
AlloyDB Omni Performance
Management Guide

Table of contents

Table of contents 1
Introduction 2

Database engine architecture 3
Performance testing methodology and best practices 4

Repeatability 5
Database size, caching, and I/O patterns 5
Benchmark Duration 6
Methodical testing 6
Network topology and latencies 6
Resource monitoring 8
Scalability testing 8
Machine size considerations 8

Interpret performance results 8
Tools for analyzing performance 12

PostgreSQL cumulative statistics system 12
Perfsnap 12

Install Perfsnap 13
Usage 13
Create snapshots 13
View a list of snapshots 13
Generate a perfsnap report 14
Perfsnap report 14
Performance report metadata 14
Host information 15
Load profile 15
Response time and wait class breakdown 15
Background process wait information 16
Database information 17
Database sizing information 18
Vacuum information 18
Backend wait event histogram 19

Did you find this document helpful? Please send us your feedback.

https://docs.google.com/forms/d/1zd0xBqo7DzI_U6xdZiAACA_1EAdpO-5mJiQ2rQyMU8w

Parameter settings 20
Linux performance tools 20

Resource considerations that affect performance 20
Instance sizing 20
CPU 21
Memory 21

AlloyDB Omni tuning parameters 21
Suggested parameters 21
Columnar engine tuning 23
Performance benchmarking guides 24

Introduction
This document outlines the best practices for designing effective performance tests, collecting
data, and analyzing performance metrics to tune AlloyDB Omni to efficiently handle your
application’s requirements.

The goal of performance testing and benchmarking is to assess the current performance of an
application or workload and to identify changes to the application, database, or hardware to
increase throughput, reduce latency, or both.

● Throughput
Throughput is the amount of work the database can process in a given amount of time.
Throughput is usually expressed as transactions per second (tps) or transactions per
minute (tpm).

● Latency
Latency, or response time, is the amount of time it takes to process a single request,
usually measured in milliseconds, seconds, or sometimes larger time amounts for
complex reporting and analytics use cases.

Tuning the performance of database applications requires an understanding of how databases
respond to queries. Having a high level picture of how the database system processes a
request helps you to understand the different metrics that characterize performance and what
actions to take to reach your performance goals.

Database engine architecture
A database engine translates a client’s query into an executable plan, finds the data necessary
to satisfy the query, performs any necessary filtering, ordering, and aggregation, and returns the
results to the client.

Did you find this document helpful? Please send us your feedback.

https://docs.google.com/forms/d/1zd0xBqo7DzI_U6xdZiAACA_1EAdpO-5mJiQ2rQyMU8w

Figure 1 shows the database layers that work together to respond to a client's query.
● First, the query processing layer parses the query and turns it into an execution plan.
● The execution plan is fed to the query execution layer, which performs the operations

needed to compute the response to the query.
● During execution, data could be loaded from the buffer cache (if data is present in the

cache), or loaded directly from storage (otherwise). If it is loaded from storage, the data
is stored in the cache, for future uses.

Resources used when processing the client's query include CPU, memory, I/O, network, and
synchronization primitives like database locks. Performance tuning aims to optimize resource
utilization during each of the steps in query execution.

Did you find this document helpful? Please send us your feedback.

https://docs.google.com/forms/d/1zd0xBqo7DzI_U6xdZiAACA_1EAdpO-5mJiQ2rQyMU8w

The goal of a performant database engine is to respond to a query using the fewest resources
required. This goal starts with a good data model and query design. How can queries be
answered while looking at the least amount of data? What indexes are needed to reduce the
search space and I/O? Sorting data requires CPU and, often, disk access for large data sets, so
how can sorting data be avoided?

Data in Postgres is stored in fixed-sized blocks that are stored in the file system. Blocks are also
cached in the Postgres buffer pool. When a block is needed, Postgres first checks its buffer
pool. If the page is not found, Postgres reads from the file system. Buffer pool reads are
memory accesses and significantly faster than reads from storage. Maximizing the buffer pool
for the working set of an application is an important factor when choosing the machine
specifications for your database server.

AlloyDB Omni introduces dynamic memory management to Postgres. Postgres typically has a
fixed buffer pool size. AlloyDB Omni allows the buffer pool to grow and shrink dynamically,
within configured bounds, depending on the memory demands of the system. Therefore, there
is no need to tune the buffer pool size. When diagnosing performance issues, the first metrics to
consider are the buffer pool hit rate and the read rate to see if your application is getting the
benefit of the buffer pool. If not, that indicates that the application's data set does not fit in the
buffer pool, and you could consider resizing to a larger machine with more memory.

Retrieving, filtering, aggregating, sorting, and projecting data all require CPU on the database
server. Minimizing the amount of data that needs to be manipulated helps reduce the CPU
required to filter, aggregate, and sort the results. You should monitor the CPU utilization on the
database server to ensure the steady state utilization is around 70%. This amount leaves
sufficient headroom on the server for spikes in utilization or changes in access patterns over
time. Running at closer to 100% utilization introduces overhead due to process scheduling and
context switching and might create bottlenecks in other parts of the system. High CPU utilization
is another key metric to use when making decisions about machine specifications.

