Máscara de entrenamiento RCNN en Cloud TPU (TF 2.x)


Descripción general

En este instructivo, se muestra cómo ejecutar el modelo Mask RCNN mediante Cloud TPU con el conjunto de datos COCO.

Mask RCNN es una red neuronal profunda diseñada para abordar la detección de objetos y la segmentación de imágenes, uno de los desafíos de visión artificial más difíciles.

El modelo Mask RCNN genera cuadros de límite y máscaras de segmentación para cada instancia de un objeto en la imagen. El modelo se basa en la Feature Pyramid Network (FPN) y en una red troncal ResNet50.

En este instructivo, se usa Tensorflow Keras APIs para entrenar el modelo. La API de Keras es una API de TensorFlow de alto nivel que puede usarse para compilar y ejecutar un modelo de aprendizaje automático en Cloud TPU. La API simplifica el proceso de desarrollo del modelo. Para ello, oculta la mayor parte de la implementación de bajo nivel, lo que facilita el cambio entre TPU y otras plataformas, como GPU o CPU.

En estas instrucciones, se supone que ya estás familiarizado con el entrenamiento de un modelo en Cloud TPU. Si eres nuevo en Cloud TPU, puedes consultar la Guía de inicio rápido para obtener una introducción básica.

Objetivos

  • Prepara el conjunto de datos COCO
  • Crear un bucket de Cloud Storage para almacenar el resultado de tu modelo y tu conjunto de datos
  • Configura recursos TPU para entrenamiento y evaluación
  • Ejecutar el entrenamiento y la evaluación en un solo Cloud TPU o un pod de Cloud TPU

Costos

En este documento, usarás los siguientes componentes facturables de Google Cloud:

  • Compute Engine
  • Cloud TPU
  • Cloud Storage

Para generar una estimación de costos en función del uso previsto, usa la calculadora de precios. Es posible que los usuarios nuevos de Google Cloud califiquen para obtener una prueba gratuita.

Antes de comenzar

Antes de comenzar este instructivo, verifica que tu proyecto de Google Cloud esté configurado correctamente.

  1. Accede a tu cuenta de Google Cloud. Si eres nuevo en Google Cloud, crea una cuenta para evaluar el rendimiento de nuestros productos en situaciones reales. Los clientes nuevos también obtienen $300 en créditos gratuitos para ejecutar, probar y, además, implementar cargas de trabajo.
  2. En la página del selector de proyectos de la consola de Google Cloud, selecciona o crea un proyecto de Google Cloud.

    Ir al selector de proyectos

  3. Asegúrate de que la facturación esté habilitada para tu proyecto de Google Cloud.

  4. En la página del selector de proyectos de la consola de Google Cloud, selecciona o crea un proyecto de Google Cloud.

    Ir al selector de proyectos

  5. Asegúrate de que la facturación esté habilitada para tu proyecto de Google Cloud.

  6. En esta explicación, se usan componentes facturables de Google Cloud. Consulta la página de precios de Cloud TPU para calcular los costos. Asegúrate de limpiar los recursos que crees cuando hayas terminado de usarlos para evitar cargos innecesarios.

Prepara el conjunto de datos COCO

En este instructivo, se usa el conjunto de datos COCO. El conjunto de datos debe estar en formato TFRecord en un bucket de Cloud Storage para usarse en el entrenamiento.

Si ya tienes el conjunto de datos COCO preparado en un bucket de Cloud Storage ubicado en la zona que usarás para entrenar el modelo, puedes ir directamente al entrenamiento de un solo dispositivo. De lo contrario, sigue estos pasos para preparar el conjunto de datos.

