Entrena ShapeMask en Cloud TPU

En este documento se muestra cómo ejecutar el modelo ShapeMask mediante Cloud TPU con el conjunto de datos COCO.

En las siguientes instrucciones, se supone que ya estás familiarizado con la ejecución de un modelo en Cloud TPU. Si eres nuevo en Cloud TPU, puedes consultar la guía de inicio rápido para obtener una introducción básica.

Si planeas entrenar en una porción de pod de TPU, revisa la página sobre el entrenamiento en pods de TPU para comprender los cambios de parámetros necesarios cuando trabajas con porciones de pod.

Objetivos

  • Crear un depósito de Cloud Storage para almacenar el resultado de tu modelo y tu conjunto de datos
  • Preparar el conjunto de datos de COCO
  • Configurar una VM de Compute Engine y un nodo de Cloud TPU para entrenamiento y evaluación
  • Ejecutar el entrenamiento y la evaluación en un solo Cloud TPU o un pod de Cloud TPU

Costos

En este instructivo, se usan componentes facturables de Google Cloud, que incluyen los siguientes:

  • Compute Engine
  • Cloud TPU
  • Cloud Storage

Usa la calculadora de precios para generar una estimación de los costos según el uso previsto. Los usuarios nuevos de Google Cloud pueden ser elegibles para obtener una prueba gratuita.

Antes de comenzar

Antes de comenzar este instructivo, verifica que tu proyecto de Google Cloud esté configurado correctamente.

  1. Accede a tu Cuenta de Google.

    Si todavía no tienes una cuenta, regístrate para obtener una nueva.

  2. En la página de selección de proyectos de Cloud Console, selecciona o crea un proyecto de Cloud.

    Ir a la página Selector de proyectos

  3. Asegúrate de que la facturación esté habilitada para tu proyecto de Google Cloud. Obtén información sobre cómo confirmar que tienes habilitada la facturación para tu proyecto.

  4. En esta explicación, se usan componentes facturables de Google Cloud. Consulta la página de precios de Cloud TPU para calcular los costos. Asegúrate de limpiar los recursos que crees cuando hayas terminado de usarlos para evitar cargos innecesarios.

Si planeas entrenar en una porción de pod de TPU, consulta la sección Entrenar en pods de TPU para comprender los cambios de parámetros necesarios cuando trabajas con porciones de pod.

Configura tus recursos

En esta sección, se proporciona información sobre cómo configurar los recursos de Cloud Storage, VM y Cloud TPU para este instructivo.

  1. Abre una ventana de Cloud Shell.

    Abre Cloud Shell

  2. Crea una variable para el ID de tu proyecto.

    export PROJECT_ID=project-id
    
  3. Configura la herramienta de línea de comandos gcloud para usar el proyecto en el que deseas crear Cloud TPU.

    gcloud config set project ${PROJECT_ID}
    
  4. Crea un depósito de Cloud Storage con el siguiente comando:

    gsutil mb -p ${PROJECT_ID} -c standard -l europe-west4 -b on gs://bucket-name
    

    Este depósito de Cloud Storage almacena los datos que usas para entrenar tu modelo y los resultados del entrenamiento. La herramienta ctpu up que se usa en este instructivo configura los permisos predeterminados para la cuenta de servicio de Cloud TPU. Si quieres contar con permisos más detallados, revisa los permisos de nivel de acceso.

    La ubicación del depósito debe estar en la misma región que tu máquina virtual (VM) y tu nodo TPU. Las VM y los nodos TPU se encuentran en zonas específicas, que son subdivisiones dentro de una región.

  5. Inicia una instancia de VM de Compute Engine.

    $ ctpu up --zone=us-central1-a \
     --vm-only \
     --disk-size-gb=300 \
     --machine-type=n1-standard-16 \
     --tf-version=1.15.3 \
     --name=shapemask-tutorial
    
  6. Aparece la configuración que especificaste. Ingresa y para aprobar o n para cancelar.

  7. Cuando el comando ctpu up termine de ejecutarse, verifica que el indicador de shell haya cambiado de username@projectname a username@vm-name. Este cambio indica que accediste a tu VM de Compute Engine.

    gcloud compute ssh shapemask-tutorial --zone=us-central1-a
    

    Mientras sigues estas instrucciones, ejecuta cada comando que empiece con (vm)$ en la ventana de sesión de tu VM.

