在 Cloud TPU 上训练 Mask RCNN

概览

本教程演示了如何使用 Cloud TPU 和 COCO 数据集运行 Mask RCNN 模型。

Mask RCNN 是一种深度神经网络,旨在解决对象检测和图像分割问题,这是一项难度较大的计算机视觉挑战。

Mask RCNN 模型会为图像中对象的每个实例生成边界框和细分掩码。该模型基于特征金字塔网络 (FPN) ResNet50 神经网络。

本教程使用 tf.contrib.tpu.TPUEstimator 训练模型。TPUEstimator API 是一种高级 TensorFlow API,是在 Cloud TPU 上构建和运行机器学习模型的推荐方法。此 API 可通过隐藏大部分低级实现来简化模型开发流程,从而让您更轻松地在 TPU 和其他平台(例如 GPU 或 CPU)之间切换。

目标

  • 创建 Cloud Storage 存储分区以保存数据集和模型输出
  • 准备 COCO 数据集
  • 设置 Compute Engine 虚拟机和 Cloud TPU 节点以进行训练和评估
  • 在单个 Cloud TPU 或 Cloud TPU Pod 上运行训练和评估

费用

本教程使用 Google Cloud 的以下收费组件:

  • Compute Engine
  • Cloud TPU
  • Cloud Storage

请使用价格计算器根据您的预计使用情况来估算费用。 Google Cloud 新用户可能有资格申请免费试用

准备工作

在开始学习本教程之前,请检查您的 Google Cloud 项目是否已正确设置。

  1. 登录您的 Google Cloud 帐号。如果您是 Google Cloud 新手,请创建一个帐号来评估我们的产品在实际场景中的表现。新客户还可获享 $300 赠金,用于运行、测试和部署工作负载。
  2. 在 Google Cloud Console 的项目选择器页面上,选择或创建一个 Google Cloud 项目。

    转到“项目选择器”

  3. 确保您的 Cloud 项目已启用结算功能。 了解如何确认您的项目是否已启用结算功能

  4. 本演示使用 Google Cloud 的收费组件。请查看 Cloud TPU 价格页面估算您的费用。请务必在使用完您创建的资源以后清理这些资源,以免产生不必要的费用。

如果您计划在 TPU Pod 切片上训练,请参阅在 TPU Pod 上训练,以了解 Pod 切片所需的参数更改。

设置资源

本部分介绍如何为此教程设置 Cloud Storage、虚拟机和 Cloud TPU 资源。

  1. 打开一个 Cloud Shell 窗口。

    打开 Cloud Shell

  2. 为项目 ID 创建一个环境变量。

    export PROJECT_ID=project-id
  3. 配置 gcloud 命令行工具,以使用要在其中创建 Cloud TPU 的项目。

    gcloud config set project ${PROJECT_ID}
    

    当您第一次在新的 Cloud Shell 虚拟机中运行此命令时,系统会显示 Authorize Cloud Shell 页面。点击页面底部的 Authorize 以允许 gcloud 使用您的凭据进行 GCP API 调用。

  4. 为 Cloud TPU 项目创建服务帐号。

    gcloud beta services identity create --service tpu.googleapis.com --project $PROJECT_ID
    

    该命令将返回以下格式的 Cloud TPU 服务帐号:

    service-PROJECT_NUMBER@cloud-tpu.iam.gserviceaccount.com
    

  5. 使用以下命令创建 Cloud Storage 存储分区:

    gsutil mb -p ${PROJECT_ID} -c standard -l europe-west4 -b on gs://bucket-name
    

    此 Cloud Storage 存储分区存储您用于训练模型的数据和训练结果。本教程中使用的 gcloud compute tpus execution-groups 工具会为 Cloud TPU 服务帐号设置默认权限。如果您需要更精细的权限,请查看访问级层权限

    存储分区位置必须与虚拟机 (VM) 和 TPU 节点位于同一地区。虚拟机和 TPU 节点位于特定地区,即区域内的细分。

  6. 使用 gcloud compute tpus execution-groups 命令启动本教程所需的 Compute Engine 和 Cloud TPU 资源。

    gcloud compute tpus execution-groups create \
     --vm-only \
     --name=mask-rcnn-tutorial \
     --zone=europe-west4-a \
     --disk-size=300 \
     --machine-type=n1-standard-8 \
     --tf-version=1.15.5
    

