
‭Reference architecture:‬

‭GKE Enterprise hybrid environment‬
‭(part 2) - implementation details‬

‭Part 1 - Architecture, reference deployments, design prerequisites and considerations‬

‭December 2023‬

https://cloud.google.com/anthos/docs/architecture/anthos-hybrid-environment#get_the_reference_architecture

‭Page‬‭2‬‭of‬‭35‬

‭Table of contents‬
‭Table of contents‬ ‭2‬
‭Overview‬ ‭3‬
‭Implementation details‬ ‭6‬

‭Per-site preparation‬ ‭6‬
‭Services‬ ‭6‬
‭Networking‬ ‭6‬

‭Dataplane v2‬ ‭7‬
‭Handling high traffic‬ ‭8‬
‭Configure vSphere‬ ‭8‬
‭Bare metal deployments‬ ‭11‬
‭Fleet management‬ ‭13‬
‭Hardware‬ ‭14‬
‭Operating system‬ ‭14‬
‭Config Sync‬ ‭14‬

‭Cluster configuration‬ ‭16‬
‭Application configuration‬ ‭16‬

‭Helm templates‬ ‭17‬
‭Fully hydrated configuration‬ ‭18‬

‭Install considerations‬ ‭19‬
‭Application deployment‬ ‭20‬
‭Roll out of cluster configuration‬ ‭23‬
‭Roll out of an application configuration‬ ‭23‬
‭Recommended policies‬ ‭24‬

‭Anthos Service Mesh‬ ‭24‬
‭Observability‬ ‭25‬

‭Application monitoring‬ ‭26‬
‭System monitoring‬ ‭26‬
‭Logging‬ ‭28‬

‭Roles and permissions‬ ‭29‬
‭Project permissions‬ ‭30‬
‭Cluster permissions‬ ‭31‬

‭Applications‬ ‭32‬
‭Namespaces and app projects‬ ‭32‬
‭Application workspaces‬ ‭33‬
‭Design and deploy applications‬ ‭33‬

‭References‬ ‭35‬

‭Page‬‭3‬‭of‬‭35‬

‭Overview‬
‭Organizations that embrace cloud-first technologies like containers, container orchestration, and‬
‭service meshes, often reach a point where they need more than a single Kubernetes cluster. Many‬
‭organizations that use Google Cloud also want to run workloads in their own data centers, factory‬
‭floors, retail stores, or even in other public clouds.‬

‭However, operating multiple Kubernetes clusters has its own difficulty and overhead in terms of‬
‭consistent configuration, security, and management. For example, manually configuring one‬
‭Kubernetes cluster at a time creates risks, and it can be challenging to see exactly where errors are‬
‭happening.‬

‭GKE Enterprise is Google's cloud-centric container platform for running modern apps anywhere‬
‭consistently at scale. GKE Enterprise can help organizations by providing a consistent platform that‬
‭lets them:‬

‭●‬ ‭Modernize applications and infrastructure in-place.‬
‭●‬ ‭Create a unified cloud operating model (single pane of glass) to create, update, and optimize‬

‭container clusters wherever they are.‬
‭●‬ ‭Scale large multi-cluster applications as‬‭fleets‬‭-‬‭logical groupings of similar environments -‬

‭with consistent security, configuration, and service management.‬
‭●‬ ‭Enforce consistent governance and security from a unified control plane.‬

‭GKE Enterprise helps you increase operational consistency in governance and security and developer‬
‭velocity while reducing cost, deployment risk, and operational complexity. Specifically, GKE Enterprise‬
‭helps with the following areas:‬

‭●‬ ‭Customers who want cloud-like experience on-premises or are looking for a unified solution‬
‭while migrating their applications to cloud (‬‭GKE Enterprise‬‭hybrid environment‬‭).‬

‭●‬ ‭Google Cloud customers who want to better manage their containerized applications (‬‭GKE‬
‭Enterprise on Google Cloud‬‭).‬

‭●‬ ‭Customers who want to‬‭solv‬‭e multicloud complexity‬‭with a consistent governance, operations,‬
‭and security posture (‬‭GKE Multi-Cloud‬‭).‬

‭The following diagram shows a high-level overview of GKE Enterprise in a hybrid environment. GKE‬
‭Enterprise can help with Kubernetes compliance and governance, security, and operations, along with‬

‭Page‬‭4‬‭of‬‭35‬

‭multi-cluster automation and configuration. Kubernetes clusters managed by GKE Enterprise can then‬
‭run on-premises, in Google Cloud, or in another cloud provider:‬

‭This reference architecture provides opinionated guidance to deploy GKE Enterprise in a hybrid‬
‭environment to address some common challenges that might face.‬

‭In this reference architecture, the term‬‭cluster‬‭means‬‭a Kubernetes cluster managed by GKE unless‬
‭stated otherwise. For example, some sections discuss‬‭VMware vSphere clusters‬‭composed of ESXi‬
‭servers that pool compute resources.‬

‭This reference architecture is separated into two parts. Make sure you read both parts carefully to‬
‭learn how to plan, design, and implement your own GKE Enterprise hybrid environment:‬

‭Page‬‭5‬‭of‬‭35‬

‭●‬ ‭Part 1 - Architecture, GKE Enterprise components, reference deployments, design‬
‭prerequisites, and design considerations.‬

‭●‬ ‭Part 2 (this document) - Implementation details.‬

https://cloud.google.com/anthos/docs/architecture/anthos-hybrid-environment#get_the_reference_architecture
https://cloud.google.com/anthos/docs/architecture/anthos-hybrid-environment#get_the_reference_architecture

‭Page‬‭6‬‭of‬‭35‬

‭Implementation details‬
‭To help you successfully deploy a GKE Enterprise hybrid environment that follows this reference‬
‭architecture, this section contains some important implementation details. These details include the‬
‭suggested Config Sync repository structure, recommended project and cluster permission and role‬
‭assignments, and application namespace examples.‬

‭Per-site preparation‬

‭Services‬
‭Create an image repository in each site, such as using JFrog Artifactory or Harbor. This site-level‬
‭repository isn't part of the GKE deployment or supported by Google. If you use Artifact Registry, you‬
‭could set up the site to replicate from the cloud. Or, you could replicate between local repositories‬
‭across sites. This approach stores artifacts close to where they're needed for deployments, and lets‬
‭you replicate a single source of truth across all sites with similar local repositories.‬

‭Networking‬
‭Place each admin cluster on its own VLAN. Place each user cluster on its own VLAN. The following‬
‭guidance also applies:‬

‭●‬ ‭For GKE on VMware, all nodes of a user cluster should be on the same broadcast domain (one‬
‭subnet and VLAN).‬

‭●‬ ‭For GKE on bare metal, it’s simpler if all the nodes of a user cluster are on the same broadcast‬
‭domain. Multiple domains may be used if necessary, with the following additional guidance:‬

‭○‬ ‭All the load balancer nodes must be on the same broadcast domain.‬
‭○‬ ‭Routing traffic between the L2 domains is your responsibility. GKE doesn't configure‬

‭this routing.‬
‭●‬ ‭Avoid using VLAN-per-node-pool as a security mechanism for separating individual‬