  8. Crea una variable de entorno para almacenar la ubicación de tu depósito de Cloud Storage.

    (vm)$ export STORAGE_BUCKET=gs://bucket-name
    
  9. Crea una variable de entorno para el directorio de datos.

    (vm)$ export DATA_DIR=${STORAGE_BUCKET}/coco
    
  10. Clona el repositorio tpu.

    (vm)$ git clone -b shapemask https://github.com/tensorflow/tpu/
    
  11. Instala los paquetes necesarios para procesar los datos con anterioridad.

    (vm)$ sudo apt-get install -y python3-tk && \
      pip3 install --user Cython matplotlib opencv-python-headless pyyaml Pillow && \
      pip3 install --user "git+https://github.com/cocodataset/cocoapi#egg=pycocotools&subdirectory=PythonAPI"
    

Prepara el conjunto de datos COCO

  1. Ejecuta la secuencia de comandos download_and_preprocess_coco.sh para convertir el conjunto de datos COCO en un conjunto de TFRecords (*.tfrecord), que son compatibles con la aplicación de entrenamiento.

    (vm)$ sudo bash /usr/share/tpu/tools/datasets/download_and_preprocess_coco.sh ./data/dir/coco
    

    Esto instala las bibliotecas necesarias y ejecuta la secuencia de comandos de procesamiento previo. Como resultado, se muestra una serie de archivos *.tfrecord en tu directorio de datos local.

  2. Después de convertir los datos en TFRecords, cópialos desde el almacenamiento local a tu depósito de Cloud Storage con el comando gsutil. También debes copiar los archivos de anotaciones. Estos archivos ayudan a validar el rendimiento del modelo.

    (vm)$ gsutil -m cp ./data/dir/coco/*.tfrecord ${DATA_DIR}
    (vm)$ gsutil cp ./data/dir/coco/raw-data/annotations/*.json ${DATA_DIR}
    

Configurar y ejecutar Cloud TPU

  1. Inicia un recurso de Cloud TPU.

    Ejecuta el siguiente comando para crear tu Cloud TPU.

    (vm)$ ctpu up --tpu-only \
     --tf-version=1.15.3 \
     --tpu-size=v3-8 \
     --name=shapemask-tutorial
    
  2. Aparece la configuración que especificaste. Ingresa y para aprobar o n para cancelar.

    Verás el siguiente mensaje: Operation success; not ssh-ing to Compute Engine VM due to --tpu-only flag. Como ya completaste la propagación de Llaves SSH, puedes ignorar este mensaje.

  3. Agrega una variable de entorno al nombre de tu Cloud TPU.

    (vm)$ export TPU_NAME=shapemask-tutorial
    

Ejecuta la secuencia de comandos de entrenamiento y evaluación

  1. Crea las variables de entorno siguientes:

    (vm)$ export MODEL_DIR=${STORAGE_BUCKET}/shapemask_exp
    (vm)$ export RESNET_CHECKPOINT=gs://cloud-tpu-checkpoints/shapemask/retinanet/resnet101-checkpoint-2018-02-24
    (vm)$ export TRAIN_FILE_PATTERN=${DATA_DIR}/train-*
    (vm)$ export EVAL_FILE_PATTERN=${DATA_DIR}/val-*
    (vm)$ export VAL_JSON_FILE=${DATA_DIR}/instances_val2017.json
    (vm)$ export SHAPE_PRIOR_PATH=gs://cloud-tpu-checkpoints/shapemask/kmeans_class_priors_91x20x32x32.npy
    (vm)$ export PYTHONPATH=${PYTHONPATH}:$HOME/tpu/models
    
  2. Ejecuta la siguiente secuencia de comandos para realizar el entrenamiento.

    (vm)$ python3 ~/tpu/models/official/detection/main.py \
    --model shapemask \
    --use_tpu=True \
    --tpu=${TPU_NAME} \
    --num_cores=8 \
    --model_dir=${MODEL_DIR} \
    --mode="train" \
    --eval_after_training=True \
    --params_override="{train: {iterations_per_loop: 1000, train_batch_size: 64, total_steps: 1000, learning_rate: {total_steps: 1000, warmup_learning_rate: 0.0067, warmup_steps: 500, init_learning_rate: 0.08, learning_rate_levels: [0.008, 0.0008], learning_rate_steps: [30000, 40000]}, checkpoint: { path: ${RESNET_CHECKPOINT}, prefix: resnet101/ }, train_file_pattern: ${TRAIN_FILE_PATTERN} }, resnet: {resnet_depth: 101}, eval: { val_json_file: ${VAL_JSON_FILE}, eval_file_pattern: ${EVAL_FILE_PATTERN}, eval_samples: 5000 }, shapemask_head: {use_category_for_mask: true, shape_prior_path: ${SHAPE_PRIOR_PATH}}, shapemask_parser: {output_size: [1024, 1024]}, }"
    

En este punto, puedes finalizar este instructivo y limpiar tus recursos de GCP, o bien puedes explorar cómo ejecutar el modelo en un pod de Cloud TPU.

