

 [image: Google Cloud]

 	

 Documentation

 Technology areas

 close

 	

 AI solutions, generative AI, and ML

	

 Application development

	

 Application hosting

	

 Compute

	

 Data analytics and pipelines

	

 Databases

	

 Distributed, hybrid, and multi-cloud

	

 Industry solutions

	

 Networking

	

 Observability and monitoring

	

 Security

	

 Storage

 Cross-product tools

 close

 	

 Access and resources management

	

 Cloud SDK, languages, frameworks, and tools

	

 Costs and usage management

	

 Infrastructure as code

	

 Migration

 Related sites

 close

 	

 Google Cloud Home

	

 Free Trial and Free Tier

	

 Architecture Center

	

 Blog

	

 Contact Sales

	

 Google Cloud Developer Center

	

 Google Developer Center

	

 Google Cloud Marketplace (in console)

	

 Google Cloud Marketplace Documentation

	

 Google Cloud Skills Boost

	

 Google Cloud Solution Center

	

 Google Cloud Support

	

 Google Cloud Tech Youtube Channel

 	
 English

	
 Deutsch

	
 Español – América Latina

	
 Français

	
 Indonesia

	
 Italiano

	
 Português – Brasil

	
 中文 – 简体

	
 日本語

	
 한국어

 Sign in

 	

 BigQuery

 Guides

 Reference

 Samples

 Resources

 Contact Us

 Start free

 [image: Google Cloud]

 	

 	

 Documentation

 	

 Guides

	

 Reference

	

 Samples

	

 Resources

	

 Technology areas

 	

 More

	

 Cross-product tools

 	

 More

	

 Related sites

 	

 More

	

 Console

	

 Contact Us

	

 Start free

 	
 Discover

	Product overview
	

 How does BigQuery work?

	Storage
	Analytics
	Administration

	
 Get started

	Use the BigQuery sandbox
	Enable BigQuery Studio for asset management
	

 Quickstarts

	

 Try the Cloud console

	Query public data
	Load and query data
	Try BigQuery DataFrames

	

 Try the command-line tool

	Query public data
	Load and query data

	

 Explore BigQuery tools

	Explore the console
	Explore the command-line tool
	Query using the client libraries

	
 Migrate

	Overview
	

 Migrate a data warehouse

	Introduction to BigQuery Migration Service
	Migration assessment
	Migrate schema and data
	Migrate data pipelines
	Database replication using change data capture
	

 Migrate SQL

	Translate SQL queries in batch
	Map SQL object names for batch translation
	Generate metadata for translation and assessment
	Transform SQL translations with YAML
	Translate SQL queries interactively

	

 Migration guides

	

 Amazon Redshift

	Migration overview
	Migrate Amazon Redshift schema and data
	Migrate Amazon Redshift schema and data when using a VPC
	SQL translation reference

	

 Apache Hive

	Migration overview
	Migrate Apache Hive schema and data
	SQL translation reference

	

 IBM Netezza

	Migrate from IBM Netezza
	SQL translation reference

	

 Oracle

	Migration guide
	SQL translation reference

	

 Snowflake

	Migration guide
	SQL translation reference

	

 Teradata

	Migration overview
	Migrate Teradata schema and data
	Migration tutorial
	SQL translation reference

	
 Design

	Organize resources
	Understand editions
	

 Datasets

	Introduction
	Create datasets
	List datasets
	Update dataset properties
	Cross-region replication
	Dataset data retention

	

 Tables

	

 BigQuery tables

	Introduction
	Create and use tables
	

 Specify table schemas

	Specify a schema
	Specify nested and repeated columns
	Auto-detect schemas
	Modify table schemas
	Specify default column values

	

 Segment with partitioned tables

	Introduction
	Create partitioned tables
	Manage partitioned tables
	Query partitioned tables

	

 Optimize with clustered tables

	Introduction
	Create and use clustered tables
	Query clustered tables

	