I/O is one of the most important factors in database application performance. For all database
servers, read performance will be better when data is resident in the buffer pool, which is why
efficient use of memory is so important.

Performance testing methodology and best practices
When benchmarking performance, it’s important to define what you expect to learn from the test
before beginning. Some questions you might consider are the following:

● What is the maximum throughput the system can achieve?
● How long does a particular query or workload take?
● How does the performance change as the amount of data increases?
● How does the performance of two different systems compare?
● How much does the Columnar Engine reduce the response time of my query

performance?

Did you find this document helpful? Please send us your feedback.

https://docs.google.com/forms/d/1zd0xBqo7DzI_U6xdZiAACA_1EAdpO-5mJiQ2rQyMU8w

● How much load can a database handle before I should consider upgrading to a more
powerful machine?

Understanding the goals of your performance study informs what benchmark you run, what
environment is required, and what metrics you need to collect.

Repeatability
To draw conclusions from performance testing, the results must be repeatable. If there is wide
variation in performance from test to test, it becomes difficult to assess the impact of changes
you made in the application or the system configuration. Running tests multiple times or for
longer periods of time can help lower the amount of variation by providing more data.

Ideally, performance tests should be run on systems that are isolated from others. Running in an
environment where other people’s actions can affect the performance of your application can
lead to drawing incorrect conclusions. Full isolation is often not possible when running in a
multi-tenant, cloud environment, so you should expect to see greater variability in the results

Part of repeatability is ensuring that the test workload remains the same between runs. There is
usually some randomness in the input to a test, which is acceptable as long as the randomness
does not cause significantly different application behavior. For instance, if randomly generated
client input changes the mix of reads and writes from run to run, performance will vary
significantly.

Database size, caching, and I/O patterns
Ensure the amount of data you are testing with is representative of your application. Running
tests with a small amount of data when you have hundreds of gigabytes or terabytes of data will
likely not give you a true representation of how your application performs. The size of the data
set also influences choices the query optimizer makes. Queries against small test tables may
use table scans that give poor performance at larger scales and you won’t identify missing
indexes in this configuration.

Strive to replicate the I/O patterns of your application. The ratio of reads to writes is important to
the performance profile of your application.

Benchmark Duration
In a complex system, there is a lot of state information that is maintained as the system
executes: database connections are established, caches are populated, processes and threads
are spawned.
At the start of a performance test, the initialization of these components could take up system
resources and adversely affect the measured performance if the runtime of the workload is too
short.

Did you find this document helpful? Please send us your feedback.

https://docs.google.com/forms/d/1zd0xBqo7DzI_U6xdZiAACA_1EAdpO-5mJiQ2rQyMU8w

We recommend running performance tests for at least 20 minutes to minimize the effects of
warming up the system. Measure performance during a steady state after startup and long
enough to ensure that all aspects of database operations are included. For instance, database
checkpoints are a critical feature of database systems and can have a significant impact on
performance. Running a short benchmark that completes before the checkpoint interval hides
this important factor in your application’s behavior.

Methodical testing
When tuning performance, it is important to change only one variable at a time. If you change
multiple aspects of a workload between runs, you won't be able to isolate which change
improved performance. In fact, it is possible that multiple changes offset each other so you won't
see the benefit of an appropriate change. If the database server is overutilized, try switching to a
machine with more vCPUs while keeping the load constant. If the database server is
underutilized, try increasing the load while keeping the CPU configuration constant.

Network topology and latencies
The network topology of your system can affect the performance test results. Latency between
zones differs. When doing performance testing, ensuring that the client and the database cluster
are in the same zone minimizes the network latency and yields the best performance–especially
for applications with high throughput, short transactions as the network latency can be a big
component of the overall transaction response time.

When comparing the performance of two different systems, ensure the network topology is the
same for both systems. Note that network latency variability cannot be completely eliminated,
even within the same zone there can be differences in latency due to underlying network
topologies.

When it comes to deploying your application, you might want to better understand the impact of
cross zone latencies by considering a typical high volume web application. The application has
a load balancer sending requests to multiple web servers deployed across multiple zones for
high availability. The latencies might differ depending on which web server processes a request
because of cross-zone latency differences.

Did you find this document helpful? Please send us your feedback.

https://docs.google.com/forms/d/1zd0xBqo7DzI_U6xdZiAACA_1EAdpO-5mJiQ2rQyMU8w

Figure 2 shows the typical architecture of a web application using AlloyDB Omni.
● Client requests are handled by a load balancer, which forwards each request to one web

server out of many.
● The web servers are all connected to AlloyDB Omni. Some servers are in a different

zone from where AlloyDB Omni is running, and will encounter higher latencies when
making database requests.

Did you find this document helpful? Please send us your feedback.

https://docs.google.com/forms/d/1zd0xBqo7DzI_U6xdZiAACA_1EAdpO-5mJiQ2rQyMU8w

Figure 2 shows a typical web application architecture. In this example, we would expect lower
latencies when Web Servers 2 and 3 make requests to the database because they are in the
same zone as the AlloyDB Omni database.

