis são os seguintes:
    • URI do bucket do Cloud Storage: o objeto precisa ser publicamente legível ou residir no mesmo projeto do Google Cloud que está enviando a solicitação. Para gemini-1.5-pro e gemini-1.5-flash, o limite de tamanho é de 2 GB. Para gemini-1.0-pro-vision, o limite de tamanho é de 20 MB.
    • URL HTTP: o URL do arquivo precisa ser legível publicamente. É possível especificar um arquivo de vídeo, um arquivo de áudio e até 10 arquivos de imagem por solicitação. Os arquivos de áudio, vídeo e documentos não podem exceder 15 MB.
    • URL do vídeo do YouTube: o vídeo do YouTube precisa ser de propriedade da conta que você usou para fazer login no console do Google Cloud ou ser público. Somente um URL de vídeo do YouTube é aceito por solicitação.

    Ao especificar um fileURI, você também precisa especificar o tipo de mídia (mimeType) do arquivo. Se o VPC Service Controls estiver ativado, não será possível especificar um URL de arquivo de mídia para fileURI.

  • MIME_TYPE: O tipo de mídia do arquivo especificado em data ou fileUri . Os valores aceitáveis são os seguintes:

    Clique para expandir os tipos MIME.

    • application/pdf
    • audio/mpeg
    • audio/mp3
    • audio/wav
    • image/png
    • image/jpeg
    • image/webp
    • text/plain
    • video/mov
    • video/mpeg
    • video/mp4
    • video/mpg
    • video/avi
    • video/wmv
    • video/mpegps
    • video/flv

Método HTTP e URL:

POST https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/publishers/google/models/MODEL_ID:countTokens

Corpo JSON da solicitação:

{
  "contents": [{
    "role": "ROLE",
    "parts": [
      {
        "file_data": {
          "file_uri": "FILE_URI",
          "mime_type": "MIME_TYPE"
        }
      },
      {
        "text": "TEXT
      }
    ]
  }]
}

Para enviar a solicitação, escolha uma destas opções:

curl

Salve o corpo da solicitação em um arquivo com o nome request.json e execute o comando a seguir:

curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/publishers/google/models/MODEL_ID:countTokens"

PowerShell

Salve o corpo da solicitação em um arquivo com o nome request.json e execute o comando a seguir:

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/publishers/google/models/MODEL_ID:countTokens" | Select-Object -Expand Content

Você receberá uma resposta JSON semelhante a seguinte.

Python

import vertexai
from vertexai.generative_models import GenerativeModel, Part

# TODO(developer): Update and un-comment below line
# PROJECT_ID = "your-project-id"
vertexai.init(project=PROJECT_ID, location="us-central1")

model = GenerativeModel("gemini-1.5-flash-002")

contents = [
    Part.from_uri(
        "gs://cloud-samples-data/generative-ai/video/pixel8.mp4",
        mime_type="video/mp4",
    ),
    "Provide a description of the video.",
]

# tokens count for user prompt
response = model.count_tokens(contents)
print(f"Prompt Token Count: {response.total_tokens}")
print(f"Prompt Character Count: {response.total_billable_characters}")
# Example response:
#     Prompt Token Count: 16822
#     Prompt Character Count: 30

# Send text to Gemini
response = model.generate_content(contents)
usage_metadata = response.usage_metadata

# tokens count for model response
print(f"Prompt Token Count: {usage_metadata.prompt_token_count}")
print(f"Candidates Token Count: {usage_metadata.candidates_token_count}")
print(f"Total Token Count: {usage_metadata.total_token_count}")
# Example response:
#     Prompt Token Count: 16822
#     Candidates Token Count: 71
#     Total Token Count: 16893

NodeJS

const {VertexAI} = require('@google-cloud/vertexai');

/**
 * TODO(developer): Update these variables before running the sample.
 */
async function countTokens(
  projectId = 'PROJECT_ID',
  location = 'us-central1',
  model = 'gemini-1.5-flash-001'
) {
  // Initialize Vertex with your Cloud project and location
  const vertexAI = new VertexAI({project: projectId, location: location});

  // Instantiate the model
  const generativeModel = vertexAI.getGenerativeModel({
    model: model,
  });

  const req = {
    contents: [
      {
        role: 'user',
        parts: [
          {
            file_data: {
              file_uri:
                'gs://cloud-samples-data/generative-ai/video/pixel8.mp4',
              mime_type: 'video/mp4',
            },
          },
          {text: 'Provide a description of the video.'},
        ],
      },
    ],
  };

  const countTokensResp = await generativeModel.countTokens(req);
  console.log('Prompt Token Count:', countTokensResp.totalTokens);
  console.log(
    'Prompt Character Count:',
    countTokensResp.totalBillableCharacters
  );