 External tables

	Introduction
	

 Types of external tables

	BigLake tables
	BigQuery Omni
	Object tables
	External tables

	External table definition file
	Externally partitioned data
	Use metadata caching
	Amazon S3 BigLake tables
	Apache Iceberg BigLake tables
	Azure Blob Storage BigLake tables
	Bigtable external table
	Cloud Storage BigLake tables
	Cloud Storage object tables
	Cloud Storage external tables
	Google Drive external tables

	

 Views

	

 Logical views

	Introduction
	Create views
	Get information about views
	Manage views

	

 Materialized views

	Introduction
	Create materialized views
	Create materialized view replicas
	Use materialized views

	

 Routines

	Manage routines
	User-defined functions
	Table functions
	Remote functions
	SQL stored procedures
	Stored procedures for Apache Spark
	Remote functions and Translation API tutorial

	

 Connections

	Introduction
	Amazon S3 connection
	Apache Spark connection
	Azure Blob Storage connection
	Cloud resource connection
	Cloud Spanner connection
	Cloud SQL connection
	SAP Datasphere connection
	Manage connections

	

 Search indexes

	Introduction
	Manage search indexes

	

 Vector indexes

	Introduction
	Manage vector indexes

	
 Load, Transform, Export

	

 Load data

	Introduction
	

 BigQuery Data Transfer Service

	Introduction
	Data location and transfers
	Authorize transfers
	Enable transfers
	Manage transfers
	Transfer run notifications
	Troubleshoot transfer configurations
	Use service accounts
	Use third-party transfers
	

 Transfer guides

	

 Amazon S3

	Introduction
	Schedule transfers
	Transfer runtime parameters

	

 Azure Blob Storage

	Introduction
	Schedule transfers
	Transfer runtime parameters

	

 Campaign Manager

	Schedule transfers
	Report transformation

	

 Cloud Storage

	Introduction
	Schedule transfers
	Transfer runtime parameters

	

 Display & Video 360

	Schedule transfers
	Report transformation

	

 Facebook Ads

	Schedule transfers

	

 Google Ad Manager

	Schedule transfers
	Report transformation

	

 Google Ads

	Schedule transfers
	Report transformation

	

 Google Merchant Center

	Introduction
	Schedule transfers
	

 Transfer report schema

	Best Sellers table schema
	Local Inventories table schema
	Performance table schema
	Price Benchmarks table schema
	Price Competitiveness table schema
	Price Insights table schema
	Product Inventory table schema
	Products table schema
	Regional Inventories table schema
	Top Brands table schema
	Top Products table schema

	

 Google Play

	Schedule transfers
	Transfer report transformation

	

 Oracle

	Schedule transfers

	

 Salesforce

	Schedule transfers

	

 Salesforce Marketing Cloud

	Schedule transfers

	

 Search Ads 360

	Schedule transfers
	Transfer report transformation
	Migration guide

	

 ServiceNow

	Schedule transfers

	

 YouTube channel

	Schedule transfers
	Transfer report transformation

	

 YouTube content owner

	Schedule transfers
	Transfer report transformation

	

 Batch load data

	Introduction
	Load Avro data
	Load Parquet data
	Load ORC data
	Load CSV data
	Load JSON data
	Load externally partitioned data
	Load data from a Datastore export
	Load data from a Firestore export
	Load data using the Storage Write API
	Load data into partitioned tables

	

 Write and read data with the Storage API

	Read data with the Storage Read API
	

 Write data with the Storage Write API

	Introduction
	Stream data with the Storage Write API
	Batch load data with the Storage Write API
	Best practices
	Stream updates with change data capture
	Use the legacy streaming API

	Load data from other Google services
	Load data using third-party apps
	Load data using cross-cloud operations

	

 Transform data

	Introduction
	Transform with DML
	Transform data in partitioned tables
	Work with change history

	

 Export data

	Export to file
	Export to Cloud Storage
	Export to Bigtable
	Export as Protobuf columns

	
 Analyze

	Introduction
	

 Query BigQuery data

	Run a query
	Write queries with Gemini
	Write query results
	Generate profile insights
	