Resource monitoring
Monitoring the resource utilization of the system you are testing is critical. Monitoring the
resource utilization of the client systems you are using to drive the workload is equally
important. For example, if you are trying to find the maximum number of clients a system can
support before it runs out of CPU, you won't be able to drive the system hard enough if the
machines generating load don't have sufficient CPU themselves.

Scalability testing
Scalability testing is another aspect of performance testing. Scalability refers to how
performance metrics change as one characteristic of a workload varies. Some examples of
scalability studies include:

● How does the increase in the number of concurrent requests change throughput and
response times?

● How does the increase in database size change the throughput and response times?

Scalability tests consist of multiple runs or a workload where a single dimension is varied
between runs and one or more metrics are collected and plotted. This type of testing informs
decisions about what bottlenecks exist in the system, how much load the system can handle
given a specific configuration, what the maximum load a system can support, and what the
behavior of the system is when the load increases beyond those levels.

Machine size considerations
AlloyDB Omni introduces many new features to Postgres to improve the reliability and
availability of the database. The monitoring necessary to do this uses resources on the machine
running AlloyDB Omni. On very small machine sizes there are limited memory and CPU
resources to begin with, so for benchmarking, we recommend using machine sizes of 4 vCPUs
minimally.

Interpret performance results
When you graph throughput over time as another variable is modified, typically you see
throughput increase until it reaches a point of resource exhaustion.

Did you find this document helpful? Please send us your feedback.

https://docs.google.com/forms/d/1zd0xBqo7DzI_U6xdZiAACA_1EAdpO-5mJiQ2rQyMU8w

Figure 3 shows a typical throughput scaling graph, with number of clients on the x-axis, and
throughput on the y-axis. As the number of clients increases, they generate more workload, and

so overall throughput increases. However, at some point, the database is saturated and can
handle no more requests, so further increase in the number of clients do not increase

throughput any more.

Figure 3 shows a typical throughput graph. In an ideal situation, as you double the load on the
system, throughput should double. In practice there will be contention on resources that leads to
smaller throughput increases. At some point resource exhaustion or contention will cause
throughput to flatten out or even decrease. If you are optimizing for throughput, this is a key
point to identify as it drives your efforts into where to tune the application or database system to
improve throughput.

Typical reasons for throughput to level off or drop include:
● CPU exhaustion on the database server
● CPU exhaustion on the client so the database server is not being sent more work
● Database lock contention
● I/O wait time when data exceeds the size of the Postgres buffer pool
● I/O wait time due to storage engine utilization
● Network bandwidth bottlenecks returning data to the client

Typically, latency and throughput are inversely proportional. As latency increases, throughput
decreases. Intuitively this makes sense. As a bottleneck begins to materialize, operations start
to take longer and the system performs fewer operations per second.

Did you find this document helpful? Please send us your feedback.

https://docs.google.com/forms/d/1zd0xBqo7DzI_U6xdZiAACA_1EAdpO-5mJiQ2rQyMU8w

Figure 4: Typical latency scaling graph

Figure 4 shows the typical shape of how latency changes as the load placed on a system
increases. Latency stays relatively constant until friction occurs due to resource contention. The
inflection point of this curve generally corresponds to the flattening of the throughput curve in
Figure 3.

Another useful way to evaluate latency is as a histogram. In this representation, we group
latencies into buckets and count how many requests fall into each bucket.

Figure 5: Typical latency histogram

Figure 5 illustrates a typical histogram. Most requests take under 100 milliseconds. There’s a tail
of requests with longer latencies. Understanding the cause of the tail can help explain variation
seen in application performance. The causes of the tail correspond to the increased latencies

Did you find this document helpful? Please send us your feedback.

https://docs.google.com/forms/d/1zd0xBqo7DzI_U6xdZiAACA_1EAdpO-5mJiQ2rQyMU8w

seen in the typical latency scaling graph (Figure 4) and the flattening of the throughput graph
(Figure 3).

Where the latency histogram is most useful is when there are multiple modalities in an
application. A modality is a normal set of operating conditions. For instance, most of the time the
application is accessing pages that are in buffer cache. Most of the time, the application is
updating existing rows, however, there might be multiple modes. Some of the time, the
application is retrieving pages from storage, inserting new rows, or is experiencing lock
contention.

When an application encounters these different modes of operation over time, the latency
histogram shows these multiple modalities.

Figure 6: Bimodal latency histogram

Figure 6 shows what a bimodal histogram looks like. Most of the requests are serviced in under
100 milliseconds, but there’s another cluster of requests that take 401-500 milliseconds.
Understanding the cause of this second modality can help improve the performance of your
application. There can be more than two modalities as well.

