Ejecuta el modelo de reconocimiento de voz automatizado (ASR)

En este instructivo, se muestra cómo entrenar el modelo de reconocimiento de voz automatizado (ASR) mediante el conjunto de datos de Librispeech ASR corpus disponible a nivel público con Tensor2Tensor en una Cloud TPU.

El modelo de reconocimiento de voz es solo uno de los modelos de la biblioteca Tensor2Tensor. Tensor2Tensor (T2T) es una biblioteca de modelos y conjuntos de datos de aprendizaje profundo, así como un conjunto de secuencias de comandos que te permiten entrenar los modelos y descargar y preparar los datos. Este modelo convierte la voz en texto.

Objetivos

  • Crear un depósito de Cloud Storage para almacenar el resultado de tu modelo y tu conjunto de datos
  • Descarga y prepara el conjunto de datos de la biblioteca Tensor2Tensor.
  • Ejecutar el trabajo de entrenamiento
  • Verificar los resultados de salida

Costos

En este instructivo, se usan componentes facturables de Google Cloud, que incluyen los siguientes:

  • Compute Engine
  • Cloud TPU
  • Cloud Storage

Usa la calculadora de precios para generar una estimación de los costos según el uso previsto. Los usuarios nuevos de Google Cloud pueden ser elegibles para obtener una prueba gratuita.

Antes de comenzar

Antes de comenzar este instructivo, verifica que tu proyecto de Google Cloud esté configurado correctamente.

  1. Accede a tu Cuenta de Google.

    Si todavía no tienes una cuenta, regístrate para obtener una nueva.

  2. En la página de selección de proyectos de Cloud Console, selecciona o crea un proyecto de Cloud.

    Ir a la página Selector de proyectos

  3. Asegúrate de que la facturación esté habilitada para tu proyecto de Google Cloud. Obtén información sobre cómo confirmar que tienes habilitada la facturación para tu proyecto.

  4. En esta explicación, se usan componentes facturables de Google Cloud. Consulta la página de precios de Cloud TPU para calcular los costos. Asegúrate de limpiar los recursos que crees cuando hayas terminado de usarlos para evitar cargos innecesarios.

Configura tus recursos

En esta sección, se proporciona información sobre cómo configurar el depósito de Cloud Storage, la VM y los recursos de Cloud TPU para instructivos.

  1. Abre una ventana de Cloud Shell.

    Abre Cloud Shell

  2. Crea una variable para el ID de tu proyecto.

    export PROJECT_ID=project-id
    
  3. Configura la herramienta de línea de comandos gcloud para usar el proyecto en el que deseas crear Cloud TPU.

    gcloud config set project ${PROJECT_ID}
    
  4. Crea un depósito de Cloud Storage con el siguiente comando:

    gsutil mb -p ${PROJECT_ID} -c standard -l europe-west4 -b on gs://bucket-name
    

    Este depósito de Cloud Storage almacena los datos que usas para entrenar tu modelo y los resultados del entrenamiento. La herramienta ctpu up que se usa en este instructivo configura los permisos predeterminados para la cuenta de servicio de Cloud TPU. Si quieres contar con permisos más detallados, revisa los permisos de nivel de acceso.

    La ubicación del depósito debe estar en la misma región que tu máquina virtual (VM) y tu nodo TPU. Las VM y los nodos TPU se encuentran en zonas específicas, que son subdivisiones dentro de una región.

  5. Para esto, inicia los recursos necesarios de Compute Engine y Cloud TPU con el comando ctpu up.

    ctpu up --zone=europe-west4-a \
     --vm-only \
     --disk-size-gb=300 \
     --machine-type=n1-standard-8 \
     --tf-version=1.15.3 \
     --name=auto-speech-recog-tutorial

    Para obtener más información sobre la utilidad de CTPU, consulta la Referencia de CTPU.

  6. Cuando se te solicite, presiona y a fin de crear tus recursos de Cloud TPU.

Cuando el comando ctpu up termine de ejecutarse, verifica que el indicador de shell haya cambiado de username@projectname a username@vm-name. Este cambio indica que accediste a tu VM de Compute Engine. Si no estás conectado a la instancia de Compute Engine, puedes hacerlo mediante la ejecución del comando siguiente:

gcloud compute ssh auto-speech-recog-tutorial --zone=europe-west4-a

A partir de este momento, el prefijo (vm)$ indica que debes ejecutar el comando en la instancia de VM de Compute Engine.

  1. Crea las siguientes variables de entorno para estos directorios:

    (vm)$ STORAGE_BUCKET=gs://bucket-name
    
    (vm)$ TPU_NAME=auto-speech-recog-tutorial
    (vm)$ DATA_DIR=$STORAGE_BUCKET/data/
    (vm)$ OUT_DIR=$STORAGE_BUCKET/output
    (vm)$ export TMP_DIR=~/tmp
    

Genera los conjuntos de datos de entrenamiento y evaluación

T2T empaqueta la generación de datos de manera práctica para muchos conjuntos de datos de código abierto comunes en la secuencia de comandos t2t-datagen. La secuencia de comandos descarga los datos, los procesa y los prepara para el entrenamiento.

En tu VM de Compute Engine

  1. Usa la secuencia de comandos t2t-datagen a fin de generar el conjunto de datos completo y la versión limpia más pequeña, que usarás para la evaluación.