    命令标志说明

    vm-only
    仅创建 Compute Engine 虚拟机,不创建 Cloud TPU。
    name
    要创建的 Cloud TPU 的名称。
    zone
    拟在其中创建 Cloud TPU 的区域
    disk-size
    gcloud 命令创建的虚拟机的硬盘大小(以 GB 为单位)。
    machine-type
    要创建的 Compute Engine 虚拟机的机器类型
    tf-version
    在虚拟机上安装的 Tensorflow gcloud 的版本。
  7. 此时会显示您指定的配置。输入 y 批准或输入 n 取消。

  8. gcloud compute tpus execution-groups 命令执行完毕后,验证 shell 提示符已从 username@projectname 更改为 username@vm-name。此变化表明您现已登录 Compute Engine 虚拟机。

    gcloud compute ssh mask-rcnn-tutorial --zone=europe-west4-a
    

    在您继续按照这些说明操作时,请在虚拟机会话窗口中运行以 (vm)$ 开头的每个命令。

安装另外的软件包

为了使用 Mask RCNN 训练应用,您需要安装另外几个软件包。立即安装:

(vm)$ sudo apt-get install -y python3-tk && \
  pip3 install --user Cython matplotlib opencv-python-headless pyyaml Pillow && \
  pip3 install --user 'git+https://github.com/cocodataset/cocoapi#egg=pycocotools&subdirectory=PythonAPI' && \
  pip3 install --user -U gast==0.2.2

更新虚拟机连接的 keepalive 值

在本教程中,您需要与 Compute Engine 实例建立长期有效的连接。为了确保与实例的连接不会断开,请运行以下命令:

(vm)$ sudo /sbin/sysctl \
  -w net.ipv4.tcp_keepalive_time=120 \
  net.ipv4.tcp_keepalive_intvl=120 \
  net.ipv4.tcp_keepalive_probes=5

准备数据

  1. 为存储分区添加环境变量。将 bucket-name 替换为您的存储分区名称。

    (vm)$ export STORAGE_BUCKET=gs://bucket-name
    
  2. 为数据目录添加环境变量。

    (vm)$ export DATA_DIR=${STORAGE_BUCKET}/coco
    
  3. 为模型目录添加环境变量。

    (vm)$ export MODEL_DIR=${STORAGE_BUCKET}/mask-rcnn
    
  4. 运行 download_and_preprocess_coco.sh 脚本,将 COCO 数据集转换为训练应用所需的一组 TFRecord (*.tfrecord)。

    (vm)$ sudo bash /usr/share/tpu/tools/datasets/download_and_preprocess_coco.sh ./data/dir/coco
    

    这会安装所需的库,然后运行预处理脚本。它会向您的本地数据目录中输出很多 *.tfrecord 文件。

  5. 将数据复制到 Cloud Storage 存储分区

    将数据转换为 TFRecord 后,使用 gsutil 命令将其从本地存储空间复制到 Cloud Storage 存储分区。您还必须复制注释文件。这些文件有助于验证模型的性能。

    (vm)$ gsutil -m cp ./data/dir/coco/*.tfrecord ${DATA_DIR}
    
    (vm)$ gsutil cp ./data/dir/coco/raw-data/annotations/*.json ${DATA_DIR}
    

设置并启动 Cloud TPU

  1. 运行以下命令以创建 Cloud TPU。

    (vm)$ gcloud compute tpus execution-groups create \
     --tpu-only \
     --accelerator-type=v3-8 \
     --name=mask-rcnn-tutorial \
     --zone=europe-west4-a \
     --tf-version=1.15.5
    

    命令标志说明

    tpu-only
    仅创建 Cloud TPU,不创建 Compute Engine。
    accelerator-type
    要创建的 Cloud TPU 的类型
    name
    要创建的 Cloud TPU 的名称。
    zone
    拟在其中创建 Cloud TPU 的区域
    tf-version
    在虚拟机上安装的 Tensorflow gcloud 的版本。
  2. 此时会显示您指定的配置。输入 y 批准或输入 n 取消。