The second modality might be due to normal database operations, heterogeneous infrastructure
and topology or application behavior. Some examples to consider are the following:

● Most data accesses are from the PostgreSQL buffer pool, but some come from storage
● Differences in network latencies for some clients to the database server
● Application logic that performs different operations depending on input or time of day
● Sporadic lock contention
● Spikes in client activity

Did you find this document helpful? Please send us your feedback.

https://docs.google.com/forms/d/1zd0xBqo7DzI_U6xdZiAACA_1EAdpO-5mJiQ2rQyMU8w

Unset

Tools for analyzing performance

PostgreSQL cumulative statistics system
AlloyDB Omni exposes PostgreSQL's cumulative statistics system, which collects and reports
information about server activity. This information is exposed as system tables, which can be
queried through SQL.

For example, the query reports the number of disk blocks found in the buffer cache and number
of disk blocks read from disk:

SELECT blks_hit, blks_read FROM pg_stat_database;

By observing the values of these counters over time, you can infer whether the database is
making good use of the buffer cache.

The PostgreSQL documentation has more information about its cumulative statistics system.

Perfsnap
Perfsnap is a performance analysis tool, similar to Oracle’s AWR, that captures
snapshots of crucial system metrics like CPU usage, memory usage, disk I/O, and wait events.
By comparing these metrics to a performance baseline, the tool provides insights and visibility
into vital performance metrics for database workloads. It is a convenient tool for gathering a
number of metrics from PostgreSQL's cumulative statistics system, as well as additional metrics
in AlloyDB Omni, into a concise and readable format.

To use Perfsnap, you capture two system snapshots while running your database workload.

Then, from the two snapshots, you can generate a Perfsnap report, which summarizes changes
in metrics values in between the two snapshots.

Did you find this document helpful? Please send us your feedback.

https://www.postgresql.org/docs/15/monitoring-stats.html
https://docs.google.com/forms/d/1zd0xBqo7DzI_U6xdZiAACA_1EAdpO-5mJiQ2rQyMU8w

Unset

Unset

Unset

Install Perfsnap
Perfsnap is the schema name that contains SQL functions that allow users to capture snapshots
or generate reports. Currently it’s a part of the g_stats extension, which was developed for
AlloyDB specifically. Perfsnap has to be installed by a superuser role. To use the Perfsnap APIs,
connect to any database where users want to install the extension, and create the g_stats
extension:

CREATE EXTENSION g_stats;

You don't need to install Perfsnap in multiple databases since the Perfsnap functions collect
system-level metrics, not limited to specific databases. It doesn’t matter which database users
install Perfsnap in, the snapshot content doesn’t rely on it.

Usage
The first step is connecting to the database where users install Perfsnap.

Create snapshots

SELECT perfsnap.snap();
postgres=# select perfsnap.snap();
snap

1
(1 row)

View a list of snapshots

SELECT * FROM perfsnap.g$snapshots;
postgres=# select * from perfsnap.g$snapshots;
snap_id | snap_time | instance_id | node_id | snap_description | snap_type | is_baseline
---------+-------------------------------+-------------+---------+------------------+-----------+-------------

1 | 2023-11-13 22:13:43.159237+00 | sr-primary | | Manual snapshot | Manual | f
(1 row)

Generate a perfsnap report
Generate a diff report between snapshots with snap_id 1 and 2.

Did you find this document helpful? Please send us your feedback.

https://docs.google.com/forms/d/1zd0xBqo7DzI_U6xdZiAACA_1EAdpO-5mJiQ2rQyMU8w

Unset

SELECT perfsnap.report(1,2)

Perfsnap report
The performance report consists of several sections:

● Performance report metadata
● Host Information
● Load Profile
● Response Time and Wait Class Breakdown
● Vacuum Information
● Database Information
● Database Conflict information
● Database Sizing Information
● Backend Wait Event Histogram Information
● Background Wait Event Histogram Information
● Parameter Section

Performance report metadata
Each performance report starts with metadata about the report about which system the report
created for, when the snapshot collection started, and when the snapshot collection ended. The
performance report also shows the PostgreSQL release when the snapshot was taken, making
it easy to compare the performance to before and after upgrades.

In addition the performance report lists key memory sizing parameters for the Postgres cluster.
This information allows users to quality the values reported in some of the later sections of the
performance report.

PGSNAP DB Report for:

Snapshot details

Host i841-sr-primary-c105d1fb-wkb3

Release 14.7

Startup Time 2023-11-05 00:45:10+00

Snap Id Snap Time

------------ ---------- ------------------------

Begin Snap: 1 13.11.2023 22:13:43 (UTC) Manual snapshot

End Snap: 2 13.11.2023 22:43:54 (UTC) Manual snapshot

Elapsed: 00:30:10.886373

Database Cache sizes

~~~~~~~~~~~~~

Shared Buffers:       31 GB        Block Size:         8192

Effective Cache Size:       25 GB       WAL Buffers:        16384

Did you find this document helpful? Please send us your feedback.

https://docs.google.com/forms/d/1zd0xBqo7DzI_U6xdZiAACA_1EAdpO-5mJiQ2rQyMU8w


Host information
The section shows how many CPU resources the machine had available when the report was
created. The displayed percentage values are the average over the measurement interval. The
host memory shows key metrics for the host memory: total, available, and free memory.

Host CPU

