Treinamento do RetinaNet na Cloud TPU (TF 2.x)

Neste documento, descrevemos uma implementação do modelo de detecção de objetos do RetinaNet. O código está disponível no GitHub.

Nas instruções abaixo, presume-se que você conheça a execução de um modelo na Cloud TPU. Se você conhece a Cloud TPU há pouco tempo, consulte o guia de início rápido para ver os conceitos básicos.

Se você planeja treinar em uma fração do pod da TPU, veja como realizar o treinamento em pods de TPU para entender as alterações de parâmetros necessárias para frações de pod.

Objetivos

  • Criar um bucket do Cloud Storage para armazenar o conjunto de dados e a saída do modelo.
  • Preparar o conjunto de dados COCO.
  • Configurar uma VM do Compute Engine e um nó da Cloud TPU para treinamento e avaliação.
  • Executar treinamento e avaliação em uma única Cloud TPU ou em um pod da Cloud TPU.

Custos

Neste tutorial, há componentes faturáveis do Google Cloud, entre eles:

  • Compute Engine
  • Cloud TPU
  • Cloud Storage

Use a calculadora de preços para gerar uma estimativa de custos baseada na projeção de uso. Novos usuários do Google Cloud podem estar qualificados para uma avaliação gratuita.

Antes de começar

Nesta seção, você verá como configurar o bucket do Cloud Storage e a VM do Compute Engine.

  1. Abra uma janela do Cloud Shell.

    Abrir o Cloud Shell

  2. Crie uma variável para o ID do seu projeto.

    export PROJECT_ID=project-id
    
  3. Configure a ferramenta de linha de comando gcloud para usar o projeto em que a Cloud TPU será criada.

    gcloud config set project ${PROJECT_ID}
    

    Na primeira vez que você executar esse comando em uma nova VM do Cloud Shell, será exibida uma página Authorize Cloud Shell. Clique em Authorize na parte inferior da página para permitir que gcloud faça chamadas de API do GCP com suas credenciais.

  4. Crie uma conta de serviço para o projeto da Cloud TPU.

    gcloud beta services identity create --service tpu.googleapis.com --project $PROJECT_ID
    

    O comando retorna uma conta de serviço do Cloud TPU com o formato a seguir:

    service-PROJECT_NUMBER@cloud-tpu.iam.gserviceaccount.com
    

  5. Crie um bucket do Cloud Storage usando o seguinte comando:

    gsutil mb -p ${PROJECT_ID} -c standard -l europe-west4 -b on gs://bucket-name
    

    Esse bucket do Cloud Storage armazena os dados usados para treinar o modelo e os resultados do treinamento. A ferramenta gcloud compute tpus execution-groups usada neste tutorial configura permissões padrão para a conta de serviço do Cloud TPU configurada na etapa anterior. Caso queira permissões mais específicas, consulte as permissões de nível de acesso.

  6. Inicie uma VM do Compute Engine usando o comando gcloud.

    $ gcloud compute tpus execution-groups create \
     --vm-only \
     --name=retinanet-tutorial \
     --zone=europe-west4-a \
     --disk-size=300 \
     --machine-type=n1-standard-8 \
     --tf-version=2.5.0
    

    Descrições de sinalizações de comando

    vm-only
    Crie somente uma VM. Por padrão, o comando gcloud compute tpus execution-groups cria uma VM e uma Cloud TPU.
    name
    O nome da Cloud TPU a ser criada.
    zone
    A zona em que você planeja criar a Cloud TPU.
    disk-size
    O tamanho do disco rígido em GB da VM criada pelo comando gcloud compute tpus execution-groups .
    machine-type
    O tipo de máquina da VM do Compute Engine a ser criado.
    tf-version
    A versão do ctpu do Tensorflow é instalada na VM.

    Para mais informações sobre o comando gcloud, consulte a referência da gcloud.