    您会看到一条消息:Operation success; not ssh-ing to Compute Engine VM due to --tpu-only flag。由于您之前已完成 SSH 密钥传播,因此可以忽略此消息。

  3. 为您的 Cloud TPU 名称添加环境变量。

    (vm)$ export TPU_NAME=mask-rcnn-tutorial
    

运行训练和评估

  1. 添加一些必需的环境变量:

    (vm)$ export PYTHONPATH="${PYTHONPATH}:/usr/share/tpu/models"
    (vm)$ export RESNET_CHECKPOINT=gs://cloud-tpu-checkpoints/retinanet/resnet50-checkpoint-2018-02-07
    (vm)$ export TRAIN_FILE_PATTERN=${DATA_DIR}/train-*
    (vm)$ export EVAL_FILE_PATTERN=${DATA_DIR}/val-*
    (vm)$ export VAL_JSON_FILE=${DATA_DIR}/instances_val2017.json
    (vm)$ export ACCELERATOR_TYPE=v3-8
    
  2. 导航到 /usr/share 目录。

    (vm)$ cd /usr/share
    
  3. 运行以下命令以运行训练和评估。

    (vm)$ python3 tpu/models/official/mask_rcnn/mask_rcnn_main.py \
    --use_tpu=True \
    --tpu=${TPU_NAME} \
    --model_dir=${MODEL_DIR} \
    --num_cores=8 \
    --mode="train_and_eval" \
    --config_file="/usr/share/tpu/models/official/mask_rcnn/configs/cloud/${ACCELERATOR_TYPE}.yaml" \
    --params_override="checkpoint=${RESNET_CHECKPOINT}, training_file_pattern=${TRAIN_FILE_PATTERN}, validation_file_pattern=${EVAL_FILE_PATTERN}, val_json_file=${VAL_JSON_FILE}"
      

    命令标志说明

    use_tpu
    设置为 true 以在 Cloud TPU 上进行训练。
    tpu
    运行训练或评估的 Cloud TPU 的名称。
    model_dir
    在训练期间存储检查点和摘要的 Cloud Storage 存储分区。您可以使用现有文件夹加载根据相同大小和 TensorFlow 版本的先前生成 TPU 创建的检查点。
    num_cores
    训练时要使用的 Cloud TPU 核心数。
    mode
    trainevaltrain_and_eval 之一。
    config_file
    训练/评估脚本使用的配置文件。
    params_override
    一个 JSON 字符串,会替换默认脚本参数。如需详细了解脚本参数,请参阅 /usr/share/models/official/vision/detection/main.py

完成后,训练脚本会显示如下输出:

Eval results: {
  'AP75': 0.40665552,
  'APs': 0.21580082,
  'ARmax10': 0.48935828,
  'ARs': 0.3210774,
  'ARl': 0.6564725,
  'AP50': 0.58614284,
  'mask_AP': 0.33921072,
  'mask_AP50': 0.553329,
  'ARm': 0.5500552,
  'mask_APm': 0.37276757,
  'mask_ARmax100': 0.46716768,
  'mask_AP75': 0.36201102,
  'ARmax1': 0.3094466,
  'ARmax100': 0.51287305,
  'APm': 0.40756866,
  'APl': 0.48908308,
  'mask_ARm': 0.50562346,
  'mask_ARl': 0.6192515,
  'mask_APs': 0.17869519,
  'mask_ARmax10': 0.44764888,
  'mask_ARmax1': 0.2897982,
  'mask_ARs': 0.27102336,
  'mask_APl': 0.46426648,
  'AP': 0.37379172
}

此时,您可以结束本教程并清理 GCP 资源,也可以进一步了解如何在 Cloud TPU Pod 上运行模型。

使用 Cloud TPU Pod 扩缩模型

您可以使用 Cloud TPU Pod 扩缩模型,以便更快获得结果。完全受支持的 Mask RCNN 模型可与以下 Pod 切片配合使用:

  • v2-32
  • v3-32

使用 Cloud TPU Pod 时,首先使用 Pod 训练模型,然后使用单台 Cloud TPU 设备评估模型。

使用 Cloud TPU Pod 进行训练

如果您已经删除了 Compute Engine 实例,请按照设置资源中的步骤创建一个新实例。

  1. 删除为在单台设备上训练模型而创建的 Cloud TPU 资源。

    (vm)$ gcloud compute tpus execution-groups delete mask-rcnn-tutorial \
      --zone=europe-west4-a \
      --tpu-only
    