 Query data with SQL

	Introduction
	Arrays
	JSON data
	Sketches
	Multi-statement queries
	Recursive CTEs
	Table sampling
	Time series
	Transactions

	

 Saved queries

	Introduction
	Create saved queries

	Use cached results
	Run parameterized queries
	Query with wildcard tables
	Access historical data
	Schedule queries
	Troubleshoot queries
	

 Optimize queries

	Introduction
	Use the query plan explanation
	Get query performance insights
	Optimize query computation
	Use history-based optimizations
	Optimize storage
	Use BI Engine
	Use nested and repeated data
	Optimize functions

	

 Query external data sources

	Manage open source metadata
	

 Use external tables and datasets

	

 Amazon S3 data

	Query Amazon S3 data
	Export query results to Amazon S3

	Query Apache Iceberg data
	Query open table formats with manifests
	

 Azure Blob Storage data

	Query Azure Blob Storage data
	Export query results to Azure Blob Storage

	Query Cloud Bigtable data
	

 Cloud Storage data

	Query Cloud Storage data in BigLake tables
	Query Cloud Storage data in external tables

	Query Google Drive data
	Create AWS Glue federated datasets

	

 Run federated queries

	Federated queries
	Query SAP Datasphere data
	Query Cloud Spanner data
	Query Cloud SQL data

	

 Analyze unstructured data

	Run inference
	Analyze with remote functions
	Tutorial: Create and use a remote function

	Search indexed text
	Work with text analyzers
	

 Work with sessions

	Introduction
	Create sessions
	Write queries in sessions
	Run queries in sessions
	Terminate sessions
	View query history in sessions
	Find sessions

	

 Use geospatial analytics

	Introduction
	Work with geospatial analytics
	Visualize geospatial data
	Geospatial analytics syntax reference
	

 Geospatial analytics tutorials

	Get started with geospatial analytics
	Use geospatial analytics to plot a hurricane's path

	

 Use programmatic tools

	Introduction
	

 Use notebooks in BigQuery

	Introduction
	Create notebooks
	Explore query results

	Use Jupyter notebooks

	

 Use analysis and BI tools

	Introduction
	Use Connected Sheets
	Use Tableau
	Use Looker
	Use Looker Studio
	Tutorial: Looker Studio with BI Engine
	Use third-party tools
	

 Google Cloud Ready - BigQuery

	Overview
	Partners

	

 Share with Analytics Hub

	Introduction
	Manage data exchanges
	Manage listings
	Manage subscriptions
	Configure user roles
	View and subscribe to listings
	Share sensitive data with data clean rooms
	

 Entity resolution

	Introduction
	Use entity resolution

	VPC Service Controls for Analytics Hub

	
 Machine learning

	Introduction
	AI applications overview
	

 ML workflow

	End-to-end journey per model
	Model creation overview
	

 Feature preprocessing

	Preprocessing overview
	Supported input feature types
	Automatic preprocessing
	Manual preprocessing

	Feature serving
	Hyperparameter tuning overview
	Model evaluation overview
	Model inference overview
	Explainable AI overview
	Model weights overview
	Model monitoring overview

	

 Tutorials

	Get started with BigQuery ML
	

 Generative AI

	Generate text using a public dataset
	Generate text from BigQuery data
	Customize LLMs by using supervised fine tuning
	Notebook: Generate code with BigQuery DataFrames ML

	

 Generate embeddings

	Generate text embeddings using an LLM
	Tutorial: Generate text embeddings using pretrained TensorFlow models

	

 Vector search

	Tutorial: Search embeddings with vector search
	Tutorial: Perform semantic search and retrieval-augmented generation

	

 Natural language processing

	Understand text
	Translate text

	

 Regression and classification

	Create a regression model
	Create a classification model
	Notebook: Train a linear regression model with BigQuery DataFrames ML

	

 Clustering

	Create a k-means model

	

 Recommendation

	Create a matrix factorization model to make movie recommendations
	Create a matrix factorization model to make recommendations from Google Analytics Data

	