‭applications in a cluster. This configuration can be complex to manage, and can limit the‬
‭cost-efficiency benefits otherwise expected from moving to containers. Instead, use‬
‭Kubernetes Network Policies and Anthos Service Mesh L7 Authorization to meet isolation‬
‭requirements.‬

‭●‬ ‭All virtual IP addresses (VIPs) must be in the load balancer machine subnet and routable to the‬
‭gateway of the subnet.‬

‭The following diagram shows an example of how the admin cluster and user clusters should be in their‬
‭own VLANs. The user control plane and user node pool components share the same VLAN. The user‬
‭cluster components communicate to the admin cluster and VLAN through the admin cluster API‬
‭controllers:‬

‭Page‬‭7‬‭of‬‭35‬

‭Dataplane v2‬
‭Use Dataplane V2 in your deployments. GKE Dataplane V2 is a data plane that's optimized for‬
‭Kubernetes networking, and is based on eBPF on Linux and Open vSwitch on Windows nodes.‬
‭Dataplane V2 lets you flexibly process network packets in-kernel using Kubernetes-specific metadata.‬

‭Page‬‭8‬‭of‬‭35‬

‭Handling high traffic‬
‭If a site-level load balancer like F5 is available and a cluster is expected to handle a lot of traffic,‬
‭balance traffic across several VIPs of the same cluster. Use MetalLB to balance within the cluster.‬

‭Avoid using only a single ingress to handle large numbers of backend services, such as 2,000 services.‬
‭Instead, create several ingresses.‬

‭Configure vSphere‬
‭When using vSphere with GKE on VMware, configure as follows:‬

‭vCenter user account privileges‬ ‭vCenter Server Administrator role is‬‭not‬‭required‬
‭for GKE deployment after the vSphere‬
‭environment is set up.‬

‭For GKE deployments, we recommend creating‬
‭several roles with varying degrees of privilege to‬
‭limit access to your vCenter environment.‬

‭vCenter settings‬
‭●‬ ‭Enable vCenter High Availability (HA)‬
‭●‬ ‭Enable vMotion‬
‭●‬ ‭Enable vSphere HA Host Monitoring‬‭1‬ ‭with‬

‭Host Failure Response‬‭set to‬‭Restart‬
‭VMs‬

‭●‬ ‭Disable vSphere Storage DRS‬‭2‬

‭Use the following options when creating GKE clusters on VMware:‬

‭●‬ ‭enableControlplaneV2: true‬
‭●‬ ‭enableDataplaneV2: true‬
‭●‬ ‭antiAffinityGroups.enabled: true‬

‭The following diagram provides an overview of how GKE on VMware looks in a deployed state. The‬
‭user cluster controller in the admin cluster communicates with vCenter. This connection lets the‬
‭controller create the user cluster VMs:‬

‭Page‬‭9‬‭of‬‭35‬

‭The following diagram shows a more complete example of GKE on VMware deployed in a hybrid‬
‭environment. Additional services like Config Sync, Binary Authorization, and Operations Suite‬
‭supplement the on-premises GKE services that run in VMware:‬

‭Page‬‭10‬‭of‬‭35‬

‭The following diagram shows that the control plane VIP sends traffic to the Kubernetes API.‬
‭Keepalived / HAproxy keep the control plane VIP pointed at a working control plane VM. Node pools‬
‭are created by a controller in the user cluster that talks to vCenter. The control plane VMs are created‬
‭by the admin cluster. There's a dedicated node pool for MetalLB pods, but using the same VLAN as the‬
‭other node pool. The MetalLB pods communicate using ingress VIPs, which also provide inbound‬
‭traffic for the user workloads:‬

‭Page‬‭11‬‭of‬‭35‬

‭Bare metal deployments‬
‭The following diagram provides an overview of how GKE on bare metal looks in a deployed state. The‬
‭user cluster controller in the admin cluster communicates with the physical machines in your‬
‭environment. This connection lets the controller create and manage the physical user clusters:‬

‭Page‬‭12‬‭of‬‭35‬

‭The following diagram shows that the control plane VIP sends traffic to the Kubernetes API.‬
‭Keepalived / HAproxy keep the control plane VIP pointed at a working control plane machine. Node‬
‭pools are created by a controller in the user cluster. The control plane machines are created by the‬
‭admin cluster. There's a dedicated node pool for MetalLB pods, but using the same VLAN as the other‬
‭node pool. The MetalLB pods communicate using ingress VIPs, which also provide inbound traffic for‬
‭the user workloads:‬

‭Page‬‭13‬‭of‬‭35‬

‭Fleet management‬
‭●‬ ‭Place the prod clusters and their admin clusters in the production fleet,‬

‭project-2-fleet-prod‬‭.‬

‭Page‬‭14‬‭of‬‭35‬

‭●‬ ‭Place the staging cluster and its admin cluster in the staging fleet,‬
‭project-3-fleet-staging‬‭.‬

‭Hardware‬
‭GKE can run on a wide range of customer-provided hardware. When you run on virtual machines, they‬
‭can be easily sized to their roles.‬

‭If you deploy GKE on physical machines, it can be more efficient to include at least some medium‬
‭machines instead of all large-sized machines. Large machines are those that include more RAM and‬
‭number of vCPUs than medium machines. Medium-sized physical machines have better utilization‬
‭when they run as user cluster control plane nodes and admin cluster nodes.‬

‭Operating system‬
‭For GKE on bare metal, the base operating system on the nodes is customer-managed. Only install‬
‭those OS packages that are prerequisites for GKE, are needed to monitor the hardware and operating‬
‭system, or to debug issues.‬

‭Because applications are containerized, they largely don't depend on libraries or services that run on‬
‭the base operating system. Instead, application dependencies such as libraries are managed at the‬
‭container image level.‬

‭Config Sync‬
‭Config Sync is used to manage Kubernetes objects in all the clusters. Config Sync is a GitOps-style‬
‭tool. GitOps is a process where a Git source control repository is the source of truth for configuration.‬
‭Git provider workflows allow multiple stakeholders to participate in review of changes.‬

‭Config Sync can pull configurations directly from a Git repository by using an agent in every cluster. It‬
‭can also pull bundled files from an image registry.‬

‭As shown in the following diagram, the recommended Config Sync deployment uses one folder‬
‭containing configuration for all clusters. Other individual folders each hold configuration data for one‬
‭application:‬

‭Page‬‭15‬‭of‬‭35‬

‭A Config Sync component per cluster pulls configuration directly from a source control repository or‬
‭an image registry. A cloud management plane lets you centrally configure data sources and what tag‬
‭or version of an application to pull. This cloud management plane means that you don't have to‬
‭manually interact with each GKE cluster using the Kubernetes API to make individual config or‬
‭application changes.‬

‭Config Sync manages in-cluster resources that you define and deploy. Resources that affect the‬
‭whole cluster (cluster-wide or cluster-scoped) are managed differently from resources that only‬
‭affect one namespace (namespace-scoped). The latter are used to define applications. For GKE on‬
‭bare metal, cluster configuration drift is enabled in version 1.16 later that detects configuration drift of‬
‭the core component manifest files. This configuration drift feature is not designed for managing the‬
‭state of your own components, Services, and Deployments. You still use Config Sync to manage the‬
‭state of your own resources.‬