~~~~~~~~~~

%User %Nice %System %Idle %WIO %IRQ %SIRQ %Steal %Guest

------- ------- ------- ------- ------- ------- ------- ------- -------

0.84 0.33 0.63 98.03 0.02 0.00 0.15 0.00 0.00

Host Memory

~~~~~~~~~~~~

Total Memory:       63 GB

Available Memory:       17 GB

Free Memory:      701 MB

Buffers Memory:     1015 MB

Load profile
The load profile makes it easier to qualify a workload. The per transaction counters make it easy
to detect changes in the workload. If there are changes in the per transaction values, the
workload has most likely changed.

Load profile (in bytes)

~~~~~~~~~~~~~~~~~~~~~~~            Per Second         Per Transaction

------------ ---------------

Redo size: 55588.02 6583.19

Logical reads: 409.51 48.50

Physical reads: .02 .00

Physical writes: .04 .00

Tuples inserted: .01 .00

Tuples updated: .38 .04

Tuples deleted: .00 .00

Connections: 2.36 .28

Transactions: 8.44

Response time and wait class breakdown
The response time profile categorizes the response time of the Postgres cluster: how much time
is spent servicing requests and how much time is spent in waiting. This information gives a clear
indication on how to focus for performance tuning. If most of the time is consumed by waiting,
the wait class breakdown reports which wait class is responsible for most of the waits. Further
performance improvement efforts can then focus on this area.

Response Time Profile (in s)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

CPU time:                120 (   0.47%)

Did you find this document helpful? Please send us your feedback.

https://docs.google.com/forms/d/1zd0xBqo7DzI_U6xdZiAACA_1EAdpO-5mJiQ2rQyMU8w


Wait time:             25511 (  99.53%)

Total time:             25631

Backend Processes Wait Class Breakdown (in s)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

IO .815 (99.99%)

Client .000 (0.01%)

LWLock .000 (0.00%)

IPC .000 (0.00%)

Lock .000 (0.00%)

Background process wait information
The background process wait information shows the corresponding wait event breakdown for
background processes. This information also shows how much CPU time was consumed by all
the backend processes, like the number of waits, the cumulative wait time, and the average time
per wait. In the following example image it is clear that most of the time was spent on the
WALWrite wait event. Why WalWrite? The server has idle wait events that are issued to wait for
new work to arrive and time out after a predefined time. LogicalLauncherMain and
AutoVacuumMain are idle wait events.

Background Processes Wait Information

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Event                                          Class         Waits      Time (us)      Avg (us)

-------------------------------------- ------------- ------------- -------------- -------------

CPU                                                                      99674090

Extension                                  Extension        179981     7403180526         41133

WalSenderMain                               Activity         11208     3620954848        323068

WalFilePreallocatorMain                     Activity             6     1972690671     328781778

AutoVacuumMain                              Activity           545     1808113412       3317639

WalWriterMain                               Activity       1696974     1807660541          1065

LogicalLauncherMain                         Activity            10     1800798762     180079876

ArchiverMain                                Activity            33     1799933392      54543436

CheckpointerMain                            Activity             9     1791543040     199060337

BgWriterHibernate                           Activity           710     1776280219       2501803

LuxBgWriterMain                              Timeout             4     1680281741     420070435

BgWriterMain                                Activity           715       35804858         50076

BgWorkerShutdown                                 IPC             4        9328456       2332114

CheckpointWriteDelay                         Timeout            19        1902284        100120

WALSync                                           IO          1628        1619015           994

WalFlushWhileSwitchingWALSegment                  IO             6         248719         41453

WALWrite                                          IO          1628          96661            59

CommitWaitFlush                                   IO            30          71784          2392

WALRead                                           IO          4763          62888            13

ReplicationSlotSync                               IO            12          22634          1886

DataFileSync                                      IO            15          19122          1274

StorageAdvanceFlushPosition                       IO          1628          13037             8

StorageAwaitMayWrite                              IO          1628          12574             7

WalFlushByReplicationSlot                         IO            12           9850           820

WalFlushDuringCheckPoint                          IO             6           4371           728

WalBatchWrite                                     IO             1           1071          1071

StorageAdvancePreFlushPosition                    IO          1628            599             0

DataFileWrite                                     IO            19            440            23

DataFileFlush                                     IO            15            260            17

ReplicationSlotWrite                              IO            12            195            16

SLRUWrite                                         IO             1             26            26

Did you find this document helpful? Please send us your feedback.

https://docs.google.com/forms/d/1zd0xBqo7DzI_U6xdZiAACA_1EAdpO-5mJiQ2rQyMU8w


WALInsert                                     LWLock             1              4             4

