
Google Cloud

Optimizing, monitoring, and
troubleshooting VACUUM

operations in PostgreSQL
Amarnadh Sai Eluri
Software Engineer

June 20, 2020

https://moma.corp.google.com/person/amarnadh

Google Cloud 2

Introduction 3

Overview of MVCC 3

Overview of the VACUUM operation 5
Syntax 5
Reclaim space 7
Freeze transaction ID 7
The autovacuum process 8

Monitoring and tuning VACUUM operations 9
Memory 9
Freeze transaction IDS 10
Monitor transaction IDs 11

Query that identifies the database with the oldest transaction ID 13
Query that identifies tables that need the VACUUM operation 14

Reclaim storage space 15
Track operations on tables 16

Query that identifies logically insert, updated, and deleted rows per table 16
Query that identifies dead tuples 17

Throttle the autovacuum process 18
Query that identifies the default values of the VACUUM configuration options 18

Throttle at table level 19

Configuring automated Cloud Monitoring alerts 20
Create a log-based metric to track database warning messages 20
Create an alert policy using the log-based metric 21

Locking semantics 21

VACUUM operation on system catalogs 22

Reducing outage time 22

Reducing outage of instances with replicas 23

Enhancements in PostgreSQL-13 24

References 24

Appendix 25
Lock compatibility matrix 25
Warning messages 26
Database-level detailed consumed txid percentage 26

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 3.0
License, and code samples are licensed under the Apache 2.0 License. For details, see our Site Policies.
Oracle and Java are registered trademarks of Oracle and/or its affiliates.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.apache.org/licenses/LICENSE-2.0
https://cloud.google.com/site-policies

Google Cloud 3

Introduction
This document describes the fundamentals of the VACUUM operation in PostgreSQL databases.
It describes the mechanisms to monitor and tune the database engine that maintains the health
of database instances.

PostgreSQL uses a snapshot-based concurrency protocol that creates multiple versions of data
rows while modifying the data. These data row versions are used to read a visible version of the
data using a computed snapshot without acquiring read-lock on the data row. PostgreSQL
maintains transaction IDs (inserted and deleted transaction IDs) for every row of data and uses
the transaction IDs along with the computed snapshot to determine the visibility of the row. As
the data keeps growing due to old versions of data, the time taken to scan the data (table scan
or index scan) increases. To optimize the response time of the scan operation and to use space
efficiently, you need to reclaim the versions and the metadata (for example, transaction ID) that
is used to maintain the versions. Reclaiming the transaction ID, freezing transaction ID is
required to avoid reaching the maximum limit of the transaction ID space. Freezing the
transaction ID involves marking flags in the row header or changing the transaction ID to a
minimum value. This operation considers all data rows (active data rows and old versions of the
data row) and modifies the row header or transaction ID based on the threshold transaction ID,
frozenxid.

The VACUUM operation reclaims the deleted versions (garbage collection) and transaction IDs
(freeze transaction ID). The VACUUM operation operates on data in different modes with different
levels of data availability. Freezing transaction IDs is crucial to the health of the database
system because the system blocks writers whenever the used transaction ID space enters
reserved space. For an example, see What We Learned from the Recent Mandrill Outage. The
autovacuum jobs that you configure constantly try to reclaim the transaction ID, but they can
fail. This failure is either due to insufficient configuration or because the creation rate for
transaction IDs is so high that the autovacuum job cannot catch up with workload. The purpose
of this document is to show how to use the VACUUM operations along with the mechanisms to
tune and monitor different aspects of VACUUM operations.

Overview of MVCC
PostgreSQL implements snapshot-based concurrency control mechanisms by maintaining
multiple copies of the data rows. This mechanism is also called multiversion concurrency control
(MVCC). There is no uniform approach to maintaining the older version of the data rows and
each database management system (Oracle, SQL Server, and MySQL) implements the
mechanism differently to suit their requirements.

The PostgreSQL storage manager does not differentiate between multiple versions of the data

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 3.0
License, and code samples are licensed under the Apache 2.0 License. For details, see our Site Policies.
Oracle and Java are registered trademarks of Oracle and/or its affiliates.

https://www.postgresql.org/
https://mailchimp.com/what-we-learned-from-the-recent-mandrill-outage/
https://wikipedia.org/wiki/Multiversion_concurrency_control
https://wikipedia.org/wiki/Multiversion_concurrency_control
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.apache.org/licenses/LICENSE-2.0
https://cloud.google.com/site-policies

Google Cloud 4

rows. PostgreSQL stores all the data rows of the tables and the metadata that is used for
qualifying the data rows. This metadata includes the transaction IDs of the transactions that
created the data row and (if the row is updated or deleted) deleted the data row. Additional
header information is maintained to resolve the visibility of a row for a computed snapshot
(transactional or statement level snapshot). This mechanism forces UPDATE operations on data
rows to create new rows with modified columns by marking the existing data row as deleted. For
example, say there is a transaction with the ID of 100. If you update row X, the system marks
the row X deleted transaction ID with 100 and creates a new row X” with the inserted
transaction ID of 100. PostgreSQL maintains a forward pointer from the older version to the
newer version. In this example, the pointer is from X to X”.

Database engines that use optimistic concurrency control mechanisms create a snapshot at the
beginning of the transaction or statement. This snapshot includes information about the state of
transactions in the database engine, for example, the smallest transaction ID. If any transaction
ID is smaller than the smallest transaction ID, then the given transaction ID is either committed
or rolled back. A PostgreSQL snapshot contains the following information:

● The smallest transaction ID. Any transaction ID that is lower than this number is either
committed or rolled back.

● The largest transaction ID. Any transaction ID that is higher than this number is treated
like an uncommitted transaction.

● The list of open transactions. For example, the list of transaction IDs that are active at
the beginning of the statement or the transaction.

PostgreSQL uses the snapshot information, commit log information, and transaction IDs stored
in the data row to determine whether a given row is visible to the statement or the transaction.
To simplify the row visibility process, PostgreSQL caches the commit status of the transactions,
which is obtained from the commit log (CLOG) in the row header. The successive processes
that try to resolve the visibility of the row use this cache.

This transaction and snapshot system differentiates PostgreSQL from other MVCC
implementations due to the following reasons:

1. Transaction COMMIT and ROLLBACK are O(1) operations because they are setting bits in
the commit log (2-bit transaction status). This operation avoids the replay of log entries
to undo the rolled back transaction.

2. Reading older versions of a row does not involve the additional cost of constructing the
row by using the undo log segment. All the rows (both older and newer versions of the
row) are accessed by using regular heap access methods. This representation may lead
to more I/O while reading the data whenever there is a bloat in the page, such as when
there are many updated or deleted rows.

3. Truncating dead tuples or versions is not part of any regular data manipulation language
(DML) or read operation. One exception is an UPDATE operation that fails to find space

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 3.0
License, and code samples are licensed under the Apache 2.0 License. For details, see our Site Policies.
Oracle and Java are registered trademarks of Oracle and/or its affiliates.

https://en.wikipedia.org/wiki/Time_complexity#:~:text=An%20algorithm%20is%20said%20to,be%20performed%20to%20locate%20it.
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.apache.org/licenses/LICENSE-2.0
https://cloud.google.com/site-policies

Google Cloud 5

on the page. The operation tries to remove dead rows (like the VACUUM operation that
removes dead rows) to accommodate the new version of the row on the same page
before allocating a new page.