  1. Abre una ventana de Cloud Shell.

    Abra Cloud Shell

  2. En Cloud Shell, configura gcloud con el ID del proyecto.

    export PROJECT_ID=project-id
    gcloud config set project ${PROJECT_ID}
    
  3. En Cloud Shell, crea un bucket de Cloud Storage con el siguiente comando:

    gsutil mb -p ${PROJECT_ID} -c standard -l europe-west4 gs://bucket-name
    
  4. Inicia una instancia de VM de Compute Engine.

    Esta instancia de VM solo se usará para descargar y procesar previamente el conjunto de datos COCO. Completa instance-name con el nombre que desees.

    $ gcloud compute tpus execution-groups create \
     --vm-only \
     --name=instance-name \
     --zone=europe-west4-a \
     --disk-size=300 \
     --machine-type=n1-standard-16 \
     --tf-version=2.12.0
    

    Descripciones de las marcas de comandos

    vm-only
    Crea solo una VM. De forma predeterminada, el comando gcloud compute tpus execution-groups crea una VM y una Cloud TPU.
    name
    Es el nombre de la Cloud TPU que se creará.
    zone
    La zona en la que planeas crear tu Cloud TPU.
    disk-size
    El tamaño del disco duro en GB de la VM que creó el comando gcloud compute tpus execution-groups.
    machine-type
    El tipo de máquina de la VM de Compute Engine que se creará.
    tf-version
    La versión gcloud compute tpus execution-groups de TensorFlow se instala en la VM.
  5. Si no accediste de forma automática a la instancia de Compute Engine, ejecuta el siguiente comando de ssh para acceder. Cuando accedas a la VM, el indicador de shell cambiará de username@projectname a username@vm-name:

      $ gcloud compute ssh instance-name --zone=europe-west4-a
      

  6. Configura dos variables, una para el bucket de almacenamiento que creaste antes y otra para el directorio que contiene los datos de entrenamiento (DATA_DIR) en el bucket de almacenamiento.

    (vm)$ export STORAGE_BUCKET=gs://bucket-name
    
    (vm)$ export DATA_DIR=${STORAGE_BUCKET}/coco
  7. Instala los paquetes necesarios para procesar los datos con anterioridad.

    (vm)$ sudo apt-get install -y python3-tk && \
      pip3 install --user Cython matplotlib opencv-python-headless pyyaml Pillow && \
      pip3 install --user "git+https://github.com/cocodataset/cocoapi#egg=pycocotools&subdirectory=PythonAPI"
    
  8. Ejecuta la secuencia de comandos download_and_preprocess_coco.sh para convertir el conjunto de datos COCO en un conjunto de TFRecords (*.tfrecord), que son compatibles con la aplicación de entrenamiento.

    (vm)$ git clone https://github.com/tensorflow/tpu.git
    (vm)$ sudo bash tpu/tools/datasets/download_and_preprocess_coco.sh ./data/dir/coco
    

    Esto instala las bibliotecas necesarias y ejecuta la secuencia de comandos de procesamiento previo. Como resultado, se muestra una serie de archivos *.tfrecord en tu directorio de datos local. La secuencia de comandos de conversión y descarga de COCO tarda alrededor de 1 hora en completarse.

  9. Copia los datos en tu bucket de Cloud Storage

    Después de convertir los datos en TFRecords, cópialos desde el almacenamiento local a tu depósito de Cloud Storage con el comando gsutil. También debes copiar los archivos de anotaciones. Estos archivos ayudan a validar el rendimiento del modelo.

    (vm)$ gsutil -m cp ./data/dir/coco/*.tfrecord ${DATA_DIR}
    (vm)$ gsutil cp ./data/dir/coco/raw-data/annotations/*.json ${DATA_DIR}
    
  10. Limpia los recursos de VM

    Una vez que el conjunto de datos COCO se haya convertido en TFRecords y se haya copiado en DATA_DIR en tu bucket de Cloud Storage, puedes borrar la instancia de Compute Engine.

    Desconéctate de la instancia de Compute Engine:

    (vm)$ exit
    

    El mensaje ahora debería mostrar username@projectname, que indica que estás en Cloud Shell.