‭Page‬‭16‬‭of‬‭35‬

‭Different categories of resources each have a set of tooling:‬

‭●‬ ‭Google Cloud resources are managed with the Google Cloud console,‬‭gcloud‬‭CLI‬‭, or‬
‭Terraform.‬

‭●‬ ‭In-cluster resources are managed with Config Sync.‬
‭○‬ ‭Config Sync doesn't manage admin clusters and their resources.‬

‭This reference architecture uses a specific subset of Config Sync features. Additional features exist‬
‭and can be used where appropriate. In particular, this reference architecture uses the following‬
‭choices in the use of Config Sync:‬

‭●‬ ‭Uses unstructured mode.‬
‭●‬ ‭Doesn't use cluster selectors or namespace selectors. Therefore, cluster labels also aren't‬

‭required.‬
‭●‬ ‭Configuration can be specified and delivered to each cluster as a template with parameters‬

‭substituted with per-cluster values. Or, use a fully rendered, or‬‭hydrated‬‭, configuration to each‬
‭cluster.‬

‭○‬ ‭A fully hydrated configuration allows for users to understand what the desired state is,‬
‭without having to mentally run a transformation process.‬

‭●‬ ‭Uses Git as the source of truth. Config Sync also supports using an OCI image repository‬‭3‬ ‭or a‬
‭Helm repository‬‭4‬ ‭to pull configurations from.‬

‭Cluster configuration‬
‭Platform owners define what policies are deployed to all clusters. Policies include the following:‬

‭●‬ ‭PodSecurity admission controller:‬‭Includes preventing‬‭Pods from using the root Linux user.‬
‭●‬ ‭NetworkPolicies:‬‭Control the network traffic inside‬‭your clusters.‬
‭●‬ ‭ClusterRoles and ClusterRoleBindings:‬‭Control permissions‬‭within a cluster.‬
‭●‬ ‭Anthos Service Mesh:‬‭Includes policies such as for‬‭authorization, transport security, or‬

‭security policy constraints.‬
‭●‬ ‭Policy Controller:‬‭Install the Policy Controller security‬‭bundle for Anthos Service Mesh‬‭5‬‭.‬
‭●‬ ‭User permissions (RBAC) granted cluster-wide.‬

‭The configuration for each cluster is stored in a Root Repository, also known as a RootSync. The Root‬
‭Repository configuration includes both literal configuration resources, and pointers to other‬
‭repositories holding application resources.‬

‭Page‬‭17‬‭of‬‭35‬

‭Application configuration‬
‭Platform owners can control the specifics of each application, or delegate control to application‬
‭owners.‬

‭Applications repositories, also referred to as‬‭Namespace Repos‬‭or‬‭RepoSyncs‬‭, configure resources‬
‭within a single namespace, including the following:‬

‭●‬ ‭Workloads such as Deployments and StatefulSets.‬
‭●‬ ‭VolumeClaims‬
‭●‬ ‭RBAC permissions scoped to namespace, such as Role and RoleBinding.‬
‭●‬ ‭Services‬
‭●‬ ‭Anthos Service Mesh configuration for services in this namespace.‬

‭This reference architecture offers a choice of two patterns for deploying application configuration.‬
‭Each approach has advantages and disadvantages:‬

‭●‬ ‭Helm templates:‬
‭○‬ ‭Simple to set up.‬
‭○‬ ‭Uses familiar templating patterns.‬
‭○‬ ‭Templates can become complex to reason about over time.‬
‭○‬ ‭Parameters substituted by Config Sync in each cluster.‬

‭●‬ ‭Fully hydrated configuration:‬
‭○‬ ‭More steps to set up.‬
‭○‬ ‭Can use templating, or other config customization tools like‬‭kustomize‬‭or‬‭kpt‬‭.‬
‭○‬ ‭Validation tools can run directly on the configuration during the review process.‬
‭○‬ ‭Requires setting up a rendering pipeline that reads and writes to Git.‬
‭○‬ ‭Both‬‭dry‬‭and‬‭hydrated‬‭, or wet, configurations are‬‭stored in Git.‬

‭■‬ ‭Dry means configuration that uses templates and doesn't have per-cluster or‬
‭per-app customizations applied.‬

‭■‬ ‭Hydrated, or wet, mean configuration with all template parameters substituted‬
‭and per-cluster and per-app customizations applied.‬

‭○‬ ‭Storing both types of config in Git has the following advantages:‬
‭■‬ ‭The Git repository is a source of truth, and you don’t need to mentally run a‬

‭transformation process to be sure of the desired state.‬
‭■‬ ‭More flexibility in what processes can be used.‬
‭■‬ ‭Greater scope to validate configuration during the review process.‬

‭Page‬‭18‬‭of‬‭35‬

‭Helm templates‬
‭The Helm templates approach is appropriate for teams that already use the popular open source Helm‬
‭tool to define applications. In the Helm approach, the following benefits and management approaches‬
‭can be used:‬

‭●‬ ‭Application owners specify their applications as Helm Charts, with a limited number of‬
‭parameters (Values).‬

‭●‬ ‭Platform owners control which application instances are deployed in which clusters and‬
‭namespaces using the Root Repo.‬

‭●‬ ‭Use Helm templating language to parameterize charts per cluster.‬
‭●‬ ‭Platform owners control parameter values by cluster.‬
‭●‬ ‭Platform owners control promotion of new chart versions (rollout across clusters).‬
‭●‬ ‭Anthos Config Management pulls hydrated config from Git and charts from an image registry.‬

‭Helm configuration and container images can be stored in the same registry.‬
‭●‬ ‭Platform policy is validated before deployment, and again when applied to the cluster.‬

‭The following diagram shows how you can write and review Helm charts that can build images to be‬
‭stored in a registry. You can then deploy the Helm carts to the cluster using Config Sync:‬

‭Fully hydrated configuration‬
‭The fully hydrated pattern works well when a central platforms team wants to create modules and‬
‭allow other teams to modify them, subject to code review.‬

‭In the fully hydrated approach, the following benefits and management approaches can be used:‬

‭●‬ ‭Platform owners define a base application definition.‬
‭●‬ ‭Applications define instantiations with changes to the base definition using the platform‬

‭owner's choice of packaging, templating, or customization tool, such as‬‭kustomize‬‭or‬‭kpt‬‭.‬
‭●‬ ‭Platform owners review modifications to the base application definition, but don't necessarily‬

‭explicitly have to manage parameters.‬

‭Page‬‭19‬‭of‬‭35‬

‭●‬ ‭A pipeline renders the packages, templates, and customizations to a fully hydrated version of‬
‭the configuration.‬

‭●‬ ‭Config Sync takes the configuration verbatim from the repository. This approach is a key‬
‭advantage of the fully hydrated approach as there's no interpretation of your desired‬
‭configuration.‬

‭●‬ ‭Platform policy is validated both before deployment in the expansion pipeline, and again when‬
‭applied to the cluster.‬

‭In the following diagram, the modules define tasks to be performed that generates a final‬
‭configuration that is applied to clusters using Config Sync:‬

‭Install considerations‬
‭The following steps are performed once to provide a foundation for the deployment:‬

