

OAuth - The Big Picture

OAuth - The Big Picture

Greg Brail & Sam Ramji

OAuth - The Big Picture

2

Table of Contents

OAuth - The Big Picture

Introduction .. 3

Open platforms and security.. 3

Introducing OAuth ... 5

How does OAuth work? ... 6

OAuth flow for mobile apps ... 10

Why is OAuth good for API providers? ... 11

OAuth is complicated - is it worth the effort? ... 13

Implementing OAuth 2.0 ... 14

Is OAuth all you need for API security? .. 16

Conclusions ... 17

OAuth - The Big Picture

3

Introduction

OAuth has taken off as a standard way and a best practice for apps and websites to handle
authentication.

OAuth is an open protocol for allowing secure API authorization from desktop and web
applications through a simple and standard method. It manages handshakes between
applications and is used when an API publisher wants to know who is communicating with
the system. Many of the largest API publishers have implemented OAuth to handle write
access to their APIs.

We titled it OAuth – The Big Picture because it does not attempt to compete with sites about
the protocols as defined by RFC 5849 (OAuth 1.0) or OAuth 2.0 or explain the architecture
and in-depth technical and implementation details of OAuth. There are many great sites
and discussion groups (including wiki.OAuth.net and OAuth Google groups) that delve into
the details of OAuth and the evolving specification.

Rather, this e-book is designed for those who want to understand OAuth, its advantages
and challenges, what role it might play for their products, without having to know the fine
details of the protocol. We hope it will be a guide for members of the business development
team, product managers, technical evangelists, product architects, and so on who make
strategic decisions about their API products.

This e-book discusses what OAuth is, how it works, and how it fits with APIs and the
emerging world of open platforms. We take a look at the evolving OAuth specification and
why implementing OAuth can be complex. We provide some recommendations for how to
approach implementing OAuth to ultimately deliver a secure and great user experience for
web and mobile apps.

Open platforms and security

Businesses become platforms. Every market in history has had intermediaries. These
intermediaries connect buyers and sellers by knowing what both want and creating
convenient ways to transact.

Apps are the new intermediaries. They occupy many niches already and
continue to multiply, as do devices. Companies cannot build for all these
niches as each one requires expertise in design and development, and
there are too many niches.

As Marc Andreessen observed, and as Annabelle Gawer described in
Platform Leadership, the solution to these business problems across

http://tools.ietf.org/html/rfc5849
http://tools.ietf.org/html/draft-ietf-oauth-v2-23
http://wiki.oauth.net/
http://groups.google.com/group/oauth
http://www3.imperial.ac.uk/people/a.gawer

OAuth - The Big Picture

4

traditional industries has already been found: the platform business model. (Evans, Hagiu
and Schmalensee also explored the issues deeply in Invisible Engines (2006))

In short, software is eating the world… We are in the middle of a dramatic and broad
technological and economic shift in which software companies are poised to take over large
swathes of the economy. (Marc Andreessen, Aug 2011)

Platforms are open

As we’ve learned from digital natives like Twitter and Facebook, and Intel and Microsoft
before them, open platforms grow the fastest. In the API era of competition, speed is
crucial because critical mass leads rapidly to market dominance.

Open platforms mean that developers can build apps quickly and without formal
commitment to joint research, joint development, and joint marketing. They decouple
partners from the platform business’s cycles. The cost of innovation is significantly
reduced, enabling many more experiments to be made more quickly, increasing the chance
of a major improvement to the platform business, its customers, and the intermediaries.
This is low-friction innovation.

Open does not mean secure

This takes us to the stakes required for digital business in the API era.

For an intermediary to connect a buyer and a seller, there must be trust. The intermediary
must be trustworthy, and the transaction must be trustworthy. In modern businesses
buyers (users) have accounts with sellers (providers), filled with data as well as
transaction privileges. For the system to function well, buyers must be able to fire their
intermediary without breaking their relationship with the seller.

Historically and in traditional markets, reputations have been established through ongoing
transactions and personal interactions and reference.

With apps as the intermediary, new dynamics exist on top of the historical foundation.
Apps are new. They are often short-lived, and their business model depends on building a
high volume of users. They must have some way to have their first transaction and be
proven or else improved. This way must align with the loose coupling philosophy at the
heart of an open platform – otherwise we’ve just secured our way back into old-fashioned
closed businesses.