  11. Borra tu instancia de Compute Engine.

      $ gcloud compute instances delete instance-name
        --zone=europe-west4-a
      

Entrenamiento de Cloud TPU con dispositivo único

  1. Abre una ventana de Cloud Shell.

    Abra Cloud Shell

  2. Crea una variable de entorno para el ID de tu proyecto.

    export PROJECT_ID=project-id
  3. Configura Google Cloud CLI para usar el proyecto en el que deseas crear la Cloud TPU.

    gcloud config set project ${PROJECT_ID}
    

    La primera vez que ejecutes este comando en una VM de Cloud Shell nueva, se mostrará la página Authorize Cloud Shell. Haz clic en Authorize en la parte inferior de la página para permitir que gcloud realice llamadas a la API de Google Cloud con tus credenciales.

  4. Crea una cuenta de servicio para el proyecto de Cloud TPU.

    gcloud beta services identity create --service tpu.googleapis.com --project $PROJECT_ID
    

    El comando muestra una cuenta de servicio de Cloud TPU con el siguiente formato:

    service-PROJECT_NUMBER@cloud-tpu.iam.gserviceaccount.com
    

  5. Exporta variables de configuración de TPU

    Exporta tu ID del proyecto, el nombre que deseas usar para tus recursos TPU y la zona en la que entrenarás el modelo y almacenarás los datos relacionados con el entrenamiento.

    $ export TPU_NAME=mask-rcnn-tutorial
    $ export ZONE=europe-west4-a
    
  6. Inicia una VM de Compute Engine y Cloud TPU con el comando gcloud. El comando que uses depende de si usas VM de TPU o nodos TPU. Para obtener más información sobre las dos arquitecturas de VM, consulta Arquitectura del sistema.

    VM de TPU

    $ gcloud compute tpus tpu-vm create mask-rcnn-tutorial \
    --zone=europe-west4-a \
    --accelerator-type=v3-8 \
    --version=tpu-vm-tf-2.16.1-pjrt
    

    Descripciones de las marcas de comandos

    zone
    La zona en la que planeas crear tu Cloud TPU.
    accelerator-type
    El tipo de acelerador especifica la versión y el tamaño de la Cloud TPU que quieres crear. Si quieres obtener más información sobre los tipos de aceleradores compatibles con cada versión de TPU, consulta Versiones de TPU.
    version
    La versión de software de Cloud TPU.

    Nodo TPU

    $ gcloud compute tpus execution-groups create  \
     --zone=europe-west4-a \
     --name=mask-rcnn-tutorial \
     --accelerator-type=v3-8 \
     --machine-type=n1-standard-8 \
     --disk-size=300 \
     --tf-version=2.12.0
    

    Descripciones de las marcas de comandos

    zone
    La zona en la que planeas crear tu Cloud TPU.
    name
    El nombre de la TPU. Si no se especifica, el valor predeterminado es tu nombre de usuario.
    accelerator-type
    El tipo de Cloud TPU que se creará.
    machine-type
    El tipo de máquina de la VM de Compute Engine que se creará.
    disk-size
    El tamaño del volumen raíz de la VM de Compute Engine (en GB).
    tf-version
    La versión de gcloud de TensorFlow se instala en la VM.

    Para obtener más información sobre el comando de gcloud, consulta la Referencia de gcloud.

  7. Si no accediste de forma automática a la instancia de Compute Engine, ejecuta el siguiente comando de ssh para acceder. Cuando accedas a la VM, el indicador de shell cambiará de username@projectname a username@vm-name:

    VM de TPU

    gcloud compute tpus tpu-vm ssh mask-rcnn-tutorial --zone=europe-west4-a
    

    Nodo TPU

    gcloud compute tpus execution-groups ssh mask-rcnn-tutorial --zone=europe-west4-a
    
  8. Instala los requisitos de TensorFlow.

    El comando que uses depende de si usas VM de TPU o nodos TPU.