Overview of the VACUUM operation
The VACUUM operation reclaims the deleted or dead (deleted row which is not visible in the
database instance) versions and marks the inserted rows as visible rows (freeze inserted
transaction ID). It operates on table data in different modes with different levels of data
availability. The following sections highlight the critical operation of VACUUM operations along
with the usage of the command.

Syntax
The VACUUM operation is invoked by using the following VACUUM command:

VACUUM [(option [, ...])] [table_and_columns [, ...]]
VACUUM [FULL] [FREEZE] [VERBOSE] [ANALYZE] [table_and_columns
[, ...]]

option can be one of the following values:

FULL [boolean]
FREEZE [boolean]
VERBOSE [boolean]
ANALYZE [boolean]
DISABLE_PAGE_SKIPPING [boolean]
SKIP_LOCKED [boolean]
INDEX_CLEANUP [boolean]
TRUNCATE [boolean]

table_and_columns is in the following format:

table_name [(column_name [, ...])]

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 3.0
License, and code samples are licensed under the Apache 2.0 License. For details, see our Site Policies.
Oracle and Java are registered trademarks of Oracle and/or its affiliates.

https://www.postgresql.org/docs/12/sql-vacuum.html
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.apache.org/licenses/LICENSE-2.0
https://cloud.google.com/site-policies

Google Cloud 6

The VACUUM operation has different modes with different levels of locking. The locking
semantics are explained in a different section. If the VACUUM operation is performed in FULL
mode, most of the options are not applicable because it creates new pages for tables and
indexes. The following list provides an overview of the options for the VACUUM command:

● FULL:
○ This option does the following:

■ Copies live tuples to a new table to create new pages.
■ Recreates new indexes on newly created data pages.
■ Switches the storage, and swaps out the pg_class.relfilenode

catalog to point to the new storage.
○ This operation is similar to what the CLUSTER command does, except it does not

use any index. When it recreates new data and index layers, it requires twice the
size of the table and indexes. If there are replicas, this operation writes newly
created pages in WAL. The VACUUM FULL option can use twice the amount of
space (old copy, new copy, and page images in WAL records).

● FREEZE: This extension freezes transaction IDs and removes dead rows from indexes.
● ANALYZE: Updates the statistics of a table or column used by the query optimizer. This

command is independent, but can be run as part of the VACUUM operation for
convenience.

● DISABLE_PAGE_SKIPPING: The VACUUM operation skips processing for visible pages
(determined by using a visibility map associated with the table) because they might not
contain dead rows or unfrozen data. This option overrides this behavior and considers all
the pages.

● INDEX_CLEANUP: This flag is introduced in PostgreSQL 12, indexes are not cleaned as
part of the VACUUM operation. This command skips the cleanup of index entries when
the flag is set to FALSE.

● SKIP_LOCKED: The VACUUM operation processes each page by acquiring exclusive
locks on the page. If the page is busy, the VACUUM operation has to wait for the lock.
This option avoids considering busy pages.

The following example shows the VACUUM options:

vacuum (INDEX_CLEANUP OFF) new_orders;
vacuum (ANALYZE, SKIP_LOCKED OFF, INDEX_CLEANUP OFF) orders;
vacuum FULL history;
vacuum ANALYZE stock;

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 3.0
License, and code samples are licensed under the Apache 2.0 License. For details, see our Site Policies.
Oracle and Java are registered trademarks of Oracle and/or its affiliates.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.apache.org/licenses/LICENSE-2.0
https://cloud.google.com/site-policies

Google Cloud 7

Reclaim space
The VACUUM operation reclaims space that is associated with dead rows in the following
phases:

1. Prune Heap Only Tuple (HOT) chains: The DML UPDATE operations operate on
non-key columns, which result in the chaining of data rows. The VACUUM operation
removes the dead rows from the chain and points to the first valid version in the chain. If
all the rows in the chain are dead (for example, when all rows are deleted and no
process can see these rows in the system) then the entire chain is discarded.

2. Clear indexes: Remove the index entries associated with dead or deleted rows to clean
up index entries. This phase can reduce the height of the index by removing the entries
associated with dead rows.

3. Remove dead rows: Identify data rows that are dead and reclaim the space associated
with these data rows.

4. Defragment data pages: Rearrange the rows on blocks to maintain or keep contiguous
free space.

Freeze transaction ID
As previously mentioned, PostgreSQL uses transaction IDs in the data row to find the visibility
of the rows. Each transaction ID is a 32-bit value and PostgreSQL uses only 2 billion transaction
IDs for the entire database instance. A 32-bit transaction ID covers 4 billion transaction IDs, but
to support wraparound of the transaction ID, PostgreSQL uses 2 billion as the max space. For
more information, see PostgreSQL transaction ID.

Freezing transaction IDs involves updating the tuple header with respective flags (the inserted
transaction ID is frozen). Before PostgreSQL version 9.2, transaction ID (inserted transaction
ID) in the tuple is replaced as the minimum transaction ID (called the frozen transaction ID).

Database instances with high write-only workloads can consume the entire 2 billion transaction
ID space. Any further operations (such as transaction ID 2 billion + 1) can lead to wrong results
due to the signed comparison of transaction IDs. To avoid this problem, PostgreSQL blocks
writes after reaching an internally defined threshold value. The last 1 million transaction IDs are
reserved. When the system reaches the threshold value, new transaction IDs are allocated. This
process blocks all write operations, including user-instantiated VACUUM operations. This system
can be restored by executing the VACUUM operation in single-user mode. The VACUUM
operation in single-user mode uses aggressive mode and fixes the system by reclaiming the
transaction IDs whose changes are visible to all the processes in the system. The inserted rows
are visible and deleted rows are invisible. The space reclaimed from these transaction IDs is
used for more transactions. This process is called freezing transaction IDs. Freezing transaction
IDs is crucial to the health of the database system because the system blocks writers whenever

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 3.0
License, and code samples are licensed under the Apache 2.0 License. For details, see our Site Policies.
Oracle and Java are registered trademarks of Oracle and/or its affiliates.

http://www.interdb.jp/pg/pgsql07.html
http://www.interdb.jp/pg/pgsql05.html#_5.1.
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.apache.org/licenses/LICENSE-2.0
https://cloud.google.com/site-policies

Google Cloud 8

the used transaction ID space enters reserved space. For an example of the system blocking
writers, see What We Learned from the Recent Mandrill Outage.

The autovacuum process
To avoid blocking write transactions and to avoid bloating of the database space, pay attention
to freeze transaction IDs and to reclaim dead rows/tuples. These operations can be handled by
executing VACUUM commands on the candidate tables. For more information about identifying
candidate tables, see the monitoring and tuning section. These commands read all the pages
of the table and perform the required cleanup on the qualified pages. The amount of time spent
on a table depends on the size of the table and the number of dirty pages in the buffer cache
(shared_buffers). Running these operations frequently results in a significant consumption
of system resources, without processing any pages, potentially due to having no change in the
state of the table. However, running these operations less frequently increases the duration of
the command execution and might reduce throughput of the system.

The autovacuum process is an internal process that performs the VACUUM operation on the
tables based on the statistics maintained (per table or database) in the database system. This
process considers tables that need attention based on the autovacuum settings and performs
the required VACUUM operations. The autovacuum process cleans up multiple tables
concurrently by spawning autovacuum worker processes. PostgreSQL spawns, by default,
three autovacuum workers. You can modify this value based on the workload. If many tables
need to be processed, try increasing the worker process.