 Time series forecasting

	Single time series forecasting
	Multiple time series forecasting
	Forecast millions of time series
	Multivariate time series forecasting
	Use custom holidays in a time series forecasting model
	Limit forecasted values for a time series model
	Hierarchical time series forecasting

	

 Anomaly detection

	Anomaly detection with a multivariate time series

	

 Imported and remote models

	Make predictions with imported TensorFlow models
	Make predictions with scikit-learn models in ONNX format
	Make predictions with PyTorch models in ONNX format
	Make predictions with remote models on Vertex AI

	

 Feature engineering and hyperparameter tuning

	Perform feature engineering with the TRANSFORM clause
	Improve model performance with hyperparameter tuning

	

 Export models

	Export a BigQuery ML model for online prediction

	

 Document processing

	Process documents

	

 Speech recognition

	Transcribe audio files

	

 Computer vision

	Annotate images
	Analyze images with an imported classication model
	Analyze images with an imported feature vector model

	

 Work with models

	List models
	Manage models
	Get model metadata
	Update model metadata
	Export models
	

 MLOps with Vertex AI

	Manage BigQueryML models with Vertex AI
	Register BigQueryML models to Vertex AI
	Update BigQueryML models in Vertex AI
	Remove BigQueryML models from Vertex AI
	View BigQueryML model evaluations in Vertex AI
	Prepare BigQueryML models for Explainable AI

	Delete models

	Reference patterns
	
 Administer

	Introduction
	

 Manage resources

	Organize resources
	Understand reliability
	Manage default configurations
	Manage datasets
	Manage notebooks
	Manage saved queries
	

 Tables

	Manage tables
	Manage table data

	

 Table clones

	Introduction
	Create table clones

	

 Table snapshots

	Introduction
	Create table snapshots
	Restore table snapshots
	List table snapshots
	View table snapshot metadata
	Update table snapshot metadata
	Delete table snapshots
	Create periodic table snapshots

	Manage materialized views
	Manage materialized view replicas

	

 Workload management

	Introduction
	Slots
	Slot reservations
	Slots autoscaling
	

 Use reservations

	Get started
	Estimate slot capacity requirements
	View slot recommendations and insights
	Purchase and manage slot commitments
	Work with slot reservations
	Work with reservation assignments

	

 Legacy reservations

	Introduction to legacy reservations
	Legacy slot reservations
	Legacy slot commitments
	Purchase and manage legacy slot commitments
	Work with legacy slot reservations

	

 Manage BI Engine

	Introduction
	Reserve BI Engine capacity
	Use preferred tables

	

 Manage jobs and queries

	Introduction
	Manage jobs
	

 Orchestrate jobs

	Overview
	Jobs overview
	Run jobs programmatically
	Manage jobs

	Manage default configurations
	Use query queues

	

 Monitor workloads

	Introduction
	Monitor resource utilization and jobs
	Monitor Analytics Hub listings
	Monitor BI Engine
	Monitor data quality
	Monitor Data Transfer Service
	Monitor materialized views
	Monitor reservations
	Dashboards, charts and alerts

	

 Audit workloads

	Introduction
	Audit policy tags
	View Data Policy audit logs
	Data Transfer Service audit logs
	Analytics Hub audit logging
	BigQuery audit logs reference
	Migrate audit logs
	BigLake API audit logs

	

 Optimize resources

	

 Control costs

	Estimate and control query costs
	Custom cost controls

	

 Optimize with recommendations

	View cluster and partition recommendations
	Apply cluster and partition recommendations

	

 Organize with labels

	Introduction
	Add labels
	View labels
	Update labels
	Filter using labels
	Delete labels

	

 Manage data quality

	Monitor data quality with scans
	Data Catalog overview
	Work with Data Catalog

	
 Govern

	Introduction
	

 Control access to resources

	Introduction
	Control access to resources with IAM
	

 Control access with authorization

	Authorized datasets
	Authorized routines
	Authorized views

	Control access with VPC service controls
	Control table and dataset access with tags
	Control access with conditions