So how do you build a trustworthy system in an open world? It takes open security
architecture.

http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=10937
http://online.wsj.com/article/SB10001424053111903480904576512250915629460.html

OAuth - The Big Picture

5

Introducing OAuth

OAuth stands for Open Authorization. It’s a free and open protocol, built on IETF standards
and licenses from the Open Web Foundation, and is the right solution for securing open
platforms.

The developers of OAuth set out to solve the problem that services and passwords don’t
mix well as you start to combine apps and mash them up.

Imagine, in today’s environment of web APIs and mobile apps, if every web site that used
an API from another web site had to share and store that web site password. Soon you’d
have the proliferation of your passwords all over the Internet with every service you’ve
used from Facebook, to Twitter, to Skype, to your bank account. Do you trust them all with
your password?

OAuth is another way to authenticate to a service - a security protocol that allows users to
grant third-party access to their web resources without sharing their passwords.

The heart of OAuth is an authorization token with limited rights, which the user can revoke
at any time should they become suspicious or dissatisfied with the app they’re using to
access your business.

The valet key metaphor

OAuth supports this “delegated authentication” between web apps using a security token
called an "access token." Rather than relying on a single password as the master key for
every app that accesses an API, OAuth uses this token. An OAuth token gives one app access
to one API on behalf of one user.

Eran Hammer-Lahav, a spec author for OAuth, compares the token to a valet key. This is an
apt metaphor.

For most people, their car is one of their most valuable possessions, valued in tens of
thousands of dollars. They are convenient places to leave our other valuables like
computers and clothing. Yet we are sometimes required to give them to a parking
attendant or valet whom we’ve not met before. A valet key solves the problem – it’s an
access token with limited rights that can operate the vehicle but not grant access to the
trunk or glove box.

For great information about the history of OAuth, see Eran Hammer-Lahav’s guide.

http://hueniverse.com/oauth/guide/history/

OAuth - The Big Picture

6

Just enough permission

A corollary of the principle of least harm is the principle of “just enough permission”. An
app should have just enough permission to do the things the user wants it to. In OAuth,
permissions can be gracefully upgraded as well – if the user tries to do something in an app
and they haven’t authorized the corresponding permission, the business can give the user
the option to add that permission, using the bootstrapping sequence used to grant the
token in the first place.

Just enough responsibility

App developers are not security experts. A developer’s job is to make software that does
what it is supposed to. A security expert’s job is to make sure software never does what it
is not supposed to do.

App developers do not want responsibility of holding a user’s secret information.
Usernames and passwords, credit card or banking information, or the lifetime history of
everyone you’ve ever called or emailed – these are heavy secrets that require heavy
security. The right place for these is within your own business, secured by your own
experts and your own infrastructure investments.

Decoupling partners (app developers) from these challenges keeps security consistent
with the open platform potential for low-friction innovation.

How does OAuth work?

Simply, there are three entities (legs) to consider for an OAuth scenario:

 The user of a service – let’s call him Bob

 A client (a Web app, a mobile app, or a server) – let’s take the URL-shortening
service bit.ly as an example client

 The server (where the service runs) – let’s take Twitter as an example

OAuth - The Big Picture

7

How does our user Bob interact with Twitter through his bit.ly account?

1. Bob visits bit.ly on the web, which uses a service provided by Twitter. Bob already
has logins for bit.ly and Twitter.

2. Behind the scenes, bit.ly uses it’s OAuth credentials to begin the authentication
process for Bob.

Bit.ly redirects Bob temporarily to twitter.com to log in. (bit.ly never sees Bob’s
Twitter password).

The page hosted by Twitter that asks if an application can access Twitter on your
behalf is probably familiar to most of us by now.

Note that Twitter shows Bob what rights the app is asking for, and importantly what
the app will not be able to do – in this case, see that bit.ly cannot access Bob’s direct
messages or see his Twitter password.

https://bitly.com/

OAuth - The Big Picture

8

3. If this sign in is successful, bit.ly uses its own OAuth credentials (token) to retrieve
credentials for Bob (that’s the valet key that allows bit.ly to use Twitter on Bob’s
behalf).