The PostgreSQL configuration parameter autovacuum_max_workers controls the maximum
number of worker processes associated with the autovacuum process. This configuration
option is a static option, meaning that the database instance needs to be restarted to get the
configured number of worker processes.

The following is an example of the autovacuum_max_worker parameter:

ALTER SYSTEM SET autovacuum_max_workers=8;

The autovacuum process executes all the operations supported by the general VACUUM
command, such as reclaiming dead rows, freezing the transaction ID, and refreshing table
statistics. autovacuum processes tables in one of the two following modes:

● Normal mode: A non-blocking operation that never blocks user operations on the table.
autovacuum terminates the execution of normal operation whenever it blocks a
user-initiated operation.

● Aggressive mode or uninterruptible anti-wraparound mode: A blocking operation that
runs to completion by blocking data definition language (DDL) operations.

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 3.0
License, and code samples are licensed under the Apache 2.0 License. For details, see our Site Policies.
Oracle and Java are registered trademarks of Oracle and/or its affiliates.

https://mailchimp.com/what-we-learned-from-the-recent-mandrill-outage/
https://www.postgresql.org/docs/12/runtime-config-autovacuum.html
https://www.postgresql.org/docs/12/runtime-config-autovacuum.html#GUC-autovacuum_max_workers
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.apache.org/licenses/LICENSE-2.0
https://cloud.google.com/site-policies

Google Cloud 9

Monitoring and tuning VACUUM operations
Most customers use default or suboptimal VACUUM or autovacuum configuration options that
are not reflective of their workloads. These default configuration values were defined years ago
based on the speed of hardware then. We recommend that you update the VACUUM
configuration options based on your current available hardware resources and the nature of the
workload to help you avoid performance or downtime issues.

There are many configuration options or database flags available for VACUUM and autovacuum
operations. The following sections describe some of the options that are crucial for maintaining
the health of the database instance.

Memory
The VACUUM or autovacuum operations process a table in batches; it collects a set of tuples or
blocks and processes them before moving on to the next set of tuples. The following operations
are performed for each batch of tuples:

1. Prune HOT chains, which coalesce the chain by removing dead rows from chained
tuples.

2. Remove dead rows—the data rows associated with rolled back transactions or
committed deleted rows with no visible snapshot on these rows.

3. Freeze rows to reuse the transaction IDs to enable the reusing of the transaction ID.
4. Remove index entries associated with dead or deleted rows by scanning the full index.
5. Rearrange the rows on blocks to maintain contiguous free space.

The amount of memory used by the VACUUM or autovacuum operation is defined by the
maintenance_work_mem and autovacuum_work_mem configuration parameters. The default
value for these options is 64 MB. For example, consider a TPCC table orders that contain 10
billion rows with two indexes and 10% of the data is updated (leaving 1 billion dead rows). The
VACUUM operation creates batches of tuples by storing 8 bytes (assuming that page and row
number occupies 8 bytes for calculation purposes) of information; 64 MB can accommodate
eight million entries. To apply the VACUUM operation, the orders table needs at least nine
iterations. This iteration results in nine full index scans (index is on 10 billion rows), which
consumes a significant amount of memory and CPU. In addition, it also increases the time to
complete the VACUUM operation.

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 3.0
License, and code samples are licensed under the Apache 2.0 License. For details, see our Site Policies.
Oracle and Java are registered trademarks of Oracle and/or its affiliates.

https://www.postgresql.org/docs/12/runtime-config-resource.html#RUNTIME-CONFIG-RESOURCE-VACUUM-COST
https://www.postgresql.org/docs/12/runtime-config-autovacuum.html
http://www.interdb.jp/pg/pgsql07.html
https://www.postgresql.org/docs/12/runtime-config-resource.html#GUC-MAINTENANCE-WORK-MEM
https://www.postgresql.org/docs/12/runtime-config-resource.html#GUC-AUTOVACUUM-WORK-MEM
http://www.tpc.org/tpcc/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.apache.org/licenses/LICENSE-2.0
https://cloud.google.com/site-policies

Google Cloud 10

To avoid these problems, you are required to configure memory-related options based on the
following:

● Instance size
● Number of indexes on the table (especially large indexes that don’t fit in memory)
● Nature of the workload.

For the autovacuum process, these options are used in each autovacuum worker process.
Each process uses configured memory.

Note: These configuration options are not dynamic configuration parameters, so the
configuration needs to be reloaded.

The following is an example of the maintenance_work_mem option:

tpcc# SHOW maintenance_work_mem;
maintenance_work_mem

16GB
(1 row)

tpcc# ALTER SYSTEM SET maintenance_work_mem = "24GB";

tpcc# SELECT pg_reload_conf();
pg_reload_conf

t
(1 row)

tpcc# SHOW maintenance_work_mem;
maintenance_work_mem

24GB
(1 row)

Note: The ALTER SYSTEM command might not be available for Cloud SQL. Use Cloud SQL
database flags to modify the configuration option.

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 3.0
License, and code samples are licensed under the Apache 2.0 License. For details, see our Site Policies.
Oracle and Java are registered trademarks of Oracle and/or its affiliates.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.apache.org/licenses/LICENSE-2.0
https://cloud.google.com/site-policies

Google Cloud 11

Freeze transaction IDS
Modern storage devices are cheaper than older storage devices. The increased storage space
can cause performance problems, but does not cause outages for the database system.
Reclaiming the transaction ID or freezing the transaction ID is the most crucial operation of the
VACUUM operation. PostgreSQL blocks all write transactions whenever the transaction ID
reaches the reserved space. PostgreSQL writes warning messages while using the last 10
million transaction IDs. When the message occurs, you must schedule the VACUUM operation or
else the database system might become unusable due to a transaction ID wraparound problem.

If the autovacuum or VACUUM configuration options are not adapted to the workload, then the
VACUUM or autovacuum operations might not be able to freeze IDs. The rate of write
transactions is too high. The following configuration settings increase the frequency of VACUUM
operations in that they repeat autovacuum operations on the table so that they can catch up to
the write transaction rate. Frequent VACUUM operations can lead to more WAL records because
the VACUUM operation writes WAL records for all the changes in data or index pages, which
contend with runtime activity. Modify the following configuration settings based on the expected
WAL data:

● vacuum_freeze_table_age: Specifies the threshold limit for triggering the aggressive
VACUUM operation. It considers all the pages of a table (not simply pages containing
dead tuples). A higher value for this option can increase the duration of the VACUUM
operation and can lead to transaction wraparound problems. To process the table
frequently, configure this instance-level value, based on the number of connections and
number of CPUs available in the system.

● vacuum_freeze_min_age: Specifies the threshold transaction ID to consider for
freezing the transaction ID during regular VACUUM operations. If the
pg_class.relfrozentxid table is smaller than this value, the VACUUM operation is
not performed on this table. If there is enough CPU power and the workload generates
too many writes compared to the reads, then setting this value to zero freezes tuples as
quickly as possible.

● autovacuum_freeze_max_age: Specifies the transaction ID threshold value for the
pg_class.relfrozenxid table which triggers an aggressive VACUUM operation. This
option is the same as the vacuum_freeze_table_age option, but the autovacuum
process uses this configuration option. This option can be set at the table level and
provides the flexibility to treat hot tables (frequent write operations) differently from warm
or cold tables.