  7. Quando solicitado, pressione y para criar os recursos da Cloud TPU.

    Quando o comando gcloud compute tpus execution-groups terminar a execução, verifique se o prompt do shell foi alterado de username@projectname para username@vm-name. Essa alteração mostra que você fez login na VM do Compute Engine.

    gcloud compute ssh retinanet-tutorial --zone=europe-west4-a
    

    Ao continuar essas instruções, execute cada comando que começa com (vm)$ na instância do Compute Engine.

  8. Instalar pacotes extras

    O aplicativo de treinamento do RetinaNet requer vários pacotes extras. Instale-os agora:

    (vm)$ sudo apt-get install -y python3-tk
    (vm)$ pip3 install --user Cython matplotlib opencv-python-headless pyyaml Pillow
    
    (vm)$ pip3 install --user 'git+https://github.com/cocodataset/cocoapi#egg=pycocotools&subdirectory=PythonAPI'
    
    (vm)$ sudo pip3 install --user -r /usr/share/models/official/requirements.txt
    

Preparar o conjunto de dados COCO

O conjunto de dados COCO será armazenado no Cloud Storage. Portanto, defina uma variável de bucket de armazenamento especificando o nome do bucket que você criou:

(vm)$ export STORAGE_BUCKET=gs://bucket-name
(vm)$ export DATA_DIR=${STORAGE_BUCKET}/coco

Execute o script download_and_preprocess_coco.sh para converter o conjunto de dados COCO em um conjunto de TFRecords (*.tfrecord) esperado pelo aplicativo de treinamento.

(vm)$ sudo bash /usr/share/tpu/tools/datasets/download_and_preprocess_coco.sh ./data/dir/coco

Isso instala as bibliotecas necessárias e executa o script de pré-processamento. A saída são alguns arquivos *.tfrecord no diretório de dados. O script de download e conversão do COCO leva aproximadamente 1 hora para ser concluído.

Copiar os dados para o bucket do Cloud Storage

Depois de converter os dados para TFRecords, use o comando gsutil para copiá-los do armazenamento local para o bucket do Cloud Storage. Também é preciso copiar os arquivos de anotação. Eles ajudam a validar o desempenho do modelo.

(vm)$ gsutil -m cp ./data/dir/coco/*.tfrecord ${DATA_DIR}
(vm)$ gsutil cp ./data/dir/coco/raw-data/annotations/*.json ${DATA_DIR}

Configurar o ambiente de treinamento

  1. Inicie um recurso do Cloud TPU usando o comando gcloud.

    (vm)$ gcloud compute tpus execution-groups create \
     --tpu-only \
     --accelerator-type=v3-8  \
     --name=retinanet-tutorial \
     --zone=europe-west4-a \
     --tf-version=2.5.0
    

    Descrições de sinalizações de comando

    tpu-only
    Cria a Cloud TPU sem criar uma VM. Por padrão, o comando gcloud compute tpus execution-groups cria uma VM e uma Cloud TPU.
    accelerator-type
    O tipo da Cloud TPU a ser criada.
    name
    O nome da Cloud TPU a ser criada.
    zone
    A zona em que você planeja criar a Cloud TPU.
    tf-version
    A versão do Tensorflow ctpu é instalada na VM.
  2. A configuração especificada aparecerá. Digite y para aprovar ou n para cancelar.

    Você verá a mensagem: Operation success; not ssh-ing to Compute Engine VM due to --tpu-only flag. Como você já concluiu a propagação de chave SSH anteriormente, ignore essa mensagem. Observação: se você não estiver conectado à instância do Compute Engine, poderá conectar-se executando o seguinte comando:

    gcloud compute ssh retinanet-tutorial --zone=europe-west4-a
    

    Ao continuar essas instruções, execute cada comando que começa com (vm)$ na instância do Compute Engine.

  3. Crie uma variável de ambiente para o nome da TPU.

    (vm)$ export TPU_NAME=retinanet-tutorial
    
  4. Adicione a pasta de nível superior /models ao caminho do Python com o comando

    (vm)$ export PYTHONPATH="${PYTHONPATH}:/usr/share/models"
    

Treinamento sobre dispositivos de Cloud TPU único

Os scripts de treinamento a seguir foram executados em uma Cloud TPU v3-8. Isso levará mais tempo, mas também é possível executá-los em um Cloud TPU v2-8.