4. Bit.ly stores Bob’s credentials along with Bob’s account. They allow him to use bit.ly
and only bit.ly to access Twitter.

OAuth - The Big Picture

9

Why is OAuth important?

What if bit.ly is hacked and someone steals all the passwords? Bob will have lost his bit.ly
password but the thieves don’t have his Twitter password.

The Twitter API team, knowing that bit.ly has been hacked, can decide to revoke bit.ly
OAuth credentials. Now everyone that uses bit.ly can’t use Twitter.

This is extreme but can be important when an app is severely comprised so you don’t have
to change your passwords.

On the other hand, if Bob decides to change his Twitter password, the token that bit.ly has
for Bob that allows him to access Twitter need not be affected.

Bit.ly never had Bob’s Twitter password so he doesn’t have to do anything at bit.ly – and he
will be able to access Twitter through bit.ly next time he tries.

OAuth - The Big Picture

10

OAuth flow for mobile apps

In the previous section we looked at how OAuth allows users to grant third-parties access
to their web services without sharing their passwords.

In that previous example, our user (Bob) accessed his Twitter account through the bit.ly
web site.

What happens when Bob is using a mobile app instead of a web app? It’s pretty much the
same for a mobile app as a web app. When you fire up your mobile app and want to access
Twitter, you don’t want to have to give the mobile app your Twitter password and store it
on your phone.

In the same way as happens for the web app, the phone app opens a browser window and
directs Bob to login to Twitter (and authorize bit.ly to use his Twitter account) - using
OAuth.

The phone app never sees Bob’s Twitter password.

The phone app uses its OAuth credentials to retrieve credentials for Bob. It stores these
locally. In this way,

OAuth allows this one phone app access to the Twitter service on behalf of one user
(Bob).

This all happens through your browser. There are both advantages and disadvantages to
this. The advantage of this is that the app never sees your password.

OAuth - The Big Picture

11

You don’t have to trust the person that built the app or worry about losing your phone (as
much).

If Bob loses his phone, he can log into Twitter and revoke the credentials that Twitter gave
the phone app. (A thief cannot uncover the password, only the token.)

The disadvantage is that the app has to open up a browser window. This possibly breaks
the flow of a nicely designed UI for a mobile app.

Twitter and Facebook for example, have made the choice to have everybody log in through
the browser. This is how they can ensure that third-party developers of mobile applications
never get access to the user’s real password. Since the OAuth token can be stored on the
mobile device, it’s not necessary for the user to go through this step every time they launch
the app, but only the first time.

On the other hand, opening up a browser window to log in a user, even once, can seem a bit
cumbersome. That’s why OAuth also makes it possible for a mobile app to ask the user for
the password directly, fetch the OAuth token, and then erase the password from memory.
This requires more trust in the mobile application, but some API providers, especially those
who build mobile applications in-house, can use this technique and still retain the other
advantages of OAuth, such as not having to store the password permanently on the device.

Why is OAuth good for API providers?

In previous sections we talked about why OAuth is good for users - how OAuth allows users
to grant third-parties access to their web services or mobile apps without sharing their
passwords.

We believe that OAuth is also good for API providers whether they are exposing APIs for
web apps or APIs designed for mobile apps.

OAuth means that Web apps that expose APIs don’t have to share passwords.

There are two alternatives: First, the security risk of typing your password into every
single web app you use – an unacceptable risk! Secondly, some sort of universal single sign-
on mechanism (run by a third party that everyone agrees upon and trusts), which of course
doesn’t exist!

Therefore, for all web apps that expose APIs to other web apps -- we recommend
OAuth.

OAuth eliminates the need to store a password on a mobile device, adding a layer of
security when an API is used by mobile apps built by untrusted developers for a public API.

OAuth - The Big Picture

12

Also, an OAuth token is hard to guess (because it is much longer and more random than a
password.) It is tied to a particular app and device. It can be revoked without affecting
other devices and apps.

OAuth allows the API provider to revoke tokens for an individual user, for an entire app,
without requiring the user to change their original password. This is critical if a mobile
device is compromised or if a rogue app is discovered.

OAuth also future proofs the authentication process. Because users’ browsers are
redirected to a place that’s under the control of the API team to get the OAuth token, the
API team can control what to do at that point in the workflow.