Database information
The database section shows key metrics for each database: rollbacks, commit, hit ratio, and
information about temporary tables and sort operations.
Per Database Information

~~~~~~~~~~~~~~~~~~~~~~~~~

Name Commits Rollbacks BlkRds Blkhits TempFiles TempBytes

------------------------- ------------- ------------- ------------- ------------- -------------

alloydbadmin 12973 0 0 255707 0 0

bytes

bench 700 0 0 140938 0 0

bytes

postgres 828 0 31 170528 0 0

bytes

template0 60 0 0 22560 0 0

bytes

template1 60 0 0 22440 0 0

bytes

vj1 670 0 0 129380 0 0

bytes

Per Database DML & DQL Information

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Name                      Tuples returned  Tuples fetched   Tuples inserted  Tuples updated   Tuples

deleted   Index splits     Index Only heap fetches   HOT updates

------------------------- ---------------- ---------------- ---------------- ----------------

---------------- ---------------- ------------------------- ----------------

alloydbadmin                        245247           155134                0              684

0                0                        60              654

bench                               321988            90150                0                0

0                0                         0                0

postgres                            429015           103276               12                0

0                0                         0                0

template0                            51210            12000                0                0

0                0                         0                0

template1                            52560            12000                0                0

0                0                         0                0

vj1                                 178812            83990                0                0

0                0                         0                0

Per Database Conflict Information

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Name Lock Timeout Old Snapshot Buffer Pins Deadlock

------------------------- ------------- ------------- ------------- -------------

alloydbadmin 0 0 0 0

bench 0 0 0 0

postgres 0 0 0 0

template0 0 0 0 0

template1 0 0 0 0

vj1 0 0 0 0

Database sizing information
The database sizing section shows how much the database has grown in the snapshot interval

Did you find this document helpful? Please send us your feedback.

https://docs.google.com/forms/d/1zd0xBqo7DzI_U6xdZiAACA_1EAdpO-5mJiQ2rQyMU8w

and also reports the database size itself. In addition it displays the collation and if the database
has established connection limits.

Per Database Sizing Information

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Conn.

Name                 Collation     Limit   Tablespace           DB Size    Growth

-------------------- ------------- ------- -------------------- ---------- ----------

alloydbadmin         C.UTF-8            -1 pg_default                25 MB    0 bytes

bench                C.UTF-8            -1 pg_default                77 GB    0 bytes

postgres             C.UTF-8            -1 pg_default               133 MB     272 kB

template0            C.UTF-8            -1 pg_default                19 MB    0 bytes

template1            C.UTF-8            -1 pg_default                20 MB    0 bytes

vj1                  C.UTF-8            -1 pg_default                89 MB    0 bytes

Vacuum information
The vacuum information reports cumulative information since the beginning snapshot. It shows
how many analysis and vacuum operations have been performed and how much I/O was
necessary to fulfill these requests.

Vacuum Information

~~~~~~~~~~~~~~~~~~~

Num Analyze operations: 10

Num Vacuum operations: 13

Num Vacuum large table operations: 0

Num Mini Vacuum operations: 1

Total time spent: 18125

Total time spent in vacuum index: 1236

Time spent on large tables: 0

Time spent on large table indexes: 0

Total Time Spent in Mini Vacuum: 54

Wait Time Spent In Truncating Heap: 0

Reads in MB: 0

Writes in MB: 0

Num canceled auto vacuums: 0

Num failed auto vacuums: 0

Scanned pages: 305

Pin skipped pages: 0

Frozen skipped pages: 0

Operations which need more memory: 0

Percent towards wraparound: 10%

Percent towards emergency autovac: 97%

Inflight Vacuum operations: 0

Reasons for delayed vacuum:

Oldest running XACT: no XACT

Oldest prepared XACT: 0

Oldest replica slot: 9

Oldest replica XACT: 0

Did you find this document helpful? Please send us your feedback.

https://docs.google.com/forms/d/1zd0xBqo7DzI_U6xdZiAACA_1EAdpO-5mJiQ2rQyMU8w

Backend wait event histogram
If the wait histogram has been enabled, the report also contains the wait histogram information.
The postgres cluster maintains wait histograms for the top 10 wait events. The list of wait events
is not dynamically calculated; these wait events are predefined. The below report is shortened
and has been reformatted to better suit this document. In reality the wait event histogram
contains 32 buckets: from 1us to more than 16s. The list contains the wait event histogram
information for the backend processes.

Backend Wait Event Histogram

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Event                                          Class       Waits    <= 1us    <= 2us    <= 4us    <= 8us

<= 16us   <= 32us   <= 64us  <= 128us  <= 256us  <= 512us

-------------------------------------- ------------- ----------- --------- --------- --------- ---------

--------- --------- --------- --------- --------- --------

ChillCacheAcquireBucketLock                  Lock            42        42         0         0         0

0         0         0         0         0         0

ChillCacheAcquireLRULock                     Lock            19        19         0         0         0

0         0         0         0         0         0

CommitWaitFlush                                IO           667         0         0         0         0

0         0         0         0         0       176

LockManager                                LWLock             2         0         0         1         1

0         0         0         0         0         0

StorageDataFileReadUncached                    IO             4         0         0         0         0

0         0         0         0         0         1

Event                                          Class       Waits    <= 1ms    <= 2ms    <= 4ms    <= 8ms

<= 16ms   <= 32ms   <= 64ms  <= 128ms  <= 256ms  <= 512ms

-------------------------------------- ------------- ----------- --------- --------- --------- ---------