    VM de TPU

    (vm)$ pip3 install -r /usr/share/tpu/models/official/requirements.txt 

    Nodo TPU

    (vm)$ pip3 install --user -r /usr/share/models/official/requirements.txt
    
  9. Configura la variable de nombre de Cloud TPU.

    VM de TPU

    (vm)$ export TPU_NAME=local
    

    Nodo TPU

    (vm)$ export TPU_NAME=mask-rcnn-tutorial
    
  10. Configura las siguientes variables de entorno y reemplaza bucket-name por el nombre del bucket de Cloud Storage que almacena el conjunto de datos COCO:

    (vm)$ export STORAGE_BUCKET=gs://bucket-name
    
  11. Agrega variables de entorno para los directorios de datos y modelos.

    (vm)$ export DATA_DIR=${STORAGE_BUCKET}/coco
    (vm)$ export MODEL_DIR=${STORAGE_BUCKET}/mask-rcnn
    
  12. Agrega algunas variables de entorno obligatorias adicionales:

    (vm)$ export RESNET_CHECKPOINT=gs://cloud-tpu-checkpoints/retinanet/resnet50-checkpoint-2018-02-07
    (vm)$ export TRAIN_FILE_PATTERN=${DATA_DIR}/train-*
    (vm)$ export EVAL_FILE_PATTERN=${DATA_DIR}/val-*
    (vm)$ export VAL_JSON_FILE=${DATA_DIR}/instances_val2017.json
    
  13. Establece la variable de entorno PYTHONPATH:

    VM de TPU

    (vm)$ export PYTHONPATH="${PYTHONPATH}:/usr/share/tpu/models"
    

    Nodo TPU

    (vm)$ export PYTHONPATH="${PYTHONPATH}:/usr/share/models"
    
  14. Cuando creas tu TPU, si estableces el parámetro --version en una versión que termina en -pjrt, configura las siguientes variables de entorno para habilitar el entorno de ejecución de PJRT:

      (vm)$ export NEXT_PLUGGABLE_DEVICE_USE_C_API=true
      (vm)$ export TF_PLUGGABLE_DEVICE_LIBRARY_PATH=/lib/libtpu.so
    
  15. Ve al directorio en el que se almacena el modelo:

    VM de TPU

    (vm)$ cd /usr/share/tpu/models/official/vision
    

    Nodo TPU

    (vm)$ cd /usr/share/models/official/legacy/detection
    

La siguiente secuencia de comandos ejecuta un entrenamiento de muestra que se entrena para 10 pasos de entrenamiento y 10 pasos de evaluación. Tarda alrededor de 6 minutos en completarse en una TPU v3-8. El entrenamiento para la convergencia lleva alrededor de 22,500 pasos y aproximadamente 6 horas en una TPU v3-8.

  1. Ejecuta el siguiente comando para entrenar el modelo Mask-RCNN:

    (vm)$ python3 train.py \
      --tpu=${TPU_NAME} \
      --experiment=maskrcnn_resnetfpn_coco \
      --mode=train_and_eval \
      --config_file=configs/experiments/maskrcnn/r50fpn_640_coco_scratch_tpu4x4.yaml \
      --model_dir=${MODEL_DIR} \
      --params_override="task.train_data.input_path=${TRAIN_FILE_PATTERN},task.validation_data.input_path=${EVAL_FILE_PATTERN},task.annotation_file=${VAL_JSON_FILE},runtime.distribution_strategy=tpu,trainer.train_steps=10,trainer.validation_steps=10,task.train_data.global_batch_size=8,task.validation_data.global_batch_size=8"
    

    Descripciones de las marcas de comandos

    strategy_type
    La estrategia de distribución
    tpu
    El nombre de tu TPU.
    model_dir
    especifica el directorio en el que se almacenan los puntos de control y los resúmenes durante el entrenamiento de modelos. Si la carpeta no existe, el programa crea una. Cuando se usa una Cloud TPU, el model_dir debe ser una ruta de Cloud Storage (`gs://...`). Puedes reutilizar una carpeta existente para cargar datos de puntos de control actuales y almacenar puntos de control adicionales, siempre que los puntos de control anteriores se hayan creado con una TPU del mismo tamaño y con la misma versión de TensorFlow.