Este exemplo de script abaixo é treinado por apenas 10 etapas e leva menos de cinco minutos para ser executado em um nó de TPU v3-8. O treinamento para a conversão leva cerca de 22.500 etapas e aproximadamente 1 hora e meia em uma TPU v3-8 do Cloud TPU.

  1. Configure as seguintes variáveis de ambiente:

    (vm)$ export MODEL_DIR=${STORAGE_BUCKET}/retinanet-train
    (vm)$ export RESNET_CHECKPOINT=gs://cloud-tpu-checkpoints/retinanet/resnet50-checkpoint-2018-02-07
    (vm)$ export TRAIN_FILE_PATTERN=${DATA_DIR}/train-*
    (vm)$ export EVAL_FILE_PATTERN=${DATA_DIR}/val-*
    (vm)$ export VAL_JSON_FILE=${DATA_DIR}/instances_val2017.json
    
  2. Execute o script de treinamento:

    (vm)$ python3 /usr/share/models/official/vision/detection/main.py \
         --strategy_type=tpu \
         --tpu=${TPU_NAME} \
         --model_dir=${MODEL_DIR} \
         --mode="train" \
         --params_override="{ type: retinanet, train: { total_steps: 10, checkpoint: { path: ${RESNET_CHECKPOINT}, prefix: resnet50/ }, train_file_pattern: ${TRAIN_FILE_PATTERN} }, eval: { val_json_file: ${VAL_JSON_FILE}, eval_file_pattern: ${EVAL_FILE_PATTERN}, eval_samples: 5000 } }"
    

    Descrições de sinalizações de comando

    strategy_type
    Para treinar o modelo RetinaNet em uma TPU, é necessário definir o distribution_strategy como tpu.
    tpu
    O nome da Cloud TPU. Isso é definido usando a variável de ambiente TPU_NAME.
    model_dir
    O bucket do Cloud Storage em que os checkpoints e os resumos são armazenados durante o treinamento. Use uma pasta atual para carregar os checkpoints gerados anteriormente criados em uma TPU do mesmo tamanho e versão do TensorFlow.
    mode
    Defina isso como train para treinar o modelo ou eval para avaliar o modelo.
    params_override
    Uma string JSON que modifica parâmetros de script padrão. Para mais informações sobre parâmetros de script, consulte /usr/share/models/official/vision/detection/main.py.

Enquanto o modelo está em treinamento, é possível ver o progresso visualizando a saída do registro. Um resultado semelhante a este mostra que o treinamento está progredindo normalmente:

Train Step: 10/10  / loss = {
  'total_loss': 2.4581615924835205,
  'cls_loss': 1.4098565578460693,
  'box_loss': 0.012001709081232548,
  'model_loss': 2.0099422931671143,
  'l2_regularization_loss': 0.44821977615356445,
  'learning_rate': 0.008165999
}
/ training metric = {
  'total_loss': 2.4581615924835205,
  'cls_loss': 1.4098565578460693,
  'box_loss': 0.012001709081232548,
  'model_loss': 2.0099422931671143,
  'l2_regularization_loss': 0.44821977615356445,
 'learning_rate': 0.008165999
}

Avaliação de dispositivos de Cloud TPU único

O procedimento a seguir usa os dados de avaliação do COCO. Ele leva cerca de 10 minutos para ser executado nas etapas de avaliação.

  1. Configure as seguintes variáveis de ambiente:

    (vm)$ export EVAL_SAMPLES=5000
    
  2. Execute o script de avaliação:

    (vm)$ python3 /usr/share/models/official/vision/detection/main.py \
          --strategy_type=tpu \
          --tpu=${TPU_NAME} \
          --model_dir=${MODEL_DIR} \
          --checkpoint_path=${MODEL_DIR} \
          --mode=eval_once \
          --params_override="{ type: retinanet, eval: { val_json_file: ${VAL_JSON_FILE}, eval_file_pattern: ${EVAL_FILE_PATTERN}, eval_samples: ${EVAL_SAMPLES} } }"
    