  2. 运行 gcloud compute tpus execution-groups 命令,并使用 accelerator-type 参数指定要使用的 Pod 切片。例如,以下命令使用 v3-32 Pod 切片。

    (vm)$ gcloud compute tpus execution-groups  create --tpu-only \
      --accelerator-type=v3-32 \
      --zone=europe-west4-a \
      --name=mask-rcnn-tutorial \
      --tf-version=1.15.5
    

    命令标志说明

    tpu-only
    仅创建 Cloud TPU。默认情况下,gcloud 命令会同时创建虚拟机和 Cloud TPU。
    accelerator-type
    要创建的 Cloud TPU 的类型
    zone
    拟在其中创建 Cloud TPU 的区域
    name
    要创建的 Cloud TPU 的名称。
    tf-version
    在虚拟机上安装的 Tensorflow gcloud compute tpus execution-groups 的版本。
  3. 更新 TPU_NAME、MODEL_DIR 和 ACCELERATOR_TYPE 环境变量。

    (vm)$ export TPU_NAME=mask-rcnn-tutorial
    (vm)$ export ACCELERATOR_TYPE=v3-32
    (vm)$ export MODEL_DIR=${STORAGE_BUCKET}/mask-rcnn-pods
    
  4. 启动训练脚本。

    (vm)$ python3 tpu/models/official/mask_rcnn/mask_rcnn_main.py \
      --use_tpu=True \
      --tpu=${TPU_NAME} \
      --iterations_per_loop=500 \
      --model_dir=${MODEL_DIR} \
      --num_cores=32 \
      --mode="train" \
      --config_file="/usr/share/tpu/models/official/mask_rcnn/configs/cloud/${ACCELERATOR_TYPE}.yaml" \
      --params_override="checkpoint=${RESNET_CHECKPOINT}, training_file_pattern=${TRAIN_FILE_PATTERN}, validation_file_pattern=${EVAL_FILE_PATTERN}, val_json_file=${VAL_JSON_FILE}"
      

    命令标志说明

    use_tpu
    设置为 true 以在 Cloud TPU 上进行训练。
    tpu
    运行训练或评估的 Cloud TPU 的名称。
    iterations_per_loop
    要在一个周期内完成的迭代次数。
    model_dir
    在训练期间存储检查点和摘要的 Cloud Storage 存储分区。您可以使用现有文件夹加载根据相同大小和 TensorFlow 版本的先前生成 TPU 创建的检查点。
    num_cores
    训练时要使用的 Cloud TPU 核心数。
    mode
    trainevaltrain_and_eval 之一。
    config_file
    训练/评估脚本使用的配置文件。
    params_override
    一个 JSON 字符串,会替换默认脚本参数。如需详细了解脚本参数,请参阅 /usr/share/models/official/vision/detection/main.py

完成后,训练脚本输出应如下所示:

I1201 07:22:49.762461 139992247961344 tpu_estimator.py:616] Shutdown TPU system.
INFO:tensorflow:Loss for final step: 0.7160271.

评估模型

在此步骤中,您将使用单个 Cloud TPU 节点针对 COCO 数据集评估上述经过训练的模型。此评估大约需要 10 分钟。

  1. 删除您为在 Pod 上训练模型而创建的 Cloud TPU 资源。

    (vm)$ gcloud compute tpus execution-groups delete mask-rcnn-tutorial \
      --tpu-only \
      --zone=europe-west4-a
      
  2. 启动 v2-8 Cloud TPU 以运行评估。使用与 Compute Engine 虚拟机名称相同的名称,它应该仍在运行。

    (vm)$ gcloud compute tpus execution-groups create --tpu-only \
      --accelerator-type=v2-8 \
      --zone=europe-west4-a \
      --name=mask-rcnn-tutorial \
      --tf-version=1.15.5
    

    命令标志说明

    tpu-only
    仅创建 Cloud TPU。默认情况下,gcloud 命令会同时创建虚拟机和 Cloud TPU。
    accelerator-type
    要创建的 Cloud TPU 的类型
    zone
    拟在其中创建 Cloud TPU 的区域
    name
    要创建的 Cloud TPU 的名称。
    tf-version
    在虚拟机上安装的 Tensorflow gcloud 的版本。
  3. 开始评估。