  // Sent text to Gemini
  const result = await generativeModel.generateContent(req);
  const usageMetadata = result.response.usageMetadata;

  console.log('Prompt Token Count:', usageMetadata.promptTokenCount);
  console.log('Candidates Token Count:', usageMetadata.candidatesTokenCount);
  console.log('Total Token Count:', usageMetadata.totalTokenCount);
}

Java

import com.google.cloud.vertexai.VertexAI;
import com.google.cloud.vertexai.api.Content;
import com.google.cloud.vertexai.api.CountTokensResponse;
import com.google.cloud.vertexai.generativeai.ContentMaker;
import com.google.cloud.vertexai.generativeai.GenerativeModel;
import com.google.cloud.vertexai.generativeai.PartMaker;
import java.io.IOException;

public class GetMediaTokenCount {
  public static void main(String[] args) throws IOException {
    // TODO(developer): Replace these variables before running the sample.
    String projectId = "your-google-cloud-project-id";
    String location = "us-central1";
    String modelName = "gemini-1.5-flash-001";

    getMediaTokenCount(projectId, location, modelName);
  }

  // Gets the number of tokens for the prompt with text and video and the model's response.
  public static int getMediaTokenCount(String projectId, String location, String modelName)
      throws IOException {
    // Initialize client that will be used to send requests.
    // This client only needs to be created once, and can be reused for multiple requests.
    try (VertexAI vertexAI = new VertexAI(projectId, location)) {
      GenerativeModel model = new GenerativeModel(modelName, vertexAI);

      Content content = ContentMaker.fromMultiModalData(
          "Provide a description of the video.",
          PartMaker.fromMimeTypeAndData(
              "video/mp4", "gs://cloud-samples-data/generative-ai/video/pixel8.mp4")
      );

      CountTokensResponse response = model.countTokens(content);

      int tokenCount = response.getTotalTokens();
      System.out.println("Token count: " + tokenCount);

      return tokenCount;
    }
  }
}

Go

import (
	"context"
	"fmt"
	"io"
	"mime"
	"path/filepath"

	"cloud.google.com/go/vertexai/genai"
)

// countTokensMultimodal finds the number of tokens for a multimodal prompt (video+text), and writes to w. Then,
// it calls the model with the multimodal prompt and writes token counts from the response metadata to w.
//
// video is a Google Cloud Storage path starting with "gs://"
func countTokensMultimodal(w io.Writer, projectID, location, modelName string) error {
	// location := "us-central1"
	// modelName := "gemini-1.5-flash-001"
	prompt := "Provide a description of the video."
	video := "gs://cloud-samples-data/generative-ai/video/pixel8.mp4"

	ctx := context.Background()

	client, err := genai.NewClient(ctx, projectID, location)
	if err != nil {
		return fmt.Errorf("unable to create client: %w", err)
	}
	defer client.Close()

	model := client.GenerativeModel(modelName)

	part1 := genai.Text(prompt)

	// Given a video file URL, prepare video file as genai.Part
	part2 := genai.FileData{
		MIMEType: mime.TypeByExtension(filepath.Ext(video)),
		FileURI:  video,
	}

	// Finds the total number of tokens for the 2 parts (text, video) of the multimodal prompt,
	// before actually calling the model for inference.
	resp, err := model.CountTokens(ctx, part1, part2)
	if err != nil {
		return err
	}

	fmt.Fprintf(w, "Number of tokens for the multimodal video prompt: %d\n", resp.TotalTokens)

	res, err := model.GenerateContent(ctx, part1, part2)
	if err != nil {
		return fmt.Errorf("unable to generate contents: %w", err)
	}

	// The token counts are also provided in the model response metadata, after inference.
	fmt.Fprintln(w, "\nModel response")
	md := res.UsageMetadata
	fmt.Fprintf(w, "Prompt Token Count: %d\n", md.PromptTokenCount)
	fmt.Fprintf(w, "Candidates Token Count: %d\n", md.CandidatesTokenCount)
	fmt.Fprintf(w, "Total Token Count: %d\n", md.TotalTokenCount)

	return nil
}

A seguir