code-bison
ist der Name des Modells, das die Codegenerierung unterstützt. Es ist ein Foundation Model, das Code anhand einer Natural Language-Beschreibung generiert.
Zu der Art der Inhalte, die code-bison
erstellen kann, gehören Funktionen, Webseiten und Unittests. code-bison
wird von den Codey APIs zur Codegenerierung unterstützt.
Codey APIs befinden sich in der PaLM API-Familie.
Weitere Informationen zu diesem Modell finden Sie in der Console auf der code-bison
-Modellkarte im Model Garden.
<a{: class="button button-primary" l10n-attrs-original-order="href,target,class,track-name,track-type" l10n-encrypted-href="kDsq5VTi6ASK/vNFlrWmnltigmNHgUGOXn/QVSGplOi71dheYhG9dKuv3S+0ajmQkfzB9oP/Mo2x7xIe1klR5YSKTX7LV1jkkg0C2Ndofq2g0LY5rER9QL0JoE/A8FHO" target="console" track-name="consoleLink" track-type="tasks" }="">Go to the Model Garden</a{:>
Anwendungsfälle
Im Folgenden sind einige gängige Anwendungsfälle für die Codegenerierung aufgeführt:
Unittests: Verwenden Sie die Eingabeaufforderung, um einen Unittest für eine Funktion anzufordern.
Funktion schreiben: Übergeben Sie ein Problem an das Modell, um eine Funktion zu erhalten, die dieses Problem löst.
Klasse erstellen: Verwenden Sie eine Eingabeaufforderung, um den Zweck einer Klasse zu beschreiben und Code zur Definition der Klasse zu erhalten.
HTTP-Anfrage
POST https://us-central1-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/us-central1/publishers/google/models/code-bison:predict
Modellversionen
Wenn Sie die neueste Modellversion verwenden möchten, geben Sie den Modellnamen ohne Versionsnummer an, z. B. code-bison
.
Wenn Sie eine stabile Modellversion verwenden möchten, geben Sie die Modellversionsnummer an, z. B. code-bison@001
.
Stabile Versionen sind ab dem Releasedatum der nachfolgenden stabilen Version noch sechs Monate verfügbar.
Die folgende Tabelle enthält die verfügbaren stabilen Modellversionen:
Code-bison-Modell | Veröffentlicht |
---|---|
code-bison@001 | 29. Juni 2023 |
Weitere Informationen finden Sie unter Modellversionen und Lebenszyklus.
Anfragetext
{
"instances": [
{ "prefix": string }
],
"parameters": {
"temperature": number,
"maxOutputTokens": integer,
"candidateCount": integer,
"stopSequences": [ string ]
}
}
Im Folgenden finden Sie die Parameter für das Codegenerierungsmodell code-bison
.
Das code-bison
-Modell ist eines der Modelle in Codey. Mit diesen Parametern können Sie die Eingabeaufforderung zur Codevervollständigung optimieren. Weitere Informationen finden Sie unter Codemodelle – Übersicht und Prompts für die Codevervollständigung erstellen.
Parameter | Beschreibung | Zulässige Werte |
---|---|---|
(erforderlich) |
Bei Codemodellen stellt prefix den Anfang eines sinnvollen Programmiercodes oder eine Eingabeaufforderung in natürlicher Sprache dar, die den zu generierenden Code beschreibt.
|
Ein gültiger Textstring |
|
Die Temperatur wird für die Probenahme während der Antwortgenerierung verwendet. Die Temperatur bestimmt den Grad der Zufälligkeit bei der Tokenauswahl. Niedrigere Temperaturen eignen sich für Aufforderungen, die deterministischere und weniger offene oder kreative Reaktionen erfordern, während höhere Temperaturen zu vielfältigeren oder kreativen Ergebnissen führen können. Eine Temperatur von 0 ist deterministisch, d. h., die Antwort mit der höchsten Wahrscheinlichkeit wird immer ausgewählt.
|
|
|
Maximale Anzahl an Tokens, die in der Antwort generiert werden können. Ein Token besteht aus etwa vier Zeichen. 100 Tokens entsprechen etwa 60–80 Wörtern.