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 3.0
License, and code samples are licensed under the Apache 2.0 License. For details, see our Site Policies.
Oracle and Java are registered trademarks of Oracle and/or its affiliates.

https://www.postgresql.org/docs/12/sql-vacuum.html
https://www.postgresql.org/docs/12/runtime-config-client.html#GUC-VACUUM-FREEZE-TABLE-AGE
https://www.postgresql.org/docs/12/runtime-config-client.html#GUC-VACUUM-FREEZE-MIN-AGE
https://www.postgresql.org/docs/12/runtime-config-autovacuum.html#GUC-AUTOVACUUM-FREEZE-MAX-AGE
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.apache.org/licenses/LICENSE-2.0
https://cloud.google.com/site-policies

Google Cloud 12

The following is an example of the VACUUM and autovacuum configuration settings:

ALTER SYSTEM SET vacuum_freeze_table_age=10000000;
ALTER SYSTEM SET vacuum_freeze_min_age=0;

As previously mentioned, some of these options can be at table level.

ALTER TABLE orders SET (autovacuum_freeze_max_age=10000000);

Note: The ALTER SYSTEM command might not be available for Cloud SQL. Use Cloud SQL
database flags to modify the configuration option.

Monitor transaction IDs
Optimizing the database options that are suitable for the hardware resources of the system with
changing workload is a challenging and continuous process. To find the optimal values for the
database configurations, you need to constantly monitor the system and adjust the options
based on the monitored results.

The transaction ID space is shared by all the databases in the system (cluster or running
database server). You need to find the appropriate tables in any database that holds reclaimed
transaction IDs. The transaction ID space is reused only after ensuring that no table in the
database system contains footprints of the transaction ID.

PostgreSQL maintains a frozen transaction ID for every table. All rows in the table that contain a
transaction ID smaller or equal to the frozen ID are visible or invisible to all processes in the
system. Visible rows are inserted and committed data rows, while invisible rows are dead tuples
that were removed. This transaction ID is updated at the end of a successful VACUUM operation.
Frozen transaction IDs, along with current transaction ID information, determine the age of the
table. These table-level frozen transaction IDs can compute the database or database
instance-level frozen transaction ID. These values are helpful in determining the correct
database and tables that can move forward in the transaction ID space.

The reclaiming of transaction IDs depends on the age of the pg_class.relfrozentxid of
the tables. If there is any concern about the tables selected by the autovacuum process, use
the following queries to find the tables that can move the transaction ID values.

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 3.0
License, and code samples are licensed under the Apache 2.0 License. For details, see our Site Policies.
Oracle and Java are registered trademarks of Oracle and/or its affiliates.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.apache.org/licenses/LICENSE-2.0
https://cloud.google.com/site-policies

Google Cloud 13

The following query reports the database system level usage of transaction ID space:

WITH max_age AS (
SELECT 2000000000 as max_old_txid

, setting AS autovacuum_freeze_max_age
FROM pg_catalog.pg_settings
WHERE name = 'autovacuum_freeze_max_age')

, per_database_stats AS (
SELECT datname

, m.max_old_txid::int
, m.autovacuum_freeze_max_age::int
, age(d.datfrozenxid) AS oldest_current_txid

FROM pg_catalog.pg_database d
JOIN max_age m ON (true)
WHERE d.datallowconn)

SELECT max(oldest_current_txid) AS oldest_current_txid
, max(ROUND(100*(oldest_current_txid/max_old_txid::float))) AS

consumed_txid_pct
, max(ROUND(100*(oldest_current_txid/autovacuum_freeze_max_age::float)))

AS consumed_autovac_max_age
FROM per_database_stats;

For example, consider the output of the consumed_autovac_max_age query on a high
memory instance hosting the TPCC database:

oldest_current_txid | consumed_txid_pct | consumed_autovac_max_age
---------------------+-------------------+--------------------------

208329838 | 10 | 104
(1 row)

These results are taken after running the benchmark for 30 minutes with 1024 TPCC clients and
contain the following information:

● oldest_current_txid is the oldest transaction ID in all databases.
● consumed_txid_pct represents the percentage of transaction ID space used out of

the two billion transaction ID spaces. A larger value means that the database system
might get into transaction wraparound problems. We recommend keeping the value
below 85% to keep the database operational and avoid outages in the database system.

● consumed_autovac_max_age represents the percentage of consumed transaction ID
space that triggers the aggressive VACUUM operations. This percentage is based on the
autovacuum_freeze_max_age. If the value is more than 100, it triggers an
aggressive VACUUM operation based on the age of the oldest frozen transaction ID.

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 3.0
License, and code samples are licensed under the Apache 2.0 License. For details, see our Site Policies.
Oracle and Java are registered trademarks of Oracle and/or its affiliates.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.apache.org/licenses/LICENSE-2.0
https://cloud.google.com/site-policies

Google Cloud 14

Query that identifies the database with the oldest transaction ID
If the previous query reports that consumed_txid_pct is too high, the next step is to identify
the database that contains the oldest transaction ID. The following query reports information
similar to the preceding query but breaks it down at the database level:

SELECT datname, age(datfrozenxid) AS frozen_xid_age
, ROUND(100*(age(datfrozenxid)/2000000000.0::float))

consumed_txid_pct
, current_setting('autovacuum_freeze_max_age')::int
- age(datfrozenxid) AS remaining_aggressive_vacuum

FROM pg_database;

For example, consider the output of the preceding database-level query on a sample TPCC
database:

datname | frozen_xid_age | consumed_txid_pct | remaining_aggressive_vacuum
---------------+----------------+-------------------+-----------------------------
cloudsqladmin | 50200078 | 3 | 149799922
template0 | 200078 | 0 | 199799922
postgres | 50202602 | 3 | 149797398
template1 | 200078 | 0 | 199799922
tpcc | 209401713 | 9 | -9401713
(5 rows)

These results contain the following information:
● datname contains the name of the database.
● frozen_xid_age represents the age of the database-level frozen transaction ID. A

higher value (for example, greater than autovacuum_freeze_max_age) means that
the database needs attention.

● consumed_txid_pct represents the percentage of the transaction ID against the
maximum transaction ID limit (2 billion transaction IDs) for the database.

● remaining_aggressive_vacuum represents the available transaction ID space
before it reaches the aggressive VACUUM mode—how close the database is to the
autovacuum_freeze_max_age value. A negative value means that there are some
tables in the database that trigger an aggressive VACUUM operation due to the age of
pg_class.relfrozentxid.

After you identify the target database, you identify the tables within the database that are
candidates for the VACUUM operation. The following query reports the top 50 tables that need a
VACUUM operation performed on them. To maintain the health of the database system, we
recommend scheduling a VACUUM operation on the reported table without impacting I/O, CPU,
or WAL. You can perform a VACUUM operation on a batch of tables instead of scheduling a
VACUUM operation on all the tables at once.