‭●‬ ‭Create a Git repository for the root config, such as‬‭$ORGNAME/config-sync-root‬
‭●‬ ‭Create sub directories for each fleet, such as‬‭fleet-prod‬‭and‬‭fleet-nonprod‬
‭●‬ ‭Enable Config Sync on all clusters of the fleet.‬

‭○‬ ‭This step can be done with the Google Cloud console or with Terraform.‬

‭The following steps are performed as each cluster is created:‬

‭●‬ ‭Create a directory for that cluster within the root config Git repository, such as‬
‭fleet-prod/cluster-abc01-prod‬‭.‬

‭Page‬‭20‬‭of‬‭35‬

‭○‬ ‭Each cluster name must be unique across the organization.‬
‭●‬ ‭Set up configuration sync for that cluster.‬

‭○‬ ‭You can use the Google Cloud console or Terraform.‬
‭○‬ ‭When using Terraform, create a‬‭member_feature‬‭. The membership has already been‬

‭created when the cluster was, and doesn't require import. Instead, it's an output‬
‭parameter of the‬‭gkeonprem‬‭user cluster.‬

‭●‬ ‭The path within the repository is different for each cluster:‬
‭○‬ ‭For example,‬‭fleet-prod/cluster-abc01-prod‬‭. This path is referred to as adding‬

‭a RootSync to the cluster.‬
‭●‬ ‭Other settings can be the same across sites, such as the following:‬

‭○‬ ‭All clusters use the same URL, like‬
‭http://$GITPROVIDER/$ORGNAME/config-sync-root‬

‭■‬ ‭If Git is mirrored or separated across sites,‬‭$GITPROVIDER‬‭can be different per‬
‭site.‬

‭○‬ ‭All clusters use the same branch, such as HEAD.‬
‭○‬ ‭Set Unstructured mode.‬

‭When these steps are done and several clusters have been created, the directory structure for‬
‭config-sync-root‬‭looks like the following example:‬

‭fleet-prod/‬
‭cluster-abc01-prod/‬

‭asm/‬
‭policy/‬
‭storage/‬

‭cluster-xyz01-prod/‬
‭asm/‬
‭policy/‬
‭storage/‬

‭fleet-nonprod/‬

‭cluster-abc01-staging/‬
‭asm/‬
‭policy/‬
‭storage/‬

‭Related policy objects can be grouped into directories by concern. In this example, categories‬‭asm/‬‭,‬
‭policy/‬‭, and‬‭storage/‬‭are used.‬

‭Page‬‭21‬‭of‬‭35‬

‭Application deployment‬
‭The following steps are performed for each application that you deploy:‬

‭●‬ ‭Create a Git repository to hold that application's configuration.‬
‭■‬ ‭For example, if the application's name is‬‭$X‬‭,‬‭make‬‭a repository‬

‭$ORGANIZATION/app-config-$X‬‭.‬
‭■‬ ‭Use multiple Git repositories to reflect administrative boundaries. Each team should‬

‭work in only one repository and ideally different teams have their own repositories.‬
‭■‬ ‭To make sure that changes can be reviewed by all stakeholders, use the‬‭CODEOWNERS‬

‭feature of GitHub or GitLab.‬
‭●‬ ‭For each environment and site where the app should run, complete the following steps:‬

‭■‬ ‭Create a namespace in the format like‬‭$appname-$env-$site‬‭by adding it to the‬
‭Root Repo‬

‭■‬ ‭Create a‬‭reposync.yaml‬‭file in the namespace directory,‬‭such as‬
‭cluster-xxx/namespaces/app-site-env/reposync.yaml‬

‭■‬ ‭For the Helm approach, point to the artifact registry path and image name (method).‬
‭Set cluster-specific values.‬

‭■‬ ‭For the fully hydrated approach, set the Git repository and directory for the‬
‭namespace. A single Git repository can be used for Root and Application repositories.‬

‭After deploying two applications, the‬‭anthos-acm-root‬‭directory looks like the following example:‬

‭fleet-prod/‬
‭cluster-abc01-prod/‬

‭asm/‬
‭namespaces/‬

‭team1/‬
‭app1/‬

‭reposync.yaml‬
‭rbac.yaml‬

‭app2/‬
‭reposync.yaml‬
‭rbac.yaml‬

‭policy/‬
‭storage/‬

‭cluster-xyz01-prod/‬
‭asm/‬
‭namespaces/‬

‭team1/‬

‭fleet-nonprod/‬
‭cluster-abc01-staging/‬

‭asm/‬
‭namespaces/‬

‭team1/‬
‭app1/‬

‭reposync.yaml‬
‭rbac.yaml‬

‭app2/‬
‭reposync.yaml‬
‭rbac.yaml‬

‭policy/‬
‭storage/‬

‭Page‬‭22‬‭of‬‭35‬

‭app1/‬
‭reposync.yaml‬
‭rbac.yaml‬

‭app2/‬
‭reposync.yaml‬
‭rbac.yaml‬

‭policy/‬
‭storage/‬

‭Each‬‭reposync.yaml‬‭file follows one of the following‬‭two patterns:‬

‭1.‬ ‭A Git repository and path holding fully hydrated configuration, like the following example:‬

‭# File: fleet-prod/cluster-abc01-prod/namespaces/app1/reposync.yaml‬
‭apiVersion: configsync.gke.io/v1beta1‬
‭kind: RepoSync‬
‭metadata:‬

‭name: app1‬
‭namespace: config-management-system‬

‭spec:‬
‭sourceFormat: unstructured‬
‭sourceType: git‬
‭git:‬
‭repo: https://gitmirror.abc01.company.com/team1/app1-config/‬
‭branch: main‬
‭auth: token‬
‭secretRef:‬

‭name: git-repo-secret‬

‭2.‬ ‭An OCI image that holds a Helm chart and has a tag, and Helm parameters like the following‬
‭example:‬

‭# File: fleet-prod/cluster-abc01-prod/namespaces/app1/reposync.yaml‬
‭apiVersion: configsync.gke.io/v1beta1‬
‭kind: RepoSync‬
‭metadata:‬

‭name: app1‬
‭namespace: config-management-system‬

‭spec:‬
‭sourceFormat: unstructured‬
‭sourceType: helm‬

‭Page‬‭23‬‭of‬‭35‬

‭helm:‬
‭repo: oci:/imgreg.abc01.company.com/team1/manifests/app1:v1.1‬
‭chart: app1‬
‭version: v2‬
‭releaseName: instance1‬
‭namespace: app1‬
‭auth: token‬
‭secretRef:‬

‭name: helm-repo-secret‬
‭values:‬

‭param1: 1234‬
‭param2: asdf‬

‭Roll out of cluster configuration‬
‭Determine an order of updates for clusters. Update staging before production, and one site at a time.‬
‭Apply edits to each cluster subdirectory at a time, such as in the following order:‬

‭1.‬ ‭fleet-nonprod/cluster-abc01-staging‬

‭2.‬ ‭fleet-prod/cluster-abc01-prod‬

‭3.‬ ‭fleet-prod/cluster-xyz01-pro‬

‭Roll out of an application configuration‬
‭Use a development cluster to test changes. There can be one cluster for each application team. These‬
‭clusters should use the same base configuration or Helm chart, but be parameterized to use test data‬
‭and dependencies. Refactoring applications so that they can work in different environments with‬
‭similar configuration is an important part of achieving frequent successful deployments.‬