    Cuando finalice el entrenamiento, aparecerá un mensaje similar al siguiente:

    {'frcnn_box_loss': 0.033865165,
     'frcnn_cls_loss': 1.2535654,
     'learning_rate': 0.008266499,
     'mask_loss': 1.2039567,
     'model_loss': 2.821458,
     'rpn_box_loss': 0.034982488,
     'rpn_score_loss': 0.2950886,
     'total_loss': 4.340171,
     'training_loss': 4.340171}
    train | step:     10 | steps/sec:    0.1 | output:
    {'frcnn_box_loss': 0.033865165,
     'frcnn_cls_loss': 1.2535654,
     'learning_rate': 0.008266499,
     'mask_loss': 1.2039567,
     'model_loss': 2.821458,
     'rpn_box_loss': 0.034982488,
     'rpn_score_loss': 0.2950886,
     'total_loss': 4.340171,
     'training_loss': 4.340171}
    

    A continuación, se muestran los resultados de los pasos de evaluación.

    Completaste el entrenamiento y la evaluación en un solo dispositivo. Sigue los pasos que se indican a continuación para borrar los recursos actuales de TPU de dispositivo único.

  2. Desconéctate de la instancia de Compute Engine:

    (vm)$ exit
    

    El mensaje ahora debería mostrar username@projectname, que indica que estás en Cloud Shell.

  3. Borra el recurso TPU.

    VM de TPU

    $ gcloud compute tpus tpu-vm delete mask-rcnn-tutorial \
    --zone=europe-west4-a
    

    Descripciones de las marcas de comandos

    zone
    Es la zona en la que reside tu Cloud TPU.

    Nodo TPU

    $ gcloud compute tpus execution-groups delete mask-rcnn-tutorial \
    --tpu-only \
    --zone=europe-west4-a
    

    Descripciones de las marcas de comandos

    tpu-only
    Borra solo la Cloud TPU. La VM permanece disponible.
    zone
    La zona que contiene la TPU que se borrará.

En este punto, puedes finalizar este instructivo y realizar una limpieza o puedes continuar y explorar la ejecución del modelo en los Pods de Cloud TPU.

Escala tu modelo con pods de Cloud TPU

El entrenamiento de tu modelo en pods de Cloud TPU puede requerir algunos cambios en la secuencia de comandos de entrenamiento. Para obtener más información, consulta Entrenamiento en pods de TPU.

Entrenamiento de Pods de TPU

  1. Abre una ventana de Cloud Shell.

    Abra Cloud Shell

  2. Crea una variable para el ID de tu proyecto.

    export PROJECT_ID=project-id
    
  3. Configura Google Cloud CLI para usar el proyecto en el que deseas crear Cloud TPU.

    gcloud config set project ${PROJECT_ID}
    

    La primera vez que ejecutes este comando en una VM de Cloud Shell nueva, se mostrará la página Authorize Cloud Shell. Haz clic en Authorize en la parte inferior de la página para permitir que gcloud realice llamadas a la API de Google Cloud con tus credenciales.

  4. Crea una cuenta de servicio para el proyecto de Cloud TPU.

    Las cuentas de servicio permiten que el servicio de Cloud TPU acceda a otros servicios de Google Cloud.

    gcloud beta services identity create --service tpu.googleapis.com --project $PROJECT_ID
    

    El comando muestra una cuenta de servicio de Cloud TPU con el siguiente formato:

    service-PROJECT_NUMBER@cloud-tpu.iam.gserviceaccount.com
    

  5. Si ya preparaste el conjunto de datos COCO y lo moviste a tu bucket de almacenamiento, puedes volver a usarlo para el entrenamiento de Pods. Si aún no preparaste el conjunto de datos de COCO, prepáralo ahora y regresa aquí para configurar el entrenamiento.