--------- --------- --------- --------- ---------- ---------

ChillCacheAcquireBucketLock                  Lock            42         0         0         0         0

0         0         0         0         0         0

ChillCacheAcquireLRULock                     Lock            19         0         0         0         0

0         0         0         0         0         0

CommitWaitFlush                                IO           667       483         5         3         0

0         0         0         0         0         0

LockManager                                LWLock             2         0         0         0         0

0         0         0         0         0         0

StorageDataFileReadUncached                    IO             4         3         0         0         0

0         0         0         0         0         0

Event                                          Class       Waits     <= 1s     <= 2s     <= 4s     <= 8s

<= 16s     > 16s

-------------------------------------- ------------- ----------- --------- --------- --------- ---------

---------  --------

ChillCacheAcquireBucketLock                  Lock            42         0         0         0         0

0         0

ChillCacheAcquireLRULock                     Lock            19         0         0         0         0

0         0

CommitWaitFlush                                IO           667         0         0         0         0

0         0

LockManager                                LWLock             2         0         0         0         0

0         0

StorageDataFileReadUncached                    IO             4         0         0         0         0

0         0

Did you find this document helpful? Please send us your feedback.

https://docs.google.com/forms/d/1zd0xBqo7DzI_U6xdZiAACA_1EAdpO-5mJiQ2rQyMU8w


Parameter settings
The parameter setting section contains key postgres configuration parameters and all other
postgres configuration parameters that are different from the default value.
Parameter                         Value

--------------------------------- --------------------------------------------------------------

DateStyle                            ISO, MDY

TimeZone                             UTC

alloydb.enable_anon                  on

alloydb.logical_decoding             on

application_name                     psql

archive_command                      /bin/true

archive_mode                         on

archive_timeout                      300

autovacuum                           on

…

Linux performance tools
There are also many Linux tools and utilities that provide visibility into CPU and memory usage,
independent of the database. For example, top is a common tool for observing CPU utilization,
while iostat and iotop can give deep insights into disk performance.

A full write up of Linux tools and how to use them is beyond the scope of this document. Users
may refer to the book "Systems Performance (2nd edition)" by Brendan Gregg for a more
detailed treatment.

Resource considerations that affect performance

Instance sizing
Choosing the correct machine size for AlloyDB Omni is critical to getting the best performance
for your application. Bringing together the concepts in this document, the inputs to making a
machine size decision are about ensuring the system has enough resources to service your
application, such as the correct amount of CPU, RAM, and storage.

CPU
The instance should have enough CPU power so that steady state operations can be serviced
at or under 70% utilization. Having enough CPU power leaves headroom for the instance to
handle spikes in utilization and to keep operating if your application utilization grows over time.
Having more CPU power also ensures that there are resources available for periodic
maintenance operations like vacuum. Running at, or near, 100% utilization can lead to poor
performance due to process or thread context switching or queuing effects in other parts of the
system as they contend for scarce CPU cycles.

Did you find this document helpful? Please send us your feedback.

https://man7.org/linux/man-pages/man1/top.1.html
https://www.man7.org/linux/man-pages/man1/iostat.1.html
https://man7.org/linux/man-pages/man8/iotop.8.html
https://brendangregg.com/books.html
https://docs.google.com/forms/d/1zd0xBqo7DzI_U6xdZiAACA_1EAdpO-5mJiQ2rQyMU8w


If CPU utilization is consistently above 70% or has frequent, sustained spikes over 95%,
consider moving to a larger instance size. Similarly, if steady state utilization is low, with peaks
that are well below 100%, consider downsizing to a smaller instance to realize some cost
savings.

Memory
The buffer pool hit rate is an important factor for application performance. AlloyDB Omni
performs dynamic memory management, which adapts to changing memory needs of the
database. The maximum size of the buffer pool, without the columnar engine enabled, is 80% of
the memory available on the machine type used. As the database runs, AlloyDB Omni grows
and shrinks the buffer pool to accommodate queries that need additional memory, for example,
analytical queries.

Postgres buffer pool utilization is a key factor in system performance. You can look at the buffer
pool hit rate to get an idea of how much data the application is accessing from the buffer pool
while it is running. If the miss rate is high, consider increasing the amount of memory to make
more RAM available to the Postgres buffer pool.

A database might have a large amount of data, but a smaller subset, called the working set, is
actually used by the application. It’s important to size your instance to the working set. If the
working set is small enough to fit entirely in the buffer pool you will get the best performance.

AlloyDB Omni tuning parameters

Suggested parameters
No two applications have the same performance characteristics or requirements. We’ve
selected a set of workloads that exhibit different read/write patterns, caching behaviors, and
index access patterns. Running these workloads, we’ve identified the generally optimal default
values for some parameters.

Most default Postgres parameter values remain unchanged, as we limited the default changes
to parameters that will benefit the majority of applications. The suggested values of these
parameters should generally improve performance on modern hardware.