‭Complete the following steps to deploy an application at a new image tag:‬

‭●‬ ‭Helm approach:‬
‭○‬ ‭The app is built into an image with a new tag.‬
‭○‬ ‭Update the Root repository to use the tag, progressively in a series of clusters, like in‬

‭cluster-acb01-staging‬‭and then in production clusters‬‭like‬
‭cluster-abc01-prod‬‭and‬‭cluster-xyz01-prod‬‭.‬

‭●‬ ‭Fully hydrated approach:‬
‭○‬ ‭Modify the parameters that control the image tag in that cluster, such as a‬

‭Kustomize.yaml‬‭or‬‭Kptfile.‬
‭○‬ ‭Review and commit.‬

‭Page‬‭24‬‭of‬‭35‬

‭○‬ ‭Pipeline expands configuration and commits to Namespace repository.‬
‭○‬ ‭Config Sync pulls the fully expanded config from the Namespace repository.‬
‭○‬ ‭Repeat this process progressively in a series of clusters.‬

‭Recommended policies‬
‭The following policy bundles are recommended:‬

‭●‬ ‭K8sPSPHostFilesystem‬‭6‬

‭○‬ ‭This policy ensures that applications don't take unexpected dependencies on the host‬
‭operating system version, which allows independent application and OS updates. This‬
‭policy also helps to increase security.‬

‭●‬ ‭Consider requiring mesh authorization for each namespace‬‭7.‬

‭○‬ ‭Start with Namespace level, rather than at the workload selector or mesh level.‬
‭○‬ ‭Use EnvoyFilters when finer control of authorization is needed.‬

‭●‬ ‭You can also port existing policies from OpenShift‬‭8‬‭.‬

‭Anthos Service Mesh‬
‭Anthos Service Mesh provides security, observability, and traffic management features both within‬
‭and across clusters‬‭9‬‭. In this reference architecture,‬‭only the within-cluster capabilities of Anthos‬
‭Service Mesh are used. Clusters don't have to connect with each other. However, metrics for‬
‭equivalent services, those with the same service name and namespace name, can be readily viewed‬
‭in aggregate.‬

‭Configure Anthos Service Mesh as follows:‬

‭●‬ ‭Anthos Service Mesh for GKE clusters is unmanaged. Follow the instructions to set up a‬
‭multi-cluster mesh. However, don't set up cross-cluster trust‬‭10‬‭.‬

‭●‬ ‭Enable strict mTLS.‬
‭○‬ ‭As a security best practice, enable strict mTLS at the mesh level‬‭11‬‭.‬
‭○‬ ‭To enforce this setting, use the policy bundle with strict mode‬‭12‬‭.‬

‭●‬ ‭mTLS certificates for in-mesh communication:‬
‭○‬ ‭Protect the CA signing key by selecting either Mesh CA or Certificate Authority Service‬

‭(CA Service).‬
‭■‬ ‭Use CA service if you have special CA requirements‬‭13‬‭.‬‭Otherwise, use Mesh CA.‬

‭○‬ ‭Install Mesh CA or CA Service.‬
‭●‬ ‭Certificates for serving ingress traffic:‬

‭○‬ ‭Use external certificate management on ingress‬‭14‬ ‭and‬‭egress‬‭15‬‭.‬

‭Page‬‭25‬‭of‬‭35‬

‭○‬ ‭Applications can continue to use existing application certificates, such as Let's Encrypt‬
‭or Google-managed certificates.‬

‭●‬ ‭Enable Cloud Monitoring (HTTP in-proxy metrics), which is part of the platform and included as‬
‭system metrics.‬

‭●‬ ‭Implementation of the following examples items is optional and can be enabled when‬
‭convenient after initial deployment:‬

‭○‬ ‭User authentication with Identity-Aware Proxy.‬
‭○‬ ‭User authentication with your existing Identity Provider.‬
‭○‬ ‭Anthos Service Mesh user authentication.‬

‭Observability‬
‭The following diagram shows how application developers and application or platform operators can‬
‭view logging and monitoring data in Google Cloud. The on-premises clusters and applications send‬
‭this logging and monitoring data back to Google Cloud for analysis and review:‬

‭The following observability considerations apply to this reference architecture:‬

‭Page‬‭26‬‭of‬‭35‬

‭●‬ ‭All observability data for production clusters, such as system logs, system metrics, application‬
‭logs, and application metrics, is directed into‬‭project-2-fleet-prod‬‭.‬

‭●‬ ‭All observability data for staging clusters is directed into‬‭project-3-fleet-staging‬‭.‬
‭●‬ ‭The platform team may create a dashboard for each application, with application operators‬

‭given access to that application's dashboard.‬
‭○‬ ‭The dashboard may contain container-level metrics, service metrics (Anthos Service‬

‭Mesh), application-specific metrics if applicable, log-based metrics, and logs panels (if‬
‭appropriate).‬

‭○‬ ‭Grant members of the team access to their appropriate dashboard. This approach‬
‭gives access to their metrics without exposing other team's metrics.‬

‭○‬ ‭Use Identity and Access Management (IAM) conditions based on the resource name‬
‭attached to the project resource, such as‬‭project-x-ops‬‭,‬‭if the teams need log‬
‭access.‬

‭●‬ ‭If compatible with company policies, give application operators and application developers‬
‭view‬‭access to‬‭project-x-ops‬‭.‬

‭○‬ ‭Application developers and application operators can benefit from debugging other‬
‭services that they depend on or are dependencies of.‬

‭○‬ ‭Placing all metrics and logs in a single project allows most effective use of Cloud‬
‭Operations.‬

‭○‬ ‭Placing all metrics and logs in a single project ensures proper tagging of logs and‬
‭metrics with cluster identifiers.‬

‭●‬ ‭Platform teams should create dashboards and grant permissions with IAM conditions on them‬
‭for one or more appropriate teams to see the dashboard.‬

‭Application monitoring‬
‭●‬ ‭All application metrics go to the operations project.‬
‭●‬ ‭Application metrics are automatically labeled and the labels can be used for aggregation of‬

‭metrics. Labels include the cluster name, namespace name, project, pod name, deployment‬
‭name, and user-provided Kubernetes labels. The following‬‭Applications‬‭section provides more‬
‭details on recommended labels.‬

‭●‬ ‭Applications which provide Anthos Service Mesh services also produce service logs. These‬
‭service logs also go to the operations project.‬

‭●‬ ‭You have two options for giving application developers access to monitoring data:‬
‭○‬ ‭Give application developer teams‬‭view‬‭permissions‬‭on the namespace and on the‬

‭cloud resources in this team / function project.‬
‭○‬ ‭Delegate dashboard access with a third-party tool.‬

‭Page‬‭27‬‭of‬‭35‬

‭System monitoring‬
‭We recommended that you set service level indicators (SLIs) to track the health of GKE clusters, and‬
‭define playbooks for responding to these conditions. The following suggested SLIs cover the ability‬
‭and performance of the cluster to schedule workloads. These SLIs use metrics that are available in‬
‭Cloud Monitoring:‬