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 3.0
License, and code samples are licensed under the Apache 2.0 License. For details, see our Site Policies.
Oracle and Java are registered trademarks of Oracle and/or its affiliates.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.apache.org/licenses/LICENSE-2.0
https://cloud.google.com/site-policies

Google Cloud 15

Query that identifies tables that need the VACUUM operation
The following example identifies the top 50 tables that need the VACUUM operation performed on
them:

SELECT c.oid::regclass
, age(c.relfrozenxid)
, pg_size_pretty(pg_total_relation_size(c.oid))

FROM pg_class c
JOIN pg_namespace n on c.relnamespace = n.oid
WHERE relkind IN ('r', 't', 'm')
AND n.nspname NOT IN ('pg_toast')
ORDER BY 2 DESC LIMIT 50;

The output is similar to the following:

oid | age | pg_size_pretty
-------------------------+-----------+----------------
history | 210000101 | 12 GB
stock | 210000101 | 37 GB
customer | 210000101 | 20 GB
order_line | 210000101 | 176 GB
pg_statistic | 128239305 | 736 kB
district | 123162457 | 51 MB
new_order | 112077299 | 2938 MB
warehouse | 109644862 | 20 MB
pg_type | 90215950 | 192 kB
...

Even after providing a better monitoring infrastructure, the current workload can potentially
block the VACUUM operation such that the VACUUM operation is unable to reclaim space or
freeze transaction IDs. The VACUUM operation can be blocked by the following:

● Long running transactions or snapshots. Identify these transactions and terminate them
to unblock the VACUUM operation.

● Abandoned replication slots. Drop the abandoned slots.
● Orphaned prepare transaction. Roll back orphaned prepared transactions.
● Long running snapshots or transactions at a standby replica created with

hot_standby_feedback. Identify the long running session or transactions on replica
and terminate the blocking sessions.

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 3.0
License, and code samples are licensed under the Apache 2.0 License. For details, see our Site Policies.
Oracle and Java are registered trademarks of Oracle and/or its affiliates.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.apache.org/licenses/LICENSE-2.0
https://cloud.google.com/site-policies

Google Cloud 16

The following query retrieves the oldest value for each of the VACUUM operation blockers:

SELECT
(SELECT max(age(backend_xmin)) FROM pg_stat_activity) as
oldest_running_xact,
(SELECT max(age(transaction)) FROM pg_prepared_xacts) as
oldest_prepared_xact,
(SELECT max(age(xmin)) FROM pg_replication_slots) as
oldest_replication_slot
(SELECT max(age(backend_xmin)) FROM pg_stat_replication) as
oldest_replica_xact
;

Ideally, the autovacuum process picks up and processes the appropriate tables after resolving
the blocking operations. But it can be useful to identify the tables or databases that have the
oldest transaction ID and run the appropriate VACUUM commands on the tables.

Reclaim storage space
Even though increasing the space associated with tables and databases is not leading to
outages, it can impact the performance of queries. The efficiency of indexes depends on the
clusteredness of the data. If there are a significant number of dead tuples, then the index
records that point to dead rows consume space and impact the cost of index scans. We
recommend that you read as few pages as possible to process queries. Otherwise, the query
response time is impacted by I/O latency and can require more I/O than expected. At the same
time, having more data pages or blocks can lead to performing the wrong query plans, which
might not meet response time requirements.

As explained in the overview section, dead rows are the result of deleted or updated rows. The
following are some of the database options that control VACUUM operations based on the
number of rows and the number of dead tuples in the table:

● autovacuum vacuum_threshold: This value represents the minimum number of
dead tuples required before considering a table for a VACUUM operation. The default
value is 50 tuples. If any table has fewer than 50 dead tuples, the autovacuum process
does not perform a VACUUM operation on the table.

● autovacuum_vacuum_scale_factor: This value represents the fraction of table size
added to autovacuum_vacuum_threshold to qualify for the VACUUM operation. The
default value for the option is 0.2 or 20% of the table size.

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 3.0
License, and code samples are licensed under the Apache 2.0 License. For details, see our Site Policies.
Oracle and Java are registered trademarks of Oracle and/or its affiliates.

https://www.postgresql.org/docs/12/runtime-config-autovacuum.html#GUC-AUTOVACUUM-VACUUM-THRESHOLD
https://www.postgresql.org/docs/12/runtime-config-autovacuum.html#GUC-AUTOVACUUM-VACUUM-SCALE-FACTOR
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.apache.org/licenses/LICENSE-2.0
https://cloud.google.com/site-policies

Google Cloud 17

The preceding two options are used by the autovacuum process to qualify a table for a
VACUUM operation. The following formula is used by the autovacuum process to qualify the
table for a VACUUM operation:

#of dead tuples in a table (pg_stat_all_tables.n_dead_tup) >
(autovacuum_vacuum_threshold + pg_class.reltuples *
autovacuum_vacuum_scale_factor)

Track operations on tables
Because workload changes are based on constantly changing requirements, you need to keep
refining the configuration options. To refine the configuration options, you need to track the
number of dead tuples produced in the system.

The following query reports the number of logically inserted, updated, and deleted rows for each
table in a connected database. These values do not represent reclaimable space because there
might be sessions for which the deleted or updated rows are still visible because of MVCC.

Query that identifies logically insert, updated, and deleted rows per table
The following is an example of a query for logically inserted, updated, and deleted rows per
database table:

SELECT relname, n_tup_ins, n_tup_upd, n_tup_del
FROM pg_stat_all_tables
ORDER BY n_dead_tup DESC LIMIT 20;

The output is similar to the following:

relname | n_tup_ins | n_tup_upd | n_tup_del
-------------------------+-----------+-----------+-----------
order_line | 556742761 | 403246159 | 0
new_order | 44921508 | 0 | 40196757
stock | 51200000 | 402743889 | 0
customer | 15360000 | 78188896 | 0
orders | 55678256 | 40325550 | 0
district | 5120 | 80649354 | 0
warehouse | 512 | 40329213 | 0
pg_statistic | 92 | 4942 | 0
pg_toast_2619 | 3931 | 0 | 3856

...

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 3.0
License, and code samples are licensed under the Apache 2.0 License. For details, see our Site Policies.
Oracle and Java are registered trademarks of Oracle and/or its affiliates.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.apache.org/licenses/LICENSE-2.0
https://cloud.google.com/site-policies

Google Cloud 18

Query that identifies dead tuples
To reclaim the space, you need to find the exact number of dead tuples. The following is an
example query to find dead tuples:

SELECT relname, n_live_tup, n_dead_tup, n_tup_hot_upd
FROM pg_stat_all_tables
ORDER BY n_dead_tup DESC LIMIT 20;

The output is similar to the following:

relname | n_live_tup | n_dead_tup | n_tup_hot_upd
-------------------------+------------+------------+---------------
order_line | 559111721 | 92094372 | 404036839
new_order | 4725336 | 4200727 | 0
stock | 51199928 | 3903734 | 403591655
customer | 15362085 | 568888 | 78353381
orders | 55928160 | 399769 | 40411453
district | 5120 | 1633 | 80749601
warehouse | 512 | 193 | 40341263
pg_statistic | 514 | 99 | 4415
pg_toast_2619 | 88 | 59 | 0
pg_amproc | 447 | 0 | 0

...

The output contains the following information:
● N_live_tup: The number of live tuples.
● N_dead_tup: The number of dead tuples. If there are more dead tuples than live tuples,

reclaiming space should be evaluated.
● N_tup_hot_upd: The number of HOT updated tuples. This value represents the

non-index key updates—no index column is modified by this update. Tuples are chained
and old tuples eventually are deleted by the VACUUM operation.