In other words, OAuth is flexible enough to support any of your company’s specific
workflows (think multi-factor authentication, terms of service, changes to terms of service,
and so on…) without requiring a change to the client or server.

Therefore, for APIs designed for mobile and native apps – we recommend OAuth.

OAuth - The Big Picture

13

OAuth is complicated - is it worth the effort?

Because OAuth eliminates password sharing between web apps, and password storage on
mobile devices, and importantly for the sake of your end-users’ experience and security, we
believe it is worth the effort.

There are reasons why OAuth seems more cumbersome and complicated for developers
than plain passwords. Let’s explore them as well as some recommendations to help you
make OAuth decisions.

How many versions of OAuth and which one should you use?

OAuth 1.0 The first "production" version of OAuth 1.0 didn't actually do authentication
delegation correctly and as a result, the spec itself had to be patched. No one should be
using OAuth 1.0 now.

OAuth 1.0a Not an IETF standard but stable and well understood.
Uses a form of a cryoptographic hash code to sign each API request and exchange
credentials between client and server. This means that you get API security without SSL
(not only is the password never exchanged but the OAuth token is never exchanged – it’s
encrypted inside the signature). But coding the signature right is tricky.

OAuth 2.0 Actively under development in the IETF.
OAuth 2.0 is quite stable now – core flows are unlikely to change. It supports a ‘bearer
token’, which is easier to code than the signature but requires SSL. (However, most APIs
should be using SSL by default anyway.) Optional specs support signatures, SAML, and so
on, but those specs are not yet stable.

The authentication dance is painful

There are a lot of great sites where you can get the details of the OAuth 1.0a authentication
flow chart, so I'm not going to tackle that here. It’s not simple. It gets a little simpler with
bearer tokens in OAuth 2.0 but because of the security requirements and the fact that you
have to exchange identity without a password, it's always going to be a little complex.

Signatures are painful

The good news is that in OAuth 2.0, signatures (the signing of each API call required in
OAuth 1.0) are optional. You can do SSL and use a bearer token. As was mentioned above,
getting the OAuth 1.0a signature algorithm right is difficult. If you’re going to use OAuth
1.0a, we recommend you use one of the many libraries that are available.

OAuth - The Big Picture

14

Where do you store the credentials on the client?

It is important for the security of the mobile app that there is no way for an attacker to
access to the device to access raw OAuth tokens. Unfortunately, there is no magic way to do
this that is safe from every possible attack. For instance, you could encrypt th token, but
then you need access to the key that decrypts it, and you can’t encrypt that. One technique
that makes life more difficult for an attacker is to encrypt the token using a key that is
broken into several pieces and scattered in different parts of your application’s files or
source code.

What should you do?

Be patient. If your API can require HTTPS, use the latest draft of OAuth 2.0 with bearer
tokens. Otherwise, use OAuth 1.0a. But the bottom line is that with your end-users’
experience and security top-of-mind, we believe OAuth is worth the effort.

Implementing OAuth 2.0

If your API can require HTTPS, you should use OAuth 2.0. Otherwise, use OAuth 1.0a. It's
possible to build an effective API right now using either a current draft of OAuth 2.0 (see
Facebook) or OAuth 1.0a (see Twitter).

There are three types of credentials in OAuth 2.0.

BEARER TOKEN: A bearer token is a big random number – if the client has the token, then
it’s authenticated, and since the number is big and random guessing is pretty much
impossible. Bearer tokens are easier for developers than OAuth 1.0a because they don’t
have to write the signature code. However, since it’s transmitted as part of each API
request in an HTTP header or a query parameter, bearer tokens provide no network
security unless all the API calls are encrypted using SSL – although APIs that do anything
sensitive ought to be requiring SSL anyway. This is the most straightforward of the
credential types to implement. Use it!

MAC TOKEN: Like OAuth 1.0a, uses signature instead of SSL. The spec is still changing so
we recommend that you wait. Once it is more stable, the use of the “MAC token” makes it
possible to securely authenticate users without encrypting all traffic – this will be a good
option for APIs that need the security of OAuth but handle very large requests or responses
where SSL is inefficient.