‭●‬ ‭Control plane responsiveness:‬
‭○‬ ‭Suggested SLI: 90th percentile control plane request latency‬
‭○‬ ‭PromQL expression:‬

‭histogram_quantile(0.9,sum(‬
‭rate(kubernetes_io:anthos_apiserver_request_duration_seconds‬
‭_bucket[5m])) by (cluster_name, le))‬

‭○‬ ‭Alert: Establish a baseline value and then alert if 2x above baseline.‬
‭○‬ ‭Response to alert: Control plane latency may increase if an excessive number of‬

‭objects are created, or if automated processes are sending an excessive number of‬
‭requests.‬

‭●‬ ‭Node availability:‬
‭○‬ ‭Suggested SLI‬‭:‬‭Number of nodes not ready for more‬‭than 10 minutes.‬
‭○‬ ‭PromQL expression:‬

‭sum(kubernetes_io:anthos_kube_node_status_condition{conditio‬
‭n="Ready",status="true"})/sum(kubernetes_io:anthos_kube_node‬
‭_status_condition{condition="Ready"})‬

‭○‬ ‭Alert: Start by alerting if any nodes aren't ready for more than 10 minutes. Adjust with‬
‭experience with your workloads.‬

‭○‬ ‭Response to alert:‬
‭■‬ ‭Check last known values of secondary node status conditions, such as with the‬

‭following PromQL expressions:‬
‭●‬ ‭Memory pressure:‬

‭sum‬
‭(kubernetes_io:anthos_kube_node_status_condition{‬
‭condition="MemoryPressure",status="true"})‬

‭●‬ ‭Running out of disk space:‬

‭Page‬‭28‬‭of‬‭35‬

‭sum‬
‭(kubernetes_io:anthos_kube_node_status_condition{‬
‭condition="DiskPressure",status="true"})‬

‭■‬ ‭Confirm network reachability between unready node and control plane.‬

‭●‬ ‭Scheduler latency:‬
‭○‬ ‭Suggested SLI: Median end-to-end scheduling latency (the length of time that it takes‬

‭from Pod creation to when the node name is set on the Pod object).‬
‭○‬ ‭PromQL expression:‬

‭histogram_quantile(0.5,sum(kubernetes_io:anthos_scheduler_po‬
‭d_scheduling_duration_seconds_bucket) by (le))‬

‭○‬ ‭Alert: Start by alerting if the median scheduling time exceeds one second. Adjust with‬
‭experience with your workloads.‬

‭○‬ ‭Response to alert:‬
‭■‬ ‭Investigate number of pending pods in scheduler queue‬

‭(‬‭kubernetes_io:anthos_scheduler_pod_scheduling_duration_seco‬
‭nds‬‭)‬

‭■‬ ‭Investigate pending pod resource status.‬

‭●‬ ‭Monitor your cluster networking (DataplaneV2) metrics to avoid exceeding kernel resource‬
‭limits‬‭16‬‭.‬

‭Page‬‭29‬‭of‬‭35‬

‭Logging‬
‭Choose one of the following options for providing logs access to application operator teams:‬

‭●‬ ‭Grant application operator teams‬‭view‬‭access to the‬‭logs project. This approach works well if‬
‭a single application operator team already manages most applications and has application logs‬
‭access.‬

‭●‬ ‭Don't grant‬‭view‬‭access to application operator teams.‬‭This approach works well if existing‬
‭policies don't allow application operator teams to access logs.‬

‭●‬ ‭Create logging views‬‭17‬ ‭for each application operator‬‭team. Create a filter to control which logs‬
‭each application operator team can use. This approach works when there are several, but less‬
‭than 25, different application operator teams that each manage different sets of applications.‬

‭Roles and permissions‬
‭In this section, permissions are suggested for two different types of organizations.‬

‭In the first type of organization, a platform team hides the complexity of operations and infrastructure‬
‭for developers. Application developers don't directly participate in operating applications in staging‬
‭and production environments. They might be unaware of facts like their containerized applications are‬
‭deployed onto Kubernetes, what clusters exist, or how individual applications are replicated. For this‬
‭type of organization, the‬‭minimum permissions‬‭are‬‭recommended.‬

‭The second type of organization promotes the development of a‬‭DevOps culture‬‭- a shared sense of‬
‭responsibility between development and operations teams for the health of services. This approach‬
‭requires additional permissions for application teams. The‬‭expanded permissions‬‭are recommended‬
‭for the second type of organization.‬

‭GKE Enterprise supports both types of organization, and organizations at various points in between.‬

‭The following roles are assumed:‬

‭●‬ ‭Application developer team:‬
‭○‬ ‭In the first type of organization, there may be no need for this role to have permissions‬

‭on any of the resources covered in this document.‬
‭○‬ ‭In the second type, application developer teams are assumed to take a role in‬

‭observing whether their applications meet service level objectives. To make these‬
‭observations, teams need some level of access to monitoring, and to see the‬
‭configuration and status of deployed applications. Teams don't necessarily need to see‬
‭the logging data itself, which might contain more sensitive information.‬

‭Page‬‭30‬‭of‬‭35‬

‭○‬ ‭In larger organizations of the second type, there might be multiple distinct application‬
‭developer roles, like‬‭app-dev-team-1‬‭,‬‭app-dev-team-2‬‭,‬‭or‬‭app-dev-team-3‬‭.‬
‭Each team might specialize in developing and operating different sets of applications.‬

‭●‬ ‭Application operator team:‬
‭○‬ ‭The application operator team typically sets SLOs or alerts for applications, and‬

‭responds to application-level issues.‬

‭●‬ ‭Network operator team:‬
‭○‬ ‭The network operations team manages global and local traffic in aggregate, and‬

‭controls the lower layers of the network stack.‬

‭●‬ ‭Platform team:‬
‭○‬ ‭The platform team develops and manages a platform which application developers use‬

‭to deploy applications, while meeting numerous security, governance, reliability, cost,‬
‭and other constraints.‬

‭○‬ ‭In the first type of organization, the platform team may also take on the application‬
‭operator role.‬

‭○‬ ‭In the second type of organization, the application operators are typically a distinct‬
‭role.‬

‭Project permissions‬
‭The following table outlines the roles that each persona should be assigned to the various projects‬
‭used in this reference architecture:‬

‭Role‬ ‭Project‬ ‭Minimum permissions‬ ‭Expanded permissions‬

‭Application‬
‭developer‬
‭team‬‭xyz‬

‭project-0-net‬ ‭∅‬ ‭∅‬

‭project-2-fleet-prod‬

‭project-3-fleet-staging‬

‭∅‬ ‭roles/monitoring.viewer‬

‭roles/gkeonprem.admin‬
‭roles/gkehub.viewer‬
‭roles/gkehub.gatewayEditor‬
‭roles/gkeonprem.viewer‬