Throttle the autovacuum process
The VACUUM operation is a maintenance operation and it should not impact the runtime
performance of the application. This operation consists of reading pages, verifying whether the
page contains any tuples that need to be reclaimed or frozen, processing the qualified rows, and
marking the page as dirty. This operation also requires writing WAL records associated with the
operations. This entire process consumes system resources (like CPU, memory, and I/O) and
changes the state of the database system buffer cache. If the VACUUM operation is triggered
(automatically or manually) without knowledge of the current workload, then it impacts the
application throughput.

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 3.0
License, and code samples are licensed under the Apache 2.0 License. For details, see our Site Policies.
Oracle and Java are registered trademarks of Oracle and/or its affiliates.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.apache.org/licenses/LICENSE-2.0
https://cloud.google.com/site-policies

Google Cloud 19

You can delay manual VACUUM commands based on the workload, but controlling the
autovacuum process needs special attention. Throttling is a feature that controls the
operations of the autovacuum operation. Throttling is a cost-based mechanism and takes the
following configuration options into consideration:

● vacuum_cost_page_hit: Estimated cost of the VACUUM operation if a page is found in
the PostgreSQL shared_buffers cache.

● vacuum_cost_page_miss: Estimated cost of the VACUUM operation if a page is not
found in the shared buffer cache, if the page needs to be read from disk or a file system
buffer cache.

● vacuum_cost_page_dirty: Estimated cost of the VACUUM operation if it modifies a
clean page and removes either dead tuples or frozen transaction IDs on the page.

● vacuum_cost_limit: The cost of the VACUUM operation when it processes in batches.
When the VACUUM operation reaches the limit, the VACUUM process goes into a sleep
state.

● vacuum_cost_delay: The amount of time that a VACUUM process sleeps after
reaching vacuum_cost_limit.

Query that identifies the default values of the VACUUM configuration options
The following query shows the default values of the VACUUM configuration options:

SELECT name, setting
FROM pg_settings WHERE name LIKE 'vacuum_cost%';

The output is the following:

name | setting
------------------------+---------
vacuum_cost_delay | 0
vacuum_cost_limit | 200
vacuum_cost_page_dirty | 20
vacuum_cost_page_hit | 1
vacuum_cost_page_miss | 10
(5 rows)

The default cost limit of the VACUUM operation is 200 and it never sleeps because the value of
vacuum_cost_delay is 0).

The autovacuum process has its variants of the same configuration options as
autovacuum_vacuum_cost_limit (default 20 milliseconds, -1 uses vacuum_cost_limit).
The autovacuum process can spawn multiple worker processes to handle different tables. In
that case, the autovacuum_vacuum_cost_limit is distributed over all the autovacuum

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 3.0
License, and code samples are licensed under the Apache 2.0 License. For details, see our Site Policies.
Oracle and Java are registered trademarks of Oracle and/or its affiliates.

https://www.postgresql.org/docs/12/runtime-config-resource.html#GUC-VACUUM-COST-PAGE-HIT
https://www.postgresql.org/docs/12/runtime-config-resource.html#GUC-VACUUM-COST-PAGE-MISS
https://www.postgresql.org/docs/12/runtime-config-resource.html#GUC-VACUUM-COST-PAGE-DIRTY
https://www.postgresql.org/docs/12/runtime-config-resource.html#GUC-VACUUM-COST-LIMIT
https://www.postgresql.org/docs/12/runtime-config-resource.html#GUC-VACUUM-COST-DELAY
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.apache.org/licenses/LICENSE-2.0
https://cloud.google.com/site-policies

Google Cloud 20

worker processes so that each worker process gets a vacuum_cost_limit or
autovacuum_max_workers) value.

These default values do not reflect the state of the current hardware resources. For example,
the VACUUM operation performs 100 iterations per second with the default
vacuum_cost_limit of 200 per iteration meaning 20000 per second. This iteration covers the
following:

● 20000 * 8 KB block size = 160 Mbps reads from the buffer cache. If the
shared_buffers are in GB, all the active pages can be in the cache
(vacuum_cost_page_hit = 1)

● 16 Mbps reads from the disk or file system cache (vacuum_cost_page_miss = 10)
● 8 Mbps writes, assuming all pages are clean and processed by the VACUUM operation

(vacuum_cost_page_dirty = 20)

Most of the database systems use gigabytes of shared_buffers with advanced I/O devices.
We recommend modifying the configuration options based on the hardware and system
configuration to avoid multiple smaller VACUUM operation iterations into one large operation,
which reduces the burden on the WAL subsystem.

Most current database instances can generate more than 160 MB of dirty pages and it is
possible that a VACUUM operation needs to read the pages from disk to process them. To keep
table data always clean, the VACUUM operation needs to catch up with the rate of generation of
new data.

Throttle at table level

The VACUUM operation can’t differentiate between hot tables, warm tables, or cold tables. A hot
table is a table that has more write operations that need to be handled differently than other
tables. For example, it might need more time for each iteration of the VACUUM operation
compared to other tables. The following autovacuum configuration options can be applied to
the system level and the table level:

● autovacuum_vacuum_cost_limit: Similar to vacuum_cost_limit, but used by
the autovacuum process. The default is -1—the vacuum_cost_limit value.

● autovacuum_vacuum_cost_delay: Similar to vacuum_cost_delay, but used by
the autovacuum process. The default is -1—the vacuum_cost_delay value.

To modify these configuration options, you can use the ALTER TABLE command.

The following example modifies the values for the orders table:

ALTER TABLE orders SET (autovacuum_vacuum_cost_delay=10);
ALTER TABLE orders SET (autovacuum_vacuum_cost_limit=10000);

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 3.0
License, and code samples are licensed under the Apache 2.0 License. For details, see our Site Policies.
Oracle and Java are registered trademarks of Oracle and/or its affiliates.

https://www.postgresql.org/docs/12/runtime-config-autovacuum.html#GUC-AUTOVACUUM-VACUUM-COST-LIMIT
https://www.postgresql.org/docs/12/runtime-config-autovacuum.html#GUC-AUTOVACUUM-VACUUM-COST-DELAY
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.apache.org/licenses/LICENSE-2.0
https://cloud.google.com/site-policies

Google Cloud 21

Configuring automated Cloud Monitoring alerts
PostgreSQL generates a warning log message like "database X must be vacuumed
within N transactions", whenever the transaction ID reaches the warning limit. The
default is the last 10 million transaction IDs of 2 billion transaction IDs. To identify potential
wraparound problems, you can create a log-based metric to count log messages, and you can
set up automated Cloud Monitoring alerts to identify impending problems based on error
messages.

Create a log-based metric to track database warning messages
The following step creates a logs-based counter metric in the Cloud Console to track the
database warning log messages regarding transaction wraparound:

1. In the Google Cloud Console, go to the Logs-based metrics page.

Go to Logs-based metrics

2. Click Create Metric.
3. In the Filter by label or text search field, click the drop-down arrow and select Convert

to advanced filter.
4. Enter the following query: resource.type="cloudsql_database"

textPayload=~"database.*must be vacuumed within.*transactions"
Cloud Monitoring uses regular expressions to match the database messages that
contain warnings. For more information, see using regular expressions in advanced
queries.

5. Click Submit Filter.
6. In the Metric Editor panel, set the following fields:

○ Name: Choose a name that is unique among the logs-based metrics in your
project. For information about naming restrictions, see Troubleshooting.

○ Description: Enter a description for the metric.
○ Labels: (Optional) Add labels by clicking Add Item for each label. For details

about defining labels, see Logs-based metric labels.
○ Type: Counter.