Escala tu modelo con pods de Cloud TPU

Puedes obtener resultados más rápidos si escalas tu modelo con pods de Cloud TPU. El modelo Mask RCNN totalmente compatible puede funcionar con las siguientes porciones de pod:

  • v2-32
  • v3-32

Cuando trabajes con pods de Cloud TPU, primero entrena el modelo con un pod y, luego, usa un solo dispositivo Cloud TPU para evaluar el modelo.

Entrena con pods de Cloud TPU

Si ya borraste tu instancia de Compute Engine, crea una nueva y sigue los pasos de Configura tus recursos.

  1. Borra el recurso Cloud TPU que creaste para entrenar el modelo en un solo dispositivo Cloud TPU.

    (vm)$ ctpu delete --tpu-only \
     --zone=us-central1-a \
     --name=shapemask-tutorial
  2. Ve a tu depósito de Cloud Storage y borra el archivo checkpoint.

  3. Ejecuta el comando ctpu up, con el parámetro tpu-size para especificar el segmento pod que desea usar. Por ejemplo, el comando siguiente usa una porción de pod v2-32.

    (vm)$ ctpu up --tpu-only \
      --tpu-size=v2-32 \
      --zone=us-central1-a \
      --tf-version=1.15.3 \
      --name=shapemask-tutorial
    
  4. Ejecuta la siguiente secuencia de comandos para entrenar el modelo en un pod.

    Con la línea de comandos dada, la secuencia de comandos de entrenamiento lleva alrededor de 45 minutos en ejecutarse. Para ejecutar la convergencia, establece total_steps en 22,000.

    (vm)$ python3 ~/tpu/models/official/detection/main.py \
    --model shapemask \
    --use_tpu=True \
    --tpu=${TPU_NAME} \
    --num_cores=32 \
    --model_dir=${MODEL_DIR} \
    --mode="train" \
    --eval_after_training=False \
    --params_override="{train: {iterations_per_loop: 1000, train_batch_size: 256, total_steps: 1000, learning_rate: {total_steps: 1000, warmup_learning_rate: 0.0067, warmup_steps: 500, init_learning_rate: 0.08, learning_rate_levels: [0.008, 0.0008], learning_rate_steps: [15000, 20000]}, checkpoint: { path: ${RESNET_CHECKPOINT}, prefix: resnet101/ }, train_file_pattern: ${TRAIN_FILE_PATTERN} }, resnet: {resnet_depth: 101}, eval: { val_json_file: ${VAL_JSON_FILE}, eval_file_pattern: ${EVAL_FILE_PATTERN}, eval_samples: 5000 }, shapemask_head: {use_category_for_mask: true, shape_prior_path: ${SHAPE_PRIOR_PATH}}, shapemask_parser: {output_size: [1024, 1024]}, }"
    
  5. El modelo se debe evaluar en un solo dispositivo de Cloud TPU. Borra el dispositivo del pod de Cloud TPU.

    (vm)$ ctpu delete --zone=us-central1-a \
     --tpu-only \
     --name=shapemask-tutorial
    
  6. Crea un recurso de Cloud TPU único.

    (vm)$ ctpu up --tpu-only  \
     --tpu-size=v3-8 \
     --zone us-central1-a \
     --tf-version=1.15.3 \
     --name=shapemask-tutorial
    