    (vm)$ python3 tpu/models/official/mask_rcnn/mask_rcnn_main.py \
      --use_tpu=True \
      --tpu=${TPU_NAME} \
      --iterations_per_loop=500 \
      --mode=eval \
      --model_dir=${MODEL_DIR} \
      --config_file="/usr/share/tpu/models/official/mask_rcnn/configs/cloud/${ACCELERATOR_TYPE}.yaml" \
      --params_override="checkpoint=${CHECKPOINT},training_file_pattern=${PATH_GCS_MASKRCNN}/train-*,val_json_file=${PATH_GCS_MASKRCNN}/instances_val2017.json,validation_file_pattern=${PATH_GCS_MASKRCNN}/val-*,init_learning_rate=0.28,learning_rate_levels=[0.028, 0.0028, 0.00028],learning_rate_steps=[6000, 8000, 10000],momentum=0.95,num_batch_norm_group=1,num_steps_per_eval=500,global_gradient_clip_ratio=0.02,total_steps=11250,train_batch_size=512,warmup_steps=1864"
      

    命令标志说明

    use_tpu
    使用 TPU 进行训练或评估。
    tpu
    运行训练或评估的 Cloud TPU 的名称。
    iterations_per_loop
    要在一个周期内完成的迭代次数。
    mode
    trainevaltrain_and_eval 之一。
    model_dir
    在训练期间存储检查点和摘要的 Cloud Storage 存储分区。您可以使用现有文件夹加载根据相同大小和 TensorFlow 版本的先前生成 TPU 创建的检查点。
    config_file
    训练/评估脚本使用的配置文件。

清理

为避免因本教程中使用的资源导致您的 Google Cloud 帐号产生费用,请删除包含这些资源的项目,或者保留项目但删除各个资源。

清理 Compute Engine 虚拟机实例和 Cloud TPU 资源。

  1. 断开与 Compute Engine 实例的连接(如果您尚未这样做):

    (vm)$ exit
    

    您的提示符现在应为 username@projectname,表明您位于 Cloud Shell 中。

  2. 在您的 Cloud Shell 中,使用以下命令删除您的 Compute Engine 虚拟机和 Cloud TPU:

    $ gcloud compute tpus execution-groups delete mask-rcnn-tutorial \
      --zone=europe-west4-a
    
  3. 通过运行 gcloud compute tpus execution-groups list 验证资源是否已删除。删除操作可能需要几分钟时间才能完成。如下所示的响应表明实例已成功删除。

    $ gcloud compute tpus execution-groups list \
     --zone=europe-west4-a
    

    您应该会看到如下所示的空白 TPU 列表:

       NAME             STATUS
    
  4. 使用 gsutil 删除 Cloud Storage 存储分区,如下所示。将 bucket-name 替换为您的 Cloud Storage 存储分区的名称。

    $ gsutil rm -r gs://bucket-name
    

后续步骤

在本教程中,您已使用示例数据集训练 Mask-RCNN 模型。此训练的结果(在大多数情况下)不能用于推断。要使用模型进行推断,您可以在公开提供的数据集或您自己的数据集上训练数据。在 Cloud TPU 上训练的模型要求数据集采用 TFRecord 格式。

您可以使用数据集转换工具示例将图片分类数据集转换为 TFRecord 格式。如果您未使用图片分类模型,则必须自行将数据集转换为 TFRecord 格式。如需了解详情,请参阅 TFRecord 和 tf.Example

超参数调节

如需使用数据集提升模型的性能,您可以调节模型的超参数。您可以在 GitHub 上寻找所有 TPU 支持模型通用的超参数的相关信息。您可以在每个模型的源代码中寻找模型专用超参数的相关信息。如需详细了解超参数调节,请参阅超参数调节概览使用超参数调节服务调节超参数

推理

训练模型后,您可以使用该模型进行推断(也称为预测)。AI Platform 是一款基于云的解决方案,用于开发、训练部署机器学习模型。部署模型后,您可以使用 AI Platform Prediction 服务