‭project-n-app-xyz‬ ‭∅‬ ‭roles/viewer‬

‭Application‬
‭operations‬
‭team for‬
‭application‬
‭of team‬‭xyz‬

‭project-0-net‬ ‭∅‬ ‭roles/viewer‬

‭project-2-fleet-prod‬

‭project-3-fleet-staging‬

‭roles/monitoring.viewer‬

‭roles/gkehub.viewer‬
‭roles/gkehub.gatewayEditor‬
‭roles/gkeonprem.viewer‬

‭roles/monitoring.viewer‬

‭roles/logging.viewer‬
‭or‬
‭roles/logging.viewAccessor‬

‭roles/gkehub.viewer‬

‭Page‬‭31‬‭of‬‭35‬

‭roles/gkehub.gatewayEditor‬
‭roles/gkeonprem.viewer‬
‭roles/logging.viewer‬

‭project-n-app-xyz‬ ‭roles/viewer‬ ‭roles/editor‬

‭Network‬
‭operations‬
‭team‬

‭project-0-net‬ ‭roles/viewer‬ ‭roles/owner‬

‭project-2-fleet-prod‬
‭project-3-fleet-staging‬

‭∅‬ ‭roles/monitoring.viewer‬

‭project-n-app-n‬ ‭∅‬ ‭roles/viewer‬

‭Platform‬
‭team‬

‭project-0-net‬ ‭roles/monitoring.viewer‬ ‭roles/monitoring.viewer‬

‭project-2-fleet-prod‬

‭project-3-fleet-staging‬

‭roles/owner‬ ‭roles/owner‬

‭project-n-app-xyz‬ ‭roles/owner‬ ‭roles/owner‬

‭Some application development teams might develop multiple applications, and some application‬
‭operator teams might operate apps from multiple development teams. In the previous table,‬‭xyz‬
‭refers to one or more applications or groups of closely related applications. Some individuals might‬
‭also work on multiple teams.‬

‭Cluster permissions‬
‭The following table outlines the permissions that each persona should be assigned to the clusters‬
‭used in this reference architecture:‬

‭Role‬ ‭Cluster type‬ ‭Minimum permissions‬ ‭Expanded permissions‬

‭Application‬
‭developer and‬
‭operator‬
‭teams‬‭xyz‬

‭Admin cluster‬ ‭∅‬ ‭∅‬

‭User cluster‬
‭(production)‬

‭∅‬ ‭Cluster read-only‬‭1‬

‭User cluster (non-production)‬ ‭Namespace read-only‬‭1‬ ‭Cluster read-only‬

‭Namespace read-write‬‭1‬

‭Network‬
‭operations‬
‭team‬

‭Admin cluster‬ ‭∅‬ ‭∅‬

‭User cluster‬
‭(production)‬

‭∅‬ ‭∅‬

‭User cluster (non-production)‬ ‭∅‬ ‭∅‬

‭Platform team‬ ‭Admin cluster‬ ‭Cluster admin [1]‬

‭User cluster‬
‭(production and non-production)‬

‭Cluster admin [1]‬

‭Page‬‭32‬‭of‬‭35‬

‭Anthos‬
‭Support‬
‭(Google‬
‭employees)‬

‭Admin cluster‬ ‭Read-only [2]‬

‭User cluster‬ ‭∅‬ ‭Read-only [2]‬

‭1: Generate with‬‭gcloud container hub memberships‬‭generate-gateway-rbac‬‭(‬‭ref‬‭)‬
‭2: Generate with‬‭gcloud container hub memberships‬‭generate-gateway-rbac —anthos-support‬‭(‬‭ref‬‭)‬

‭Applications‬

‭Namespaces and app projects‬
‭Use the following guidance for naming namespaces and projects:‬

‭●‬ ‭When you create a new application, give it a descriptive name prefix, such as‬‭shoppingcart‬
‭for a shopping cart service.‬

‭●‬ ‭Create a project to hold Google Cloud resources related to the application, like images, such‬
‭as‬‭project-5-shoppingcart-app‬‭.‬

‭●‬ ‭Compose a namespace name which is the same as the application name. In this example, the‬
‭namespace would be called‬‭shoppingcart‬‭.‬

‭●‬ ‭Typically, you use the global DNS load balancer to balance incoming traffic across sites for the‬
‭shopping cart service.‬

‭Some services might run at multiple sites and are fungible, meaning that any one of them can serve‬
‭the same request. In this scenario, use the following pattern:‬

‭●‬ ‭Use the same namespace name in all clusters that receive a share of the same traffic from the‬
‭global traffic manager.‬

‭●‬ ‭Use the same service name at each site.‬

‭As an example, you might run the‬‭shoppingcart‬‭service‬‭in cluster‬‭cluster-abc01-prod‬‭and‬
‭cluster-xyz01-prod‬‭. Both clusters serve requests for‬‭the shopping cart portion of the same‬
‭website, so both clusters use the same namespace name.‬

‭For a set of services that have similar configuration, but handle different types of requests or data, use‬
‭different namespace names for each instance. For example, if three separate database instances‬
‭need to be deployed to hold user, product, and sales data, put them in namespaces‬‭user-db‬‭,‬
‭product-db‬‭,‬‭and‬‭sales-db‬‭.‬

‭During version rollout, Anthos Service Mesh can be used to do blue-green update, or Kubernetes‬
‭deployment may be used for rolling update.‬

https://cloud.google.com/sdk/gcloud/reference/container/hub/memberships/generate-gateway-rbac
https://cloud.google.com/sdk/gcloud/reference/container/hub/memberships/generate-gateway-rbac

‭Page‬‭33‬‭of‬‭35‬

‭For a set of services that have a similar service configuration, like from the same Helm chart, but‬
‭aren't fungible or won't ever see the same request stream, use different namespace names. For‬
‭example, two services on different sites or the same site that serve different purposes like logistics‬
‭and sales, use namespaces like‬‭logistics-db‬‭and‬‭sales-db‬‭.‬

‭Application workspaces‬
‭●‬ ‭Allocate application names from a global centrally managed list. Avoid reuse within your‬

‭organization.‬
‭○‬ ‭Namespace names are constructed from application name plus suffixes which indicate‬

‭environment and location.‬
‭○‬ ‭Don't use the same application or namespace name for two unrelated purposes, even‬

‭across clusters. If these clusters are later combined into a single fleet, the namespace‬
‭names will then collide.‬

‭●‬ ‭Create a new namespace when deploying an application that is new to GKE.‬
‭○‬ ‭Several closely interacting applications can share a namespace, if they're developed‬

‭and managed by the same team.‬
‭●‬ ‭Make a team or function project for each namespace.‬

‭○‬ ‭Several namespaces that are developed and managed by the same people can share a‬
‭project.‬

‭●‬ ‭For each application that needs to interact with Google Cloud resources:‬
‭○‬ ‭Create a service account in the application's project, such as‬‭project-‬‭n‬‭-app-‬‭xyz‬‭.‬
‭○‬ ‭Grant the workload identities in that namespace permission to access cloud resources‬

‭that they need to operate, such as Cloud Storage buckets or Cloud databases.‬

‭Design and deploy applications‬
‭●‬ ‭When possible, refactor monolithic applications into smaller services‬‭18‬‭.‬
‭●‬ ‭When building images for newly written applications, prefer distro-less images.‬
‭●‬ ‭Where possible, use active-active replication for applications, and use the following‬