Geben Sie kürzere Werte für kürzere Antworten und höhere Werte für längere Antworten an. |
|
(optional) |
Die Anzahl der zurückzugebenden Antwortvarianten. Der Parameter für die Anzahl der Kandidaten wird bei Verwendung des Vertex AI SDK nicht unterstützt. |
|
(optional) |
Gibt eine Liste an Strings an, die das Modell anweist, Text nicht mehr zu generieren, wenn einer der Strings in der Antwort gefunden wird. Kommt ein String mehrmals in der Antwort vor, so wird die Antwort an der Stelle abgeschnitten, an der er erfasst wurde.
Bei den Strings wird zwischen Groß- und Kleinschreibung unterschieden.
Wenn zum Beispiel folgende Antwort zurückgegeben wird und stopSequences nicht angegeben ist:
public
static string reverse(string myString)
Dann lautet zurückgegebene Antwort mit stopSequences auf ["Str",
"reverse"] gesetzt:
public static string
|
Eine Liste von Strings |
Beispielanfrage
REST
Senden Sie zum Testen eines Text-Prompts mit der Vertex AI API eine POST-Anfrage an den Endpunkt des Publisher-Modells.
Ersetzen Sie diese Werte in den folgenden Anfragedaten:
- PROJECT_ID: Ihre Projekt-ID. Informationen zu anderen Feldern finden Sie in der Tabelle Anfragetext.
HTTP-Methode und URL:
POST https://us-central1-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/us-central1/publishers/google/models/code-bison:predict
JSON-Text der Anfrage:
{ "instances": [ { "prefix": "PREFIX" } ], "parameters": { "temperature": TEMPERATURE, "maxOutputTokens": MAX_OUTPUT_TOKENS, "candidateCount": CANDIDATE_COUNT } }
Wenn Sie die Anfrage senden möchten, wählen Sie eine der folgenden Optionen aus:
curl
Speichern Sie den Anfragetext in einer Datei mit dem Namen request.json
und führen Sie folgenden Befehl aus:
curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://us-central1-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/us-central1/publishers/google/models/code-bison:predict"
PowerShell
Speichern Sie den Anfragetext in einer Datei mit dem Namen request.json
und führen Sie den folgenden Befehl aus:
$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }
Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://us-central1-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/us-central1/publishers/google/models/code-bison:predict" | Select-Object -Expand Content
Sie sollten eine JSON-Antwort ähnlich wie die Beispielantwort erhalten.
Python
Bevor Sie dieses Beispiel anwenden, folgen Sie den Python-Einrichtungsschritten in der Vertex AI-Kurzanleitung zur Verwendung von Clientbibliotheken. Weitere Informationen finden Sie in der Referenzdokumentation zur Vertex AI Python API.
Richten Sie zur Authentifizierung bei Vertex AI Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für eine lokale Entwicklungsumgebung einrichten.
Node.js
Bevor Sie dieses Beispiel anwenden, folgen Sie den Node.js-Einrichtungsschritten in der Vertex AI-Kurzanleitung zur Verwendung von Clientbibliotheken. Weitere Informationen finden Sie in der Referenzdokumentation zur Vertex AI Node.js API.
Richten Sie zur Authentifizierung bei Vertex AI Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für eine lokale Entwicklungsumgebung einrichten.
Java
Bevor Sie dieses Beispiel anwenden, folgen Sie den Java-Einrichtungsschritten in der Vertex AI-Kurzanleitung zur Verwendung von Clientbibliotheken. Weitere Informationen finden Sie in der Referenzdokumentation zur Vertex AI Java API.
Richten Sie zur Authentifizierung bei Vertex AI Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für eine lokale Entwicklungsumgebung einrichten.