Database parameter AlloyDB Omni
default

Suggested setting

random_page_cost 4.0 1.1

Did you find this document helpful? Please send us your feedback.

https://docs.google.com/forms/d/1zd0xBqo7DzI_U6xdZiAACA_1EAdpO-5mJiQ2rQyMU8w


temp_buffers 8 MB 128 MB

max_wal_size 1 GB 20 GB

min_wal_size 80 MB 10 GB

default_toast_compression pglz lz4

maintenance_work_mem 64 MB 1 GB for smaller machines
2 GB for larger machines

max_worker_processes 64 # vCPUs

max_parallel_workers 8 max(8, # vCPUs)

max_parallel_workers_per_gather 2 max(2, # vCPUs / 2)

work_mem 4 MB 128 to 512 MB, depending on
workload and the amount of
memory available

effective_cache_size 40% * DRAM 80% * DRAM

alloydb.enable_auto_explain off on: avoids restart to use
auto_explain

auto_explain.log_min_duration N/A -1: turns the auto explain off,
but will allow a user to set in

a session should auto explain
need to be used

auto_explain.log_buffers N/A on

auto_explain.log_nested_statements N/A on

auto_explain.log_settings N/A on

auto_explain.log_triggers N/A on

auto_explain.log_verbose N/A on

auto_explain.log_wal N/A on

alloydb.enable_pg_hint_plan off on: avoids a restart to use
auto_explain

Did you find this document helpful? Please send us your feedback.

https://docs.google.com/forms/d/1zd0xBqo7DzI_U6xdZiAACA_1EAdpO-5mJiQ2rQyMU8w


Unset

Unset

Unset

Unset

Unset

Columnar engine tuning
Setting the following flag enables columnar engine on primary or read replica instances. The
default is OFF. The database needs to be restarted after setting this flag. Once enabled, the
columnar engine allocates 1024 MB to the columnar engine. You can configure the amount of
memory with the google_columnar_engine.memory_size_in_mb flag:

google_columnar_engine.enabled = ON

Once enabled, the ML/AI based recommendation and auto-columnarization feature begins to
monitor the workload and automatically populate tables into the columnar memory every hour.

The following flag can be used to change the schedule of auto-columnarization based upon
anticipated scan-heavy workloads. The flag does not require a database restart. The lowest
value that can be set is 1 HOUR.

google_columnar_engine.auto_columnarization_schedule = ‘EVERY 6 HOURS’

To ensure that the default memory is sufficient for populating the recommended columns, run
the following command after running the workload.

SELECT * FROM google_columnar_engine_recommend('RECOMMEND_SIZE')

Compare the required memory size to the configured memory size. Configured memory size
can be obtained by running the following command:

SHOW google_columnar_engine.memory_size_in_mb

If the configured size is less than recommended size, increase the configured size to a higher
value using the following command. The database needs to be restarted after setting this flag.
After the database restarts, run the workload again for recommendation to populate the
necessary tables.

google_columnar_engine.memory_size_in_mb = <size in MB>

Did you find this document helpful? Please send us your feedback.

https://docs.google.com/forms/d/1zd0xBqo7DzI_U6xdZiAACA_1EAdpO-5mJiQ2rQyMU8w


Unset

Unset

Unset

If manual population is a preferred choice, the recommendation and auto-columnarization
features can be turned off using the following flag. The default setting is ON. This change does
not require a database restart.

google_columnar_engine.enable_auto_columnarization = OFF

Columnar engine uses up to 20% of CPU cores for background maintenance jobs, such as
population, refresh, and recommendation. The following flag can be used to adjust the CPU
resources allowed for maintenance tasks. Valid values are 0% to 100%, with 20% as the default.
The lowest CPU utilization for background maintenance tasks is 1 vCPU.

google_job_scheduler.maintenance_cpu_percentage = 50

Columnar engine uses up to 2 worker processes for population and refresh background jobs.
The following flag can be used to speed those operations by increasing the number of worker
processes for background jobs. The default setting is 2 worker processes. These processes run
on limited CPU resources as specified in the
google_job_scheduler.maintenance_cpu_percentage flag. Setting this flag does not
require the database to be restarted.

google_job_scheduler.max_parallel_workers_per_job = 4

Performance benchmarking guides
The following documents describe step-by-step procedures to setup, load and run benchmarks
on AlloyDB Omni. They describe running 2 popular benchmarks, TPC-C, which simulates a
workload for transactional processing, and TPC-H, which simulates a workload for analytical
queries.

1. User Guide: OLTP Performance benchmarking on AlloyDB OneOmni
2. User Guide: OLAP Performance benchmarking on AlloyDB OneOmni

Did you find this document helpful? Please send us your feedback.

https://docs.google.com/document/d/1Kxx0zdPpibaPocBAod1zygSlXmT1Jm_d-8aY7Nc8cYM/edit?tab=t.0
https://docs.google.com/document/d/16j20M-W0LJagt5zExJYduUtSNbeinVmvL2PhprAw4AI/edit?tab=t.0#heading=h.i8i3zb6xyprl
https://docs.google.com/forms/d/1zd0xBqo7DzI_U6xdZiAACA_1EAdpO-5mJiQ2rQyMU8w