‭considerations:‬
‭○‬ ‭Run at least three Pods for low traffic production applications.‬
‭○‬ ‭Place these Pods behind a service.‬
‭○‬ ‭When porting larger single instance applications, reduce the memory and CPU‬

‭requirements proportionally.‬
‭○‬ ‭Running a single Pod is acceptable for development environments where you don't‬

‭need redundancy.‬

‭Page‬‭34‬‭of‬‭35‬

‭●‬ ‭Run distributed applications across clusters, with multi-cluster ingress. This approach helps‬
‭distribute application load, and helps minimize the impact of a misconfiguration or failed‬
‭application update in one cluster.‬

‭●‬ ‭Stateful applications can be deployed in containers.‬
‭○‬ ‭Use pod disruption budgets (PDBs) to define your tolerance of disruptions‬‭19‬‭.‬

‭●‬ ‭When deploying a new application, create a P‬‭odMonitoring‬‭resource‬‭20‬ ‭for each workload‬
‭(statefulset, deployment) in the application's namespace. This approach sends application‬
‭metrics to the operations project. Mesh service-level metrics should also go to that project.‬

‭Page‬‭35‬‭of‬‭35‬

‭References‬
‭1.‬ ‭https://docs.vmware.com/en/VMware-vSphere/6.7/com.vmware.vsphere.avail.doc/GUID-AC35E‬

‭FDD-F8B7-4FAF-B946-6553D7BDBF31.html‬
‭2.‬ ‭https://docs.vmware.com/en/VMware-vSphere/6.7/com.vmware.vsphere.resmgmt.doc/GUID-82‬

‭7DBD6D-08B7-4411-9214-9E126671457F.html‬
‭3.‬ ‭https://opencontainers.org/‬
‭4.‬ ‭https://helm.sh/docs/topics/chart_repository/‬
‭5.‬ ‭https://cloud.google.com/anthos-config-management/docs/how-to/using-asm-security-policy‬
‭6.‬ ‭https://cloud.google.com/anthos-config-management/docs/latest/reference/constraint-templa‬

‭te-library#k8spsphostfilesystem‬
‭7.‬ ‭https://cloud.google.com/service-mesh/docs/security/anthos-service-mesh-security-best-pra‬

‭ctices#enable-access-controls‬
‭8.‬ ‭https://cloud.google.com/architecture/migrating-containers-openshift-anthos-scc‬
‭9.‬ ‭https://cloud.google.com/architecture/service-meshes-in-microservices-architecture‬
‭10.‬ ‭https://cloud.google.com/service-mesh/docs/unified-install/off-gcp-multi-cluster-setup‬
‭11.‬ ‭https://cloud.google.com/service-mesh/docs/security/anthos-service-mesh-security-best-pra‬

‭ctices‬
‭12.‬ ‭https://cloud.google.com/anthos-config-management/docs/how-to/using-asm-security-policy‬

‭#high_strictness_level‬
‭13.‬ ‭https://cloud.google.com/service-mesh/docs/unified-install/install-anthos-service-mesh#install‬

‭_ca_service‬
‭14.‬ ‭https://istio.io/v1.14/docs/tasks/traffic-management/ingress/secure-ingress/‬
‭15.‬ ‭https://istio.io/latest/docs/tasks/traffic-management/egress/egress-gateway-tls-origination/‬
‭16.‬ ‭https://cloud.google.com/anthos/clusters/docs/bare-metal/latest/limits#dataplane_v2_ebpf_limi‬

‭t‬
‭17.‬ ‭https://cloud.google.com/logging/docs/logs-views‬
‭18.‬ ‭https://cloud.google.com/architecture/microservices-architecture-refactoring-monoliths‬
‭19.‬ ‭https://cloud.google.com/kubernetes-engine/docs/best-practices/upgrading-clusters#reduce-‬

‭disruption‬
‭20.‬‭https://cloud.google.com/anthos/clusters/docs/on-prem/latest/how-to/application-logging-mo‬

‭nitoring‬

https://docs.vmware.com/en/VMware-vSphere/6.7/com.vmware.vsphere.avail.doc/GUID-AC35EFDD-F8B7-4FAF-B946-6553D7BDBF31.html
https://docs.vmware.com/en/VMware-vSphere/6.7/com.vmware.vsphere.avail.doc/GUID-AC35EFDD-F8B7-4FAF-B946-6553D7BDBF31.html
https://docs.vmware.com/en/VMware-vSphere/6.7/com.vmware.vsphere.resmgmt.doc/GUID-827DBD6D-08B7-4411-9214-9E126671457F.html
https://docs.vmware.com/en/VMware-vSphere/6.7/com.vmware.vsphere.resmgmt.doc/GUID-827DBD6D-08B7-4411-9214-9E126671457F.html
https://opencontainers.org/
https://helm.sh/docs/topics/chart_repository/
https://cloud.google.com/anthos-config-management/docs/how-to/using-asm-security-policy
https://cloud.google.com/anthos-config-management/docs/latest/reference/constraint-template-library#k8spsphostfilesystem
https://cloud.google.com/anthos-config-management/docs/latest/reference/constraint-template-library#k8spsphostfilesystem
https://cloud.google.com/service-mesh/docs/security/anthos-service-mesh-security-best-practices#enable-access-controls
https://cloud.google.com/service-mesh/docs/security/anthos-service-mesh-security-best-practices#enable-access-controls
https://cloud.google.com/architecture/migrating-containers-openshift-anthos-scc
https://cloud.google.com/architecture/service-meshes-in-microservices-architecture
https://cloud.google.com/service-mesh/docs/unified-install/off-gcp-multi-cluster-setup
https://cloud.google.com/service-mesh/docs/security/anthos-service-mesh-security-best-practices
https://cloud.google.com/service-mesh/docs/security/anthos-service-mesh-security-best-practices
https://cloud.google.com/anthos-config-management/docs/how-to/using-asm-security-policy#high_strictness_level
https://cloud.google.com/anthos-config-management/docs/how-to/using-asm-security-policy#high_strictness_level
https://cloud.google.com/service-mesh/docs/unified-install/install-anthos-service-mesh#install_ca_service
https://cloud.google.com/service-mesh/docs/unified-install/install-anthos-service-mesh#install_ca_service
https://istio.io/v1.14/docs/tasks/traffic-management/ingress/secure-ingress/
https://istio.io/latest/docs/tasks/traffic-management/egress/egress-gateway-tls-origination/
https://cloud.google.com/anthos/clusters/docs/bare-metal/latest/limits#dataplane_v2_ebpf_limit
https://cloud.google.com/anthos/clusters/docs/bare-metal/latest/limits#dataplane_v2_ebpf_limit
https://cloud.google.com/logging/docs/logs-views
https://cloud.google.com/architecture/microservices-architecture-refactoring-monoliths
https://cloud.google.com/kubernetes-engine/docs/best-practices/upgrading-clusters#reduce-disruption
https://cloud.google.com/kubernetes-engine/docs/best-practices/upgrading-clusters#reduce-disruption
https://cloud.google.com/anthos/clusters/docs/on-prem/latest/how-to/application-logging-monitoring
https://cloud.google.com/anthos/clusters/docs/on-prem/latest/how-to/application-logging-monitoring