    Descrições de sinalizações de comando

    strategy_type
    A estratégia de distribuição a ser usada. tpu ou multi_worker_gpu.
    tpu
    O nome da Cloud TPU. Isso é definido usando a variável de ambiente TPU_NAME.
    model_dir
    O bucket do Cloud Storage em que os checkpoints e os resumos são armazenados durante o treinamento. Use uma pasta atual para carregar os checkpoints gerados anteriormente criados em uma TPU do mesmo tamanho e versão do TensorFlow.
    mode
    Um de train, eval ou train_and_eval.
    params_override
    Uma string JSON que modifica parâmetros de script padrão. Para mais informações sobre parâmetros de script, consulte /usr/share/models/official/vision/detection/main.py.

    No final da avaliação, você verá mensagens semelhantes às seguintes no console:

    Accumulating evaluation results...
    DONE (t=7.66s).
     Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.000
     Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.000
     Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.000
     Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000
     Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000
     Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.000
     Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.000
     Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.000
     Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.000
     Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000
     Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000
     Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.000
    

    A partir daqui, é possível concluir este tutorial e limpar os recursos do GCP ou explorar a execução do modelo em pods da Cloud TPU.

Como escalonar o modelo com os pods da Cloud TPU

Para resultados mais rápidos, escalone o modelo com os pods da Cloud TPU. O modelo RetinaNet totalmente compatível pode funcionar com a fração de pod v2-32:

  1. Exclua o recurso da Cloud TPU criado para treinar o modelo em um único dispositivo.

    (vm)$ gcloud compute tpus execution-groups delete retinanet-tutorial \
      --zone=europe-west4-a \
      --tpu-only
  2. Execute o comando gcloud compute tpus execution-groups, usando o parâmetro accelerator-type para especificar a fração de pod a ser usada. Por exemplo, o comando a seguir usa uma fração de pod v3-32.

    (vm)$ gcloud compute tpus execution-groups  create --name=retinanet-tutorial \
      --accelerator-type=v3-32  \
      --zone=europe-west4-a \
      --tf-version=2.5.0 \
      --tpu-only
    

    Descrições de sinalizações de comando

    name
    O nome da Cloud TPU a ser criada.
    accelerator-type
    O tipo da Cloud TPU a ser criada.
    zone
    A zona em que você planeja criar a Cloud TPU.
    tf-version
    A versão do gcloud do Tensorflow é instalada na VM.
    tpu-only
    Crie apenas uma Cloud TPU. Por padrão, o comando gcloud cria uma VM e uma Cloud TPU.
  3. Defina a variável de nome da Cloud TPU. Este será um nome definido com o parâmetro --name ou o padrão, seu nome de usuário:

    (vm)$ export TPU_NAME=retinanet-tutorial
    
  4. Configure a seguinte variável de ambiente:

    (vm)$ export MODEL_DIR=${STORAGE_BUCKET}/retinanet-pod
    
  5. Executar o script de treinamento do pod em um nó da TPU v2-32

    O script de treinamento de amostra a seguir foi executado em um pod v2-32 do Cloud TPU. Ele é treinado por apenas 10 etapas e leva menos de cinco minutos para ser executado. Para treinar para a conversão, são necessários 219 passos e leva aproximadamente 50 minutos em um pod de TPU v2-32.

    (vm)$  python3 /usr/share/models/official/vision/detection/main.py \
        --strategy_type=tpu \
        --tpu=${TPU_NAME} \
        --model_dir=${MODEL_DIR} \
        --mode="train" \
        --params_override="{ type: retinanet, train: { total_steps: 10, batch_size: 256, checkpoint: { path: ${RESNET_CHECKPOINT}, prefix: resnet50/ }, train_file_pattern: ${TRAIN_FILE_PATTERN} }, eval: { val_json_file: ${VAL_JSON_FILE}, eval_file_pattern: ${EVAL_FILE_PATTERN}, eval_samples: 5000 } }"
    

    Descrições de sinalizações de comando

    strategy_type
    A estratégia de distribuição a ser usada. tpu ou multi_worker_gpu.
    tpu
    Especifica o nome da Cloud TPU. Isso é definido usando a variável de ambiente TPU_NAME.
    model_dir
    O bucket do Cloud Storage em que os checkpoints e os resumos são armazenados durante o treinamento. Use uma pasta atual para carregar os checkpoints gerados anteriormente criados em uma TPU do mesmo tamanho e versão do TensorFlow.
    mode
    Um de train, eval ou train_and_eval.
    params_override
    Uma string JSON que modifica parâmetros de script padrão. Para mais informações sobre parâmetros de script, consulte /usr/share/models/official/vision/detection/main.py.

