Hello 画像データ: プロジェクトと環境の設定

Vertex AI を使用するように Google Cloud プロジェクトを設定します。次に、Cloud Storage バケットを作成して、AutoML 画像分類モデルのトレーニングに使用する画像ファイルをコピーします。

このチュートリアルには複数のページが含まれます。

  1. プロジェクトと環境の設定

  2. 画像分類データセットの作成と画像のインポート

  3. AutoML 画像分類モデルのトレーニング

  4. エンドポイントへのモデルのデプロイと予測の送信

  5. プロジェクトのクリーンアップ

各ページは、前のページのチュートリアルの手順をすでに実施していることを前提としています。

始める前に

このチュートリアルでは、Google Cloud Console を使用して Google Cloud を操作します。Vertex AI の機能を使用する前に、次の手順を行ってください。

  1. Google Cloud アカウントにログインします。Google Cloud を初めて使用する場合は、アカウントを作成して、実際のシナリオでの Google プロダクトのパフォーマンスを評価してください。新規のお客様には、ワークロードの実行、テスト、デプロイができる無料クレジット $300 分を差し上げます。
  2. Google Cloud Console の [プロジェクト セレクタ] ページで、Google Cloud プロジェクトを選択または作成します。

    プロジェクト セレクタに移動

  3. Cloud プロジェクトに対して課金が有効になっていることを確認します。プロジェクトに対して課金が有効になっていることを確認する方法を学習する

  4. Vertex AI API を有効にします。

    API を有効にする

  5. サービス アカウントを作成します。

    1. Cloud Console で [サービス アカウントの作成] ページに移動します。

      [サービス アカウントの作成] に移動
    2. プロジェクトを選択します。
    3. [サービス アカウント名] フィールドに名前を入力します。Cloud Console は、この名前に基づいて [サービス アカウント ID] フィールドに入力します。

      [サービス アカウントの説明] フィールドに説明を入力します。例: Service account for quickstart

    4. [作成して続行] をクリックします。
    5. [ロールを選択] フィールドをクリックします。

      [クイック アクセス] で [基本]、[オーナー] の順にクリックします。

    6. [続行] をクリックします。
    7. [完了] をクリックして、サービス アカウントの作成を完了します。

      ブラウザ ウィンドウは閉じないでください。次のステップでこれを使用します。

  6. サービス アカウント キーを作成します。

    1. Cloud Console で、作成したサービス アカウントのメールアドレスをクリックします。
    2. [キー] をクリックします。
    3. [鍵を追加]、[新しい鍵を作成] の順にクリックします。
    4. [作成] をクリックします。JSON キーファイルがパソコンにダウンロードされます。
    5. [閉じる] をクリックします。
  7. 環境変数 GOOGLE_APPLICATION_CREDENTIALS を、サービス アカウント キーが含まれる JSON ファイルのパスに設定します。 この変数は現在のシェル セッションにのみ適用されるため、新しいセッションを開く場合は、変数を再度設定します。

次のステップ

このチュートリアルの次のページに沿って、Cloud Console で画像分類データセットを作成し、一般公開の Cloud Storage バケットでホストされている画像をインポートする。