  6. Inicia un Pod de Cloud TPU

    En este instructivo, se especifica un Pod v3-32. Para ver otras opciones de pod, consulta las versiones de TPU.

    VM de TPU

    $ gcloud compute tpus tpu-vm create mask-rcnn-tutorial \
    --zone=europe-west4-a \
    --accelerator-type=v3-32 \
    --version=tpu-vm-tf-2.16.1-pod-pjrt
    

    Descripciones de las marcas de comandos

    zone
    La zona en la que planeas crear tu Cloud TPU.
    accelerator-type
    El tipo de acelerador especifica la versión y el tamaño de la Cloud TPU que quieres crear. Si quieres obtener más información sobre los tipos de aceleradores compatibles con cada versión de TPU, consulta Versiones de TPU.
    version
    La versión de software de Cloud TPU.

    Nodo TPU

    (vm)$ gcloud compute tpus execution-groups create \
    --zone=europe-west4-a \
    --name=mask-rcnn-tutorial \
    --accelerator-type=v3-32  \
    --tf-version=2.12.0
    

    Descripciones de las marcas de comandos

    zone
    La zona en la que planeas crear tu Cloud TPU.
    tpu-only
    Crea solo la Cloud TPU. De forma predeterminada, el comando gcloud compute tpus execution-groups crea una VM y una Cloud TPU.
    accelerator-type
    El tipo de Cloud TPU que se creará.
    tf-version
    La versión de gcloud de TensorFlow se instala en la VM.
  7. Si no accediste de forma automática a la instancia de Compute Engine, ejecuta el siguiente comando de ssh para acceder. Cuando accedas a la VM, el indicador de shell cambiará de username@projectname a username@vm-name:

    VM de TPU

    gcloud compute tpus tpu-vm ssh mask-rcnn-tutorial --zone=europe-west4-a
    

    Nodo TPU

    gcloud compute ssh mask-rcnn-tutorial --zone=europe-west4-a
    
  8. Instala los requisitos de TensorFlow.

    El comando que uses depende de si usas VM de TPU o nodos TPU.

    VM de TPU

    (vm)$ pip3 install -r /usr/share/tpu/models/official/requirements.txt 

    Nodo TPU

    (vm)$ pip3 install --user -r /usr/share/models/official/requirements.txt
    
  9. La secuencia de comandos de entrenamiento requiere un paquete adicional. Instálalo ahora:

    (vm)$ pip3 install --user tensorflow-model-optimization>=0.1.3
    
  10. Configura la variable de nombre de Cloud TPU.

    (vm)$ export TPU_NAME=mask-rcnn-tutorial
    
  11. Configura las variables de entorno siguientes y reemplaza bucket-name por el nombre del depósito de Cloud Storage:

    (vm)$ export STORAGE_BUCKET=gs://bucket-name
    
  12. Agrega algunas variables de entorno obligatorias adicionales:

    (vm)$ export RESNET_CHECKPOINT=gs://cloud-tpu-checkpoints/retinanet/resnet50-checkpoint-2018-02-07
    (vm)$ export DATA_DIR=${STORAGE_BUCKET}/coco
    (vm)$ export TRAIN_FILE_PATTERN=${DATA_DIR}/train-*
    (vm)$ export EVAL_FILE_PATTERN=${DATA_DIR}/val-*
    (vm)$ export VAL_JSON_FILE=${DATA_DIR}/instances_val2017.json
    (vm)$ export MODEL_DIR=${STORAGE_BUCKET}/mask-rcnn-pod
    
  13. Establece la variable de entorno PYTHONPATH:

    VM de TPU

    (vm)$ export PYTHONPATH="/usr/share/tpu/models:${PYTHONPATH}"
    (vm)$ export TPU_LOAD_LIBRARY=0
    