SAML: OAuth 2.0 is also being extended to support the Security Assertion Markup
Language (SAML) which is a very big and sophisticated security standard. Some big
organizations love SAML and use it all over the place – in that case, it makes sense to use
with OAuth. Otherwise, if you and your potential API developers don’t understand SAML or

OAuth - The Big Picture

15

know what it is, that’s a signal to stay away. Also, the OAuth 2.0 specs around SAML are still
fairly immature.

In short, we recommend that you use bearer tokens, as it is the simplest to implement.

How many legs?

OAuth is a protocol that involves three parties – the end user (who eventually holds and
uses the access token), the “client” web app or mobile app that makes API calls, and the
server that receives the API calls. Because there are three parties involved, many people
use the term “three-legged” to describe OAuth.

Not all APIs need to authenticate the user – think of a “store locator” API or one that
returns geographical information that is open to everyone. However, often these APIs wish
to authenticate the application and developer who built the app, either for security
purposes or to better track usage to make for a better API program.

Often this kind of application-specific validation is done using a unique “API key,” but in the
early days of OAuth many people also used the signature standard from OAuth 1.0a to do
this. (The advantage here is that it allows a set of credentials to be securely transmitted
from client to server without requiring SSL.) Since there are only two parties involved, this
technique came to be known as “two-legged OAuth.”

In the specific case of an API that requires application verification, but not end-user
authentication, and can’t handle the overhead of SSL, “two-legged OAuth” is a fine way to
go. Otherwise, adding a unique “API key” to each request as a header or query parameter is
simpler to implement and just as effective.

(One more pedantic note here – neither the OAuth 1.0 or 2.0 specs say anything at all about
“legs.” Whether “two-legged OAuth” is even OAuth at all is a fun subject for debate.)

OAuth - The Big Picture

16

Is OAuth all you need for API security?

OAuth has become the best practice and is essential for enabling secure user access and
providing smooth user experiences. We strongly recommend OAuth for API providers
when they are exposing APIs for web or mobile apps, but there are a couple of scenarios in
which OAuth might be overkill or not the best solution.

For server-to-server APIs - APIs designed to be used only by a small number of servers –
OAuth is overkill. Having a separate set of authentication credentials for each app is a nice
feature of OAuth, but for server-to-server use, the need to log in securely using a browser,
or to implement other steps in the OAuth “dance,” gets in the way.

Instead, using a simple security standard like HTTP Basic authentication and assigning a
unique password to each app is sufficient. Two-way SSL is another good, albeit
cumbersome approach that has the advantage of stronger, more traceable authentication.

However, think ahead! Are those APIs really only going to be used by servers forever? In
the future perhaps they’ll be used by web apps or mobile clients, or the number of servers
will grow far beyond what you first imagined. Furthermore, OAuth 2.0 has a number of
ways for servers to securely get tokens that don’t require a browser-based login. OAuth
might seem like overkill today, but emerge as totally critical a few months down the road.

Use SSL for everything sensitive. Unless your API exclusively has open and non-sensitive
data, support SSL and consider enforcing it by redirecting any API traffic on the non-SSL
port to the SSL port. It makes other authentication schemes more secure, and keeps your
user’s private API data from prying eyes—and it’s not all that hard to do.

Use API keys only for non-sensitive, read-only data. If you have a public API—which
exposes data you’d make public on the Internet anyway–consider issuing non-sensitive API
keys. These are easy to implement and still give you a way to identify applications and
developers. Armed with an API key, you have the option of establishing a quota for your
API, or at least monitoring usage by application. Without one, the only way to track usage is
through IP addresses, which are not reliable. For example, the Yahoo Maps Geocoding API
issues API keys so it can track its users and establish a quota, but the data that it returns is
not sensitive, so it’s not critical to keep the key secret. (“Two-legged OAuth” is another way
to do this that protects the API key on the network without requiring SSL.)

Sanitize incoming and outgoing data. This will prevent malicious code or content from
entering your system or being executed by clients that read your data. This practice should
be employed for all APIs, but may be especially important for writable ones. For example,
for a writable API, you do not want to allow insertion of JavaScript that could be used for
cross-site scripting attacks when users visit your website. For example, if a parameter
value is known to be numeric, it should be validated as numeric before being passed. Again,
this practice should be applied for all APIs, but may be more needed for writable APIs.