    La importación de audio en t2t-datagen usa sox para generar formas de onda normalizadas. Instálalo en tu VM de Compute Engine y, luego, ejecuta los comandos t2t-datagen que siguen.

    (vm)$  sudo apt-get install sox
    (vm)$  t2t-datagen --problem=librispeech --data_dir=$DATA_DIR --tmp_dir=$TMP_DIR
    (vm)$  t2t-datagen --problem=librispeech_clean --data_dir=$DATA_DIR --tmp_dir=$TMP_DIR

El problema librispeech_train_full_test_clean se entrena en el conjunto de datos completo, pero se evalúa en el conjunto de datos limpio.

También puedes usar librispeech_clean_small, que es una versión más pequeña del conjunto de datos limpio.

Para ver los datos en Cloud Storage, ve a Google Cloud Console y selecciona Almacenamiento en el menú de la izquierda. Haz clic en el nombre del depósito que creaste para este instructivo.

Entrena el modelo

Para entrenar un modelo en Cloud TPU, ejecuta el entrenador con lotes grandes y secuencias truncadas.

(vm)$ t2t-trainer \
  --model=transformer \
  --hparams_set=transformer_librispeech_tpu \
  --problem=librispeech_train_full_test_clean \
  --train_steps=210000 \
  --eval_steps=3 \
  --local_eval_frequency=100 \
  --data_dir=$DATA_DIR \
  --output_dir=$OUT_DIR \
  --use_tpu \
  --cloud_tpu_name=$TPU_NAME

Después de realizar este paso, vuelve a ejecutar el entrenamiento para obtener más pasos con lotes más pequeños y secuencias completas: Este entrenamiento tarda unas 11 horas en un nodo de TPU v3-8.

(vm)$ t2t-trainer \
  --model=transformer \
  --hparams_set=transformer_librispeech_tpu \
  --hparams=max_length=295650,max_input_seq_length=3650,max_target_seq_length=650,batch_size=6 \
  --problem=librispeech_train_full_test_clean \
  --train_steps=230000 \
  --eval_steps=3 \
  --local_eval_frequency=100 \
  --data_dir=$DATA_DIR \
  --output_dir=$OUT_DIR \
  --use_tpu \
  --cloud_tpu_name=$TPU_NAME

Limpia

Sigue estos pasos para evitar que se apliquen cargos a tu cuenta de Google Cloud Platform por los recursos que usaste en este instructivo:

  1. Desconéctate de la instancia de Compute Engine, si aún no lo hiciste:

    (vm)$ exit
    

    El mensaje ahora debería mostrar username@projectname, que indica que estás en Cloud Shell.

  2. En Cloud Shell, ejecuta ctpu delete con la marca --zone que usaste cuando configuraste la Cloud TPU para borrar la VM de Compute Engine y la Cloud TPU:

    $ ctpu delete --zone=europe-west4-a \
      --name=auto-speech-recog-tutorial
    
  3. Ejecuta ctpu status para asegurarte de no tener instancias asignadas y así evitar cargos innecesarios por el uso de TPU. La eliminación puede tomar varios minutos. Una respuesta como la que se muestra a continuación indica que no hay más instancias asignadas:

    2018/04/28 16:16:23 WARNING: Setting zone to "europe-west4-a"
    No instances currently exist.
            Compute Engine VM:     --
            Cloud TPU:             --
    
  4. Ejecuta gsutil como se muestra y reemplaza bucket-name por el nombre del depósito de Cloud Storage que creaste para este instructivo:

    $ gsutil rm -r gs://bucket-name
    

¿Qué sigue?

En este instructivo, entrenaste el modelo de reconocimiento de voz automatizado con un conjunto de datos de muestra. Los resultados de este entrenamiento (en la mayoría de los casos) no se pueden usar para la inferencia. Para usar un modelo de inferencia, puedes entrenar los datos en un conjunto de datos disponible públicamente o en tu propio conjunto de datos. Los modelos entrenados en Cloud TPU requieren que los conjuntos de datos tengan el formato TFRecord.

Puedes usar la muestra de la herramienta de conversión de conjuntos de datos para convertir un conjunto de datos de clasificación de imágenes en formato TFRecord. Si no usas un modelo de clasificación de imágenes, deberás convertir tu conjunto de datos en formato TFRecord tú mismo. Para obtener más información, consulta TFRecord y tf.Example.

Ajuste de hiperparámetros

Para mejorar el rendimiento del modelo con tu conjunto de datos, puedes ajustar los hiperparámetros del modelo. Puedes encontrar información sobre hiperparámetros comunes a todos los modelos compatibles con TPU en GitHub. La información sobre los hiperparámetros específicos del modelo se puede encontrar en el código fuente para cada modelo. Para obtener más información sobre el ajuste de hiperparámetros, consulta Descripción general del ajuste de hiperparámetros, Usa el servicio de ajuste de hiperparámetros y Ajusta los hiperparámetros.

Inferencia

Una vez que entrenaste tu modelo, puedes usarlo para la inferencia (también llamada predicción). AI Platform es una solución basada en la nube que sirve para desarrollar, entrenar e implementar modelos de aprendizaje automático. Una vez que se implementa un modelo, puedes usar el servicio de AI Platform Prediction.