  7. Ejecuta la secuencia de comandos para realizar la evaluación.

    (vm)$ python3 ~/tpu/models/official/detection/main.py \
    --model shapemask \
    --use_tpu=True \
    --tpu=${TPU_NAME} \
    --num_cores=8 \
    --model_dir="${MODEL_DIR} \
    --mode="eval" \
    --eval_after_training=False \
    --params_override="{train: {iterations_per_loop: 1000, train_batch_size: 256, total_steps: 1000, learning_rate: {total_steps: 1000, warmup_learning_rate: 0.0067, warmup_steps: 500, init_learning_rate: 0.08, learning_rate_levels: [0.008, 0.0008], learning_rate_steps: [15000,20000]}, checkpoint: { path: ${RESNET_CHECKPOINT}, prefix: resnet101/ }, train_file_pattern: ${TRAIN_FILE_PATTERN} }, resnet: {resnet_depth: 101}, eval: { val_json_file: ${VAL_JSON_FILE}, eval_file_pattern: ${EVAL_FILE_PATTERN}, eval_samples: 5000 }, shapemask_head: {use_category_for_mask: true, shape_prior_path: ${SHAPE_PRIOR_PATH}}, shapemask_parser: {output_size: [1024, 1024]}, }"

Limpia

Sigue estos pasos para evitar que se apliquen cargos a tu cuenta de Google Cloud Platform por los recursos que usaste en este instructivo:

  1. Desconéctate de la instancia de Compute Engine, si aún no lo hiciste:

    (vm)$ exit
    

    El mensaje ahora debería mostrar username@projectname, que indica que estás en Cloud Shell.

  2. En Cloud Shell, ejecuta ctpu delete con la marca --zone que usaste cuando configuraste la Cloud TPU para borrar la VM de Compute Engine y la Cloud TPU:

    $ ctpu delete --zone=us-central1-a \
     --name=shapemask-tutorial
    
  3. Ejecuta el siguiente comando para verificar que la VM de Compute Engine y la Cloud TPU se hayan cerrado:

    $ ctpu status --zone=us-central1-a \
      --name=shapemask-tutorial
    

    La eliminación puede tardar varios minutos. Una respuesta como la que se muestra a continuación indica que no hay más instancias asignadas:

    2018/04/28 16:16:23 WARNING: Setting zone to "us-central1-a"
    No instances currently exist.
       Compute Engine VM:     --
       Cloud TPU:             --
    
  4. Ejecuta gsutil como se muestra y reemplaza bucket-name por el nombre del depósito de Cloud Storage que creaste para este instructivo:

    $ gsutil rm -r gs://bucket-name
    

¿Qué sigue?

En este instructivo, entrenaste el modelo ShapeMask mediante un conjunto de datos de muestra. Los resultados de este entrenamiento (en la mayoría de los casos) no se pueden usar para la inferencia. Para usar un modelo de inferencia, puedes entrenar los datos en un conjunto de datos disponible públicamente o en tu propio conjunto de datos. Los modelos entrenados en Cloud TPU requieren que los conjuntos de datos tengan el formato TFRecord.

Puedes usar la muestra de la herramienta de conversión de conjuntos de datos para convertir un conjunto de datos de clasificación de imágenes en formato TFRecord. Si no usas un modelo de clasificación de imágenes, deberás convertir tu conjunto de datos en formato TFRecord tú mismo. Para obtener más información, consulta TFRecord y tf.Example.

Ajuste de hiperparámetros

Para mejorar el rendimiento del modelo con tu conjunto de datos, puedes ajustar los hiperparámetros del modelo. Puedes encontrar información sobre hiperparámetros comunes a todos los modelos compatibles con TPU en GitHub. La información sobre los hiperparámetros específicos del modelo se puede encontrar en el código fuente para cada modelo. Para obtener más información sobre el ajuste de hiperparámetros, consulta Descripción general del ajuste de hiperparámetros, Usa el servicio de ajuste de hiperparámetros y Ajusta los hiperparámetros.

Inferencia

Una vez que entrenaste tu modelo, puedes usarlo para la inferencia (también llamada predicción). AI Platform es una solución basada en la nube que sirve para desarrollar, entrenar e implementar modelos de aprendizaje automático. Una vez que se implementa un modelo, puedes usar el servicio de AI Platform Prediction.

Entrena con diferentes tamaños de imagen

Puedes intentar usar una red neuronal más grande (por ejemplo, ResNet-101 en lugar de ResNet-50). Una imagen de entrada más grande y una red neuronal más potente producirán un modelo más lento, pero más preciso.

Usa una base diferente

Como alternativa, puedes explorar el modelo de ResNet previo al entrenamiento en tu propio conjunto de datos y usarlo como base para tu modelo ShapeMask. Con algo más de trabajo, también puedes intercambiar tráfico por una red neuronal alternativa en lugar de ResNet. Por último, si estás interesado en implementar tus propios modelos de detección de objetos, esta red puede ser una buena base para experimentar más.