OAuth - The Big Picture

17

Are there other scenarios for which OAuth is unnecessary or even a bad idea?

Just like the server-to-server scenario, we think that OAuth doesn’t make sense in the
following scenarios:

 Anything that requires commercial levels of trust. For example, when your security
model requires the capabilities of a PKI infrastructure. Digitally signing each API call
is slow and cumbersome but if your business requires it, then there’s no substitute.

 One-time tokens. OAuth is a lot of complexity and machinery to make one API call.

Are there other OAuth anti-patterns out there?

Bad ideas include creating your own ‘version’ of OAuth or creating something that’s like
OAuth but different. Sticking with standards, and focusing your development efforts on
creating great apps seems like a better idea than rolling your own security scheme.

Conclusions

As more businesses follow the platform imperative and add APIs, there is an imperative for
the healthy growth of the market through the new intermediaries (apps). The imperative
is to make it easy for developers to build great, secure apps that can delight users and grow
businesses.

Teams who build APIs generally have to make many technical choices— SOAP or REST?
XML or JSON? OAuth or something else?

Because it prevents password propagation around the Internet, while supporting a variety
of ways to authenticate the end user, standardizing on OAuth is the clear choice for
security.

Resources

http://oauth.net/

OAuth: The Big Picture. Apigee Webinar video and slides

Apigee API Tech & Best Practices Blog

API Craft Google Group

About Greg Brail and Sam Ramji

Gregory Brail, Technology

Gregory Brail brings a variety of experience to Apigee from more than 18 years in the
industry. Prior to Apigee, Greg worked at BEA as technical lead for the WebLogic JMS team,
and kicked off BEA's "Core Engine" initiative, which built a modular "micro-kernel" using
core WebLogic technology. Prior to BEA, Greg served as Principal Architect for
TransactPlus, a JPMorgan spinoff that offered guaranteed message delivery over the
Internet. Greg began his career developing custom middleware libraries for Citibank, and
then spent his formative years with transaction-processing pioneers Transarc, where he
worked in the field, deploying production systems using Transarc technology at JPMorgan
and elsewhere. Greg holds a degree in Computer Science from Brown University. Greg is a
co-author of APIs: A Strategy Guide.

Sam Ramji, Strategy

Sam brings over 17 years of industry experience in enterprise software, product
development, and open source strategy. Prior to Apigee, Sam led open source strategy
across Microsoft, where he and his team worked with Bill Gates, Ray Ozzie, and contributed
code to the Linux kernel. He was a founding member of BEA's AquaLogic product team and
has built large-scale enterprise and Web-scale applications, leading the Ofoto engineering
team through its acquisition by Kodak. Other experience includes hands-on development of
client, client-server and distributed applications on Unix, Windows and Macintosh at
companies ranging from Broderbund to Fair Isaac. Sam holds a B.S. in Cognitive Science
from the University of California at San Diego, and is a member of the Institute for
Generative Leadership. He holds positions on the boards of the Outercurve Foundation for
open source, on the Open Cloud Initiative, and is a contributing editor to the ACM's journal
Ubiquity.

Both Greg and Sam are frequent contributors on the Apigee API Tech & best practices blog,
the Apigee YouTube channel, the API Craft Google Group, and Webinars.

http://oauth.net/
http://blog.apigee.com/detail/video_and_slides_oauth_the_big_picture/
http://blog.apigee.com/taglist/oauth
http://groups.google.com/group/api-craft/
http://shop.oreilly.com/product/0636920021223.do
http://blog.apigee.com/
http://www.youtube.com/apigee
http://groups.google.com/group/api-craft/
http://blog.apigee.com/taglist/webinar

About Apigee

Apigee is the leading provider of API products and technology for enterprises and
developers. Hundreds of enterprises like Comcast, GameSpy, TransUnion
Interactive, Guardian Life and Constant Contact and thousands of developers use
Apigee's technology. Enterprises use Apigee for visibility, control and scale of their
API strategies. Developers use Apigee to learn, explore and develop API-based
applications. Learn more at http://apigee.com.

Accelerate your API Strategy

Scale Control and Secure your Enterprise

Developers – Consoles for the APIs you

http://apigee.com/
http://apigee.com/about/resources
http://apigee.com/about/products/enterprise
http://apigee.com/providers