7. Click Create Metric.

The new metric appears in the Logs Viewer's list of metrics. Data is available in less than a
minute. For more information, see creating counter metrics.

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 3.0
License, and code samples are licensed under the Apache 2.0 License. For details, see our Site Policies.
Oracle and Java are registered trademarks of Oracle and/or its affiliates.

https://cloud.google.com/logging/docs/logs-based-metrics
https://cloud.google.com/monitoring/alerts
https://console.cloud.google.com/logs/metrics
https://cloud.google.com/logging/docs/view/logging-query-language#regular-expressions
https://cloud.google.com/logging/docs/view/logging-query-language#regular-expressions
https://cloud.google.com/logging/docs/logs-based-metrics/troubleshooting#metric-name-restrictions
https://cloud.google.com/logging/docs/logs-based-metrics/labels
https://cloud.google.com/logging/docs/logs-based-metrics/counter-metrics
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.apache.org/licenses/LICENSE-2.0
https://cloud.google.com/site-policies

Google Cloud 22

Create an alert policy using the log-based metric
1. In the Cloud Console, go to the Logs-based metrics page.

Go to Logs-based metrics

2. In the User-defined metrics section, find the metric that you created. Click More, and
select Create alert from metric.

3. In the Target dialog, do the following:
○ Set the Aggregator value to none.
○ Click Show Advanced Options and set the Aligner value to mean.
○ For Condition name, enter logging/user/cloudsql-pg-vacuum-txn-id.

4. In the Configuration dialog, do the following:
○ Set Condition triggers if to Any time series violates.
○ Set Condition to is above.
○ Set Threshold to 0.
○ Set For to Most Recent.

5. Click Save.

For more information on alerting policies, see creating an alerting policy on a counter metric.

Locking semantics
The VACUUM operation uses different levels of locking semantics based on the option used by
you or determined by the configuration option. The aggressive VACUUM operation is performed
based on the autovacuum_freeze_max_age value. The following lists the locking behavior
used by the VACUUM operation:

● The VACUUM FULL operation creates an entirely new data and index layer using an
AccessExclusive lock on the table. No other process is able to access the table while
the VACUUM FULL operation is being processed.

● Another variation of the VACUUM Full operation is the CLUSTER command. Like the
VACUUM FULL operation, the CLUSTER option also creates new data and index pages
with the difference that the data is ordered based on the given index key.

● Other variations of the VACUUM operation acquire the SharedUpdateExclusive lock
on the table. This lock restricts DDL and other VACUUM operations on the table, but
allows all the regular operations. To operate on a consistent copy of the data, the
VACUUM operation acquires the cleanup_lock for each page. This cleanup_lock is
an exclusive lock on the page, so no operations are allowed on the page until it is
completed on that page.

● If the VACUUM operation is cleaning the table using the SharedUpdateExclusive lock,
then DDL operations are not allowed on the table. This can lead to blocking data

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 3.0
License, and code samples are licensed under the Apache 2.0 License. For details, see our Site Policies.
Oracle and Java are registered trademarks of Oracle and/or its affiliates.

https://console.cloud.google.com/logs/metrics
https://cloud.google.com/logging/docs/logs-based-metrics/charts-and-alerts#alert-on-lbm
https://www.postgresql.org/docs/12/sql-cluster.html
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.apache.org/licenses/LICENSE-2.0
https://cloud.google.com/site-policies

Google Cloud 23

manipulation language (DML) operations whenever there is a pending DDL request. The
backend that is requesting the DDL lock waits on the VACUUM operation, and any DML
after this DDL request has to wait behind the DDL lock request. This process results in a
total halt of the system on a table which is actively being processed by the VACUUM
operation.

● Locking semantics for both VACUUM and autovacuum operations are the same except
that the autovacuum process unblocks any pending operations on the table by
canceling the operation that blocks the user operation. If the autovacuum process is
performing an aggressive freeze then it will run to completion.

VACUUM operation on system catalogs
In most cases, the operations on system catalog tables—inserting new entries into the catalog
or removing entries—are rare. Applications that frequently create and drop temporary tables can
cause bloated system catalog tables. Creating temporary tables results in new tuples in catalog
tables and dropping temporary tables marks the tuples as deleted. If the catalogs are bloated, it
impacts the performance of all applications because of the latency involved in finding the
required catalog data. If a VACUUM operation blocks a catalog page or table then it can lead to
outages of the system because no query statement is able to complete without catalog data).
This results in a requirement that catalogs need to be cleaned up as quickly as possible.

In general, table-level configuration options are optimized to handle the VACUUM operation on
the table differently from other tables. Unfortunately this is not possible for system catalogs. The
VACUUM operations on system catalogs use the global configuration options. If the global
options are not optimized, and the workload uses many temporary tables, then catalogs will be
bloated. Because catalog tables are smaller in size compared to regular user tables, we
recommend that you schedule an explicit cron job that performs a non-blocking VACUUM
operation on system catalog based on the application requirements (can be once per hour).

Reducing outage time
Optimizing and monitoring database instances help in reducing or avoiding VACUUM
operations-related outages. If there is no action taken based on the monitoring data or from
PostgreSQL messages, then you might experience an outage. For example, all write
transactions are blocked until the transaction ID space is reclaimed. The following are some
recommendations that might reduce the time it takes to complete the VACUUM operation:

● Increase the system memory and autovacuum_maintenance_work_mem to batch
more tuples in each iteration and to complete the work as quickly as possible.

● The VACUUM operation generates many WAL records. If there are no replicas configured
for this instance, you can reduce the WAL records and the operation completes as
quickly as possible. To reduce the WAL generated by the VACUUM operation, set
full_page_writes to OFF. This option writes only the tuple header information and

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 3.0
License, and code samples are licensed under the Apache 2.0 License. For details, see our Site Policies.
Oracle and Java are registered trademarks of Oracle and/or its affiliates.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.apache.org/licenses/LICENSE-2.0
https://cloud.google.com/site-policies

Google Cloud 24

skips writing data-related WAL records. If any operations related to WAL are changed,
as a precautionary measure, run the CHECKPOINT command before and after the
VACUUM operation.

● If the table reaches the 2 billion transaction ID limit because none of the tuples are
frozen, then try to reduce the amount of work done in single user mode. One possible
option is to set vacuum_freeze_min_age=1,000,000,000. This new value reduces
the number of tuples frozen up to 2X.

● PostgreSQL version 12.0 and later versions support cleanup and VACUUM operations
without cleaning the index entries. This is crucial because cleaning the index requires a
complete index scan, and if there are multiple indexes then the total time depends on
index size, as illustrated in the following equation:

#of full index scans = # of batches defined by maintenance_work_mem * # of indexes

Larger indexes consume a significant amount of time for the index scan so we
recommend setting INDEX_CLEANUP OFF to quickly clean up and freeze the table data.

● PostgreSQL versions before 12.0 need to optimize the number of indexes. If there are
non-critical indexes, then it can be helpful to drop the non-critical index to speed up the
VACUUM operation.