Limpeza

Para evitar cobranças na sua conta do Google Cloud pelos recursos usados no tutorial, exclua o projeto que os contém ou mantenha o projeto e exclua os recursos individuais.

  1. Encerre a conexão com a VM do Compute Engine:

    (vm)$ exit
    

    Agora, o prompt precisa ser username@projectname, mostrando que você está no Cloud Shell.

  2. No Cloud Shell, use o seguinte comando para excluir a VM do Compute Engine e o Cloud TPU:

    $ gcloud compute tpus execution-groups delete retinanet-tutorial \
      --zone=europe-west4-a
    
  3. Execute gcloud compute tpus execution-groups list para verificar se os recursos foram excluídos. A exclusão pode levar vários minutos. Uma resposta como esta indica que suas instâncias foram excluídas com sucesso.

    $ gcloud compute tpus execution-groups list \
     --zone=europe-west4-a
    

    Você verá uma lista vazia de TPUs como a seguinte:

       NAME             STATUS
    
  4. Exclua o bucket do Cloud Storage usando gsutil, conforme mostrado abaixo. Substitua bucket-name pelo nome do bucket no Cloud Storage.

    $ gsutil rm -r gs://bucket-name
    

A seguir

Neste tutorial, você treinou o modelo RetinaNet usando um conjunto de dados de amostra. Os resultados deste treinamento (na maioria dos casos) não podem ser usados para inferência. Para usar um modelo para inferência, é possível treinar os dados em um conjunto de dados disponível publicamente ou no seu próprio conjunto de dados. Os modelos treinados nas Cloud TPUs exigem que os conjuntos de dados estejam no formato TFRecord.

Use a amostra da ferramenta de conversão de conjunto de dados para converter um conjunto de dados de classificação de imagem no formato TFRecord. Se você não estiver usando um modelo de classificação de imagem, converta manualmente o conjunto de dados para o TFRecord. Para mais informações, consulte TFRecord e tf.Example

Ajuste de hiperparâmetros

Para melhorar o desempenho do modelo com o conjunto de dados, é possível ajustar os hiperparâmetros. Encontre informações sobre hiperparâmetros comuns a todos os modelos compatíveis com a TPU no GitHub. As informações sobre hiperparâmetros específicos do modelo podem ser encontradas no código-fonte de cada modelo. Para mais informações sobre o ajuste de hiperparâmetros, consulte Visão geral do ajuste de hiperparâmetros, Como usar o serviço de ajuste de hiperparâmetros e Ajustar hiperparâmetros.

Inferência

Depois de treinar o modelo, é possível usá-lo para inferência (também chamada de previsão). O AI Platform é uma solução baseada em nuvem para desenvolver, treinar e implantar modelos de machine learning. Depois que um modelo é implantado, use o serviço do AI Platform Prediction.

Treinar com diferentes tamanhos de imagem

Para explorar, use uma rede de backbone maior. Por exemplo, ResNet-101 em vez de ResNet-50. Uma imagem maior de entrada e um backbone mais potente produzirão um modelo mais lento, porém, mais preciso.

Usar uma base diferente

Se preferir, faça o pré-treinamento de um modelo do ResNet no próprio conjunto de dados e use-o como base para o modelo do RetinaNet. Com um pouco mais de trabalho, também é possível alternar uma outra rede de backbone em vez do ResNet. Por fim, caso tenha interesse em implementar modelos próprios de detecção de objetos, essa rede pode ser uma boa base para fazer mais experimentos.