Transcrire un fichier local avec des métadonnées de reconnaissance (bêta)

Transcrivez un fichier audio local, y compris les métadonnées de reconnaissance dans la réponse.

Exemple de code

Java

/**
 * Transcribe the given audio file and include recognition metadata in the request.
 *
 * @param fileName the path to an audio file.
 */
public static void transcribeFileWithMetadata(String fileName) throws Exception {
  Path path = Paths.get(fileName);
  byte[] content = Files.readAllBytes(path);

  try (SpeechClient speechClient = SpeechClient.create()) {
    // Get the contents of the local audio file
    RecognitionAudio recognitionAudio =
        RecognitionAudio.newBuilder().setContent(ByteString.copyFrom(content)).build();

    // Construct a recognition metadata object.
    // Most metadata fields are specified as enums that can be found
    // in speech.enums.RecognitionMetadata
    RecognitionMetadata metadata =
        RecognitionMetadata.newBuilder()
            .setInteractionType(InteractionType.DISCUSSION)
            .setMicrophoneDistance(MicrophoneDistance.NEARFIELD)
            .setRecordingDeviceType(RecordingDeviceType.SMARTPHONE)
            .setRecordingDeviceName("Pixel 2 XL") // Some metadata fields are free form strings
            // And some are integers, for instance the 6 digit NAICS code
            // https://www.naics.com/search/
            .setIndustryNaicsCodeOfAudio(519190)
            .build();

    // Configure request to enable enhanced models
    RecognitionConfig config =
        RecognitionConfig.newBuilder()
            .setEncoding(AudioEncoding.LINEAR16)
            .setLanguageCode("en-US")
            .setSampleRateHertz(8000)
            .setMetadata(metadata) // Add the metadata to the config
            .build();

    // Perform the transcription request
    RecognizeResponse recognizeResponse = speechClient.recognize(config, recognitionAudio);

    // Print out the results
    for (SpeechRecognitionResult result : recognizeResponse.getResultsList()) {
      // There can be several alternative transcripts for a given chunk of speech. Just use the
      // first (most likely) one here.
      SpeechRecognitionAlternative alternative = result.getAlternatives(0);
      System.out.format("Transcript: %s\n\n", alternative.getTranscript());
    }
  }
}

Node.js

// Imports the Google Cloud client library for Beta API
/**
 * TODO(developer): Update client library import to use new
 * version of API when desired features become available
 */
const speech = require('@google-cloud/speech').v1p1beta1;
const fs = require('fs');

// Creates a client
const client = new speech.SpeechClient();

async function syncRecognizeWithMetaData() {
  /**
   * TODO(developer): Uncomment the following lines before running the sample.
   */
  // const filename = 'Local path to audio file, e.g. /path/to/audio.raw';
  // const encoding = 'Encoding of the audio file, e.g. LINEAR16';
  // const sampleRateHertz = 16000;
  // const languageCode = 'BCP-47 language code, e.g. en-US';

  const recognitionMetadata = {
    interactionType: 'DISCUSSION',
    microphoneDistance: 'NEARFIELD',
    recordingDeviceType: 'SMARTPHONE',
    recordingDeviceName: 'Pixel 2 XL',
    industryNaicsCodeOfAudio: 519190,
  };

  const config = {
    encoding: encoding,
    sampleRateHertz: sampleRateHertz,
    languageCode: languageCode,
    metadata: recognitionMetadata,
  };

  const audio = {
    content: fs.readFileSync(filename).toString('base64'),
  };

  const request = {
    config: config,
    audio: audio,
  };

  // Detects speech in the audio file
  const [response] = await client.recognize(request);
  response.results.forEach(result => {
    const alternative = result.alternatives[0];
    console.log(alternative.transcript);
  });

Python

from google.cloud import speech_v1p1beta1 as speech

client = speech.SpeechClient()

speech_file = "resources/commercial_mono.wav"

with io.open(speech_file, "rb") as audio_file:
    content = audio_file.read()

# Here we construct a recognition metadata object.
# Most metadata fields are specified as enums that can be found
# in speech.enums.RecognitionMetadata
metadata = speech.RecognitionMetadata()
metadata.interaction_type = speech.RecognitionMetadata.InteractionType.DISCUSSION
metadata.microphone_distance = (
    speech.RecognitionMetadata.MicrophoneDistance.NEARFIELD
)
metadata.recording_device_type = (
    speech.RecognitionMetadata.RecordingDeviceType.SMARTPHONE
)

# Some metadata fields are free form strings
metadata.recording_device_name = "Pixel 2 XL"
# And some are integers, for instance the 6 digit NAICS code
# https://www.naics.com/search/
metadata.industry_naics_code_of_audio = 519190

audio = speech.RecognitionAudio(content=content)
config = speech.RecognitionConfig(
    encoding=speech.RecognitionConfig.AudioEncoding.LINEAR16,
    sample_rate_hertz=8000,
    language_code="en-US",
    # Add this in the request to send metadata.
    metadata=metadata,
)

response = client.recognize(config=config, audio=audio)

for i, result in enumerate(response.results):
    alternative = result.alternatives[0]
    print("-" * 20)
    print(u"First alternative of result {}".format(i))
    print(u"Transcript: {}".format(alternative.transcript))

Étape suivante

Pour rechercher et filtrer des exemples de code pour d'autres produits Google Cloud, consultez l'explorateur d'exemples Google Cloud.