Reducing outage of instances with replicas
If there are database instances with replicas, the VACUUM operation for the replica happens
through the WAL records generated by the primary instance. If the primary instance has
optimized the configuration options that maintain the health of tables and database, then the
replica is in a healthy state. The replica is configured with enough resources to consider the
WAL records generated on the primary instance by the VACUUM operation. Those records are
applied to the replica to remove dead rows or freeze tuples. However, if the primary instance
runs into the transaction ID wraparound problem, then the replica does not get the WAL records
associated with the emergency. The VACUUM operation is performed in single user mode, but
only after the system is started in multi-user mode. Depending on the amount of WAL generated
in single-user mode, the replay at replica might take a significant amount of time. To reduce the
time it takes to catch up, we recommend that you recreate a new replica instead of waiting for
the current replica to catch up with the WAL generated at the primary instance. If the VACUUM
operation cleaned up a table with the full_page_writes configuration option turned off, then
replicas need to fetch the pre-images from the disk before applying the changes associated with
WAL records. This configuration increases the reply time exponentially.

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 3.0
License, and code samples are licensed under the Apache 2.0 License. For details, see our Site Policies.
Oracle and Java are registered trademarks of Oracle and/or its affiliates.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.apache.org/licenses/LICENSE-2.0
https://cloud.google.com/site-policies

Google Cloud 25

Enhancements in PostgreSQL-13
The autovacuum process uses the number of deleted rows to trigger the VACUUM operation on
a table. This process can delay the VACUUM operation of tables that have more INSERT than
DELETE or UPDATE operations. Ignoring INSERT-only tables can lead to the rapid consumption
of transaction ID space and lead to potential transaction wraparound problems.

PostgreSQL-13 enhances statistics considered by the autovacuum process to perform the
VACUUM operation on insert-driven tables as quickly as possible. PG13 tracks the number of
inserted rows from the previous successful VACUUM operation and uses this value to trigger the
VACUUM FREEZE operation on the respective tables. To cover the insert driven tables, PG13
introduced the following:

● n_ins_since_vacuum in pg_stat_all_tables: This counter tracks the number
inserted rows from the last VACUUM operation.

● autovacuum_vacuum_insert_threshold: Specifies the number of tuples that need
to be inserted to trigger the VACUUM operation. The default value is 1000. If the rate of
insertion in the table is too high compared to the default value, then it's better to adjust
the value to avoid too frequent VACUUM operations on the table.

● autovacuum_vacuum_insert_scale_factor: This option is similar to
autovacuum_vacuum_scale_factor, but deals with inserted rows. This value
represents the fraction of the table size to add to
autovacuum_vacuum_insert_threshold to trigger the VACUUM operation. The
default is 0.2 (20% of table size).

The autovacuum process uses the following formula to freeze a table based on the
insert-related options:

#of tuples tracked by n_ins_since_vacuum >
autovacuum_vacuum_insert_threshold + #of rows *
autovacuum_vacuum_insert_scale_factor

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 3.0
License, and code samples are licensed under the Apache 2.0 License. For details, see our Site Policies.
Oracle and Java are registered trademarks of Oracle and/or its affiliates.

https://www.postgresql.org/docs/13/routine-vacuuming.html#AUTOVACUUM
https://www.postgresql.org/docs/13/runtime-config-autovacuum.html#GUC-AUTOVACUUM-VACUUM-INSERT-THRESHOLD
https://www.postgresql.org/docs/13/runtime-config-autovacuum.html#GUC-AUTOVACUUM-VACUUM-INSERT-SCALE-FACTOR
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.apache.org/licenses/LICENSE-2.0
https://cloud.google.com/site-policies

Google Cloud 26

References
● Documentation: 12: VACUUM
● Documentation: 12: 24.1. Routine Vacuuming
● Documentation: 12: 19.10. Automatic Vacuuming
● Autovacuum Tuning Basics
● PG Phriday: 10 Things Postgres Could Improve - Part 1
● Managing Transaction ID Exhaustion (Wraparound) in PostgreSQL
● Transaction ID

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 3.0
License, and code samples are licensed under the Apache 2.0 License. For details, see our Site Policies.
Oracle and Java are registered trademarks of Oracle and/or its affiliates.

https://www.postgresql.org/docs/12/sql-vacuum.html
https://www.postgresql.org/docs/12/routine-vacuuming.html
https://www.postgresql.org/docs/12/runtime-config-autovacuum.html
https://www.2ndquadrant.com/en/blog/autovacuum-tuning-basics/
https://www.2ndquadrant.com/en/blog/10-things-postgres-could-improve-part-1/
https://info.crunchydata.com/blog/managing-transaction-id-wraparound-in-postgresql
http://www.interdb.jp/pg/pgsql05.html#_5.1.
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.apache.org/licenses/LICENSE-2.0
https://cloud.google.com/site-policies

Google Cloud 27

Appendix
The following sections include additional information.

Lock compatibility matrix
The following table shows the lock compatibility matrix for PostgreSQL table level locks. Cells
containing X mean that the request is not compatible with the current lock mode and the
requester might have to wait to get the lock. Empty cells mean that the requested lock mode is
compatible with the current lock mode and the requester can immediately get the required lock.

Requested
mode

Current lock mode

ACCESS
SHARE

ROW
SHARE

ROW
EXCLUSIVE

SHARE
UPDATE
EXCLUSIVE

SHARE SHARE ROW
EXCLUSIVE

EXCLUSIVE ACCESS
EXCLUSIVE

ACCESS SHARE X

ROW SHARE X X

ROW
EXCLUSIVE

X X X X

SHARE UPDATE
EXCLUSIVE

X X X X X

SHARE X X X X X

SHARE ROW
EXCLUSIVE

X X X X X X

EXCLUSIVE X X X X X X X

ACCESS
EXCLUSIVE

X X X X X X X X

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 3.0
License, and code samples are licensed under the Apache 2.0 License. For details, see our Site Policies.
Oracle and Java are registered trademarks of Oracle and/or its affiliates.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.apache.org/licenses/LICENSE-2.0
https://cloud.google.com/site-policies

Google Cloud 28

Warning messages
PostgreSQL prints the following warning message whenever the transaction ID reaches the
warning limit (default last 10 million transaction IDs of 2 billion transaction ID):

/* complain even if that DB has disappeared */
if (oldest_datname)

ereport(WARNING,
(errmsg("database \"%s\" must be vacuumed within %u

transactions",
oldest_datname,
xidWrapLimit - xid),

errhint("To avoid a database shutdown, execute a
database-wide vacuum in that database.\n"

"You might also need to commit or roll back old
prepared transactions, or drop stale replication slots.")));
else

ereport(WARNING,
(errmsg("database with OID %u must be vacuumed within %u

transactions",
oldest_datoid,
xidWrapLimit - xid),

errhint("To avoid a database shutdown, execute a
database-wide vacuum in that database.\n"

"You might also need to commit or roll back old
prepared transactions, or drop stale replication slots.")));

Database-level detailed consumed txid percentage
The following query outputs database-level details about consumed_txid_pct:

SELECT datname, age(datfrozenxid) AS frozen_xid_age
, ROUND(100*(age(datfrozenxid)/2000000000::float))

consumed_txid_pct
, 2*1024^3 - 1 - age(datfrozenxid) AS remaining_txid
, current_setting('autovacuum_freeze_max_age')::int
- age(datfrozenxid) AS remaining_aggressive_vacuum

FROM pg_database;

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 3.0
License, and code samples are licensed under the Apache 2.0 License. For details, see our Site Policies.
Oracle and Java are registered trademarks of Oracle and/or its affiliates.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.apache.org/licenses/LICENSE-2.0
https://cloud.google.com/site-policies