    Nodo TPU

    (vm)$ export PYTHONPATH="${PYTHONPATH}:/usr/share/models"
    
  14. Ve al directorio en el que se almacena el modelo:

    VM de TPU

    (vm)$ cd /usr/share/tpu/models/official/vision

    Nodo TPU

    (vm)$ cd /usr/share/models/official/legacy/detection
  15. Entrena el modelo:

    Con este procedimiento, se entrena el modelo en el conjunto de datos COCO durante 10 pasos de entrenamiento. Este entrenamiento tarda alrededor de 10 minutos en una Cloud TPU v3-32.

    VM de TPU

    (vm)$ python3 train.py \
    --tpu=${TPU_NAME} \
    --experiment=maskrcnn_resnetfpn_coco \
    --mode=train_and_eval \
    --config_file=configs/experiments/maskrcnn/r50fpn_640_coco_scratch_tpu4x4.yaml \
    --model_dir=${MODEL_DIR} \
    --params_override="task.train_data.input_path=${TRAIN_FILE_PATTERN},task.validation_data.input_path=${EVAL_FILE_PATTERN},task.annotation_file=${VAL_JSON_FILE},runtime.distribution_strategy=tpu,trainer.train_steps=10,trainer.validation_steps=10,task.train_data.global_batch_size=256,task.validation_data.global_batch_size=256" 

    Descripciones de las marcas de comandos

    tpu
    El nombre de tu TPU.
    model_dir
    Especifica el directorio en el que se almacenan los puntos de control y los resúmenes durante el entrenamiento de modelos. Si la carpeta no existe, el programa crea una. Cuando se usa una Cloud TPU, el model_dir debe ser una ruta de Cloud Storage (gs://...). Puedes reutilizar una carpeta existente para cargar datos de los puntos de control actuales y almacenar puntos de control adicionales siempre que los puntos de control anteriores se hayan creado mediante Cloud TPU del mismo tamaño y versión de TensorFlow.
    params_override
    Una string JSON que anula parámetros de secuencia de comandos predeterminados.

    Nodo TPU

    (vm)$ python3 main.py \
    --strategy_type=tpu \
    --tpu=${TPU_NAME} \
    --model_dir=${MODEL_DIR} \
    --mode=train \
    --model=mask_rcnn \
    --params_override="{train: { batch_size: 128, iterations_per_loop: 500, total_steps: 20, learning_rate: {'learning_rate_levels': [0.008, 0.0008], 'learning_rate_steps': [10000, 13000] }, checkpoint: { path: ${RESNET_CHECKPOINT}, prefix: resnet50/ }, train_file_pattern: ${TRAIN_FILE_PATTERN} }, eval: { val_json_file: ${VAL_JSON_FILE}, eval_file_pattern: ${EVAL_FILE_PATTERN}} }"

    Descripciones de las marcas de comandos

    tpu
    El nombre de tu TPU.
    model_dir
    Especifica el directorio en el que se almacenan los puntos de control y los resúmenes durante el entrenamiento de modelos. Si la carpeta no existe, el programa crea una. Cuando se usa una Cloud TPU, el model_dir debe ser una ruta de Cloud Storage (gs://...). Puedes reutilizar una carpeta existente para cargar datos de los puntos de control actuales y almacenar puntos de control adicionales siempre que los puntos de control anteriores se hayan creado mediante Cloud TPU del mismo tamaño y versión de TensorFlow.
    params_override
    Una string JSON que anula parámetros de secuencia de comandos predeterminados.

Cuando finalice el entrenamiento, aparecerá un mensaje similar al siguiente:

 I0706 19:47:16.108213 139955064548416 controller.py:457] train | step: 10 | steps/sec:    0.1 | output:
    {'frcnn_box_loss': 0.05632668,
     'frcnn_cls_loss': 1.3012192,
     'learning_rate': 0.008266499,
     'mask_loss': 1.2371812,
     'model_loss': 2.9746659,
     'rpn_box_loss': 0.08227444,
     'rpn_score_loss': 0.2976642,
     'total_loss': 4.493513,
     'training_loss': 4.493513}
train | step:     10 | steps/sec:    0.1 | output:
    {'frcnn_box_loss': 0.05632668,
     'frcnn_cls_loss': 1.3012192,
     'learning_rate': 0.008266499,
     'mask_loss': 1.2371812,
     'model_loss': 2.9746659,
     'rpn_box_loss': 0.08227444,
     'rpn_score_loss': 0.2976642,
     'total_loss': 4.493513,
     'training_loss': 4.493513}
 

Limpia

Para evitar que se apliquen cargos a tu cuenta de Google Cloud por los recursos usados en este instructivo, borra el proyecto que contiene los recursos o conserva el proyecto y borra los recursos individuales.

Después de ejecutar el entrenamiento, borra la VM de TPU y quita el bucket de almacenamiento.

  1. Desconéctate de la instancia de Compute Engine, si aún no lo hiciste:

    (vm)$ exit
    

    El mensaje ahora debería mostrar username@projectname, que indica que estás en Cloud Shell.

  2. Borra tus recursos de Cloud TPU y Compute Engine. El comando que uses para borrar tus recursos depende de si usas VM o nodos TPU. Para obtener más información, consulta Arquitectura del sistema.

    VM de TPU

    $ gcloud compute tpus tpu-vm delete mask-rcnn-tutorial \
    --zone=europe-west4-a
    

    Nodo TPU

    $ gcloud compute tpus execution-groups delete mask-rcnn-tutorial \
    --zone=europe-west4-a
    
  3. Ejecuta gcloud compute tpus execution-groups list para verificar que los recursos se hayan borrado. La eliminación puede tardar varios minutos. El resultado del siguiente comando no debe incluir ninguno de los recursos TPU creados en este instructivo:

    $ gcloud compute tpus execution-groups list --zone=europe-west4-a
    
  4. Ejecuta gsutil como se muestra y reemplaza bucket-name por el nombre del depósito de Cloud Storage que creaste para este instructivo:

    $ gsutil rm -r gs://bucket-name
    

¿Qué sigue?

Los instructivos de TensorFlow Cloud TPU suelen entrenar el modelo con un conjunto de datos de muestra. Los resultados de este entrenamiento no se pueden usar para inferencias. Si quieres usar un modelo para la inferencia, puedes entrenar los datos en tu propio conjunto de datos o en un conjunto de datos disponible públicamente. Por lo general, los modelos de TensorFlow entrenados con Cloud TPU requieren que los conjuntos de datos estén en formato TFRecord.

Puedes usar la muestra de la herramienta de conversión de conjuntos de datos para convertir un conjunto de datos de clasificación de imágenes al formato TFRecord. Si no usas un modelo de clasificación de imágenes, deberás convertir tu conjunto de datos al formato TFRecord. Para obtener más información, consulta TFRecord y tf.Example.

Ajuste de hiperparámetros

Para mejorar el rendimiento del modelo con tu conjunto de datos, puedes ajustar sus hiperparámetros. Puedes encontrar información sobre los hiperparámetros comunes de todos los modelos compatibles con TPU en GitHub. La información sobre los hiperparámetros específicos del modelo se puede encontrar en el código fuente de cada modelo. Para obtener más información sobre el ajuste de hiperparámetros, consulta Descripción general del ajuste de hiperparámetros y Ajusta hiperparámetros.

Inferencia

Una vez que hayas entrenado tu modelo, puedes usarlo para la inferencia (también llamada predicción). Puedes usar la herramienta de conversión de inferencias de Cloud TPU para preparar y optimizar un modelo de TensorFlow para la inferencia en Cloud TPU v5e. Para obtener más información sobre la inferencia en Cloud TPU v5e, consulta Introducción a la inferencia con Cloud TPU v5e.