	

 Control column and row access

	

 Control access to table columns

	Introduction to column-level access control
	Restrict access with column-level access control
	Impact on writes

	

 Manage policy tags

	Manage policy tags across locations
	Best practices for using policy tags

	

 Control access to table rows

	Introduction to row-level security
	Work with row-level security
	Use row-level security with other BigQuery features
	Best practices for row-level security

	

 Protect sensitive data

	

 Mask data in table columns

	Introduction to data masking
	Mask column data

	

 Anonymize data with differential privacy

	Use differential privacy
	Extend differential privacy

	Restrict data access using analysis rules
	Use Sensitive Data Protection

	

 Manage encryption

	Encryption at rest
	Customer-managed encryption keys
	Column-level encryption with Cloud KMS
	AEAD encryption

	
 Develop

	Introduction
	BigQuery code samples
	

 BigQuery API basics

	BigQuery APIs and libraries overview
	

 Authentication

	Introduction
	Get started
	Authenticate as an end user
	Authenticate with JSON Web Tokens

	Run jobs programmatically
	Paginate with BigQuery API
	API performance tips
	Batch requests

	Choose a Python library
	

 BigQuery DataFrames

	Introduction
	Use BigQuery DataFrames

	Use ODBC and JDBC drivers

 	

 AI solutions, generative AI, and ML

	

 Application development

	

 Application hosting

	

 Compute

	

 Data analytics and pipelines

	

 Databases

	

 Distributed, hybrid, and multi-cloud

	

 Industry solutions

	

 Networking

	

 Observability and monitoring

	

 Security

	

 Storage

 	

 Access and resources management

	

 Cloud SDK, languages, frameworks, and tools

	

 Costs and usage management

	

 Infrastructure as code

	

 Migration

 	

 Google Cloud Home

	

 Free Trial and Free Tier

	

 Architecture Center

	

 Blog

	

 Contact Sales

	

 Google Cloud Developer Center

	

 Google Developer Center

	

 Google Cloud Marketplace (in console)

	

 Google Cloud Marketplace Documentation

	

 Google Cloud Skills Boost

	

 Google Cloud Solution Center

	

 Google Cloud Support

	

 Google Cloud Tech Youtube Channel

 	

 Home

	

 BigQuery

	

 Documentation

	

 Guides

 Send feedback

 Stay organized with collections

 Save and categorize content based on your preferences.

 Snowflake SQL translation guide

This document details the similarities and differences in SQL syntax between
Snowflake and BigQuery to help accelerate the planning and execution of
moving your EDW (Enterprise Data Warehouse) to BigQuery. Snowflake data
warehousing is designed to work with Snowflake-specific SQL syntax. Scripts
written for Snowflake might need to be altered before you can use them in
BigQuery, because the SQL dialects vary between the services. Use
batch SQL translation to
migrate your SQL scripts in bulk, or
interactive SQL translation
to translate ad hoc queries. Snowflake SQL is supported by both
tools in preview.

Note: In some cases, there is no direct mapping between a SQL element in
Snowflake and BigQuery. However, in most cases, you can achieve the
same functionality in BigQuery that you can in Snowflake using an
alternative means, as shown in the examples in this document.
Data types

This section shows equivalents between data types in Snowflake and in
BigQuery.

	Snowflake	BigQuery	Notes
	

NUMBER/
DECIMAL/NUMERIC	NUMERIC	The NUMBER data type in Snowflake supports 38 digits of precision and 37 digits of scale. Precision and scale can be specified according to the user.

BigQuery supports NUMERIC and BIGNUMERIC with optionally specified precision and scale within certain bounds.
	INT/INTEGER 	BIGNUMERIC	INT/INTEGER and all other INT-like datatypes, such as BIGINT, TINYINT, SMALLINT, BYTEINT represent an alias for the NUMBER datatype where the precision and scale cannot be specified and is always NUMBER(38, 0)
	BIGINT	BIGNUMERIC	
	SMALLINT	BIGNUMERIC	
	TINYINT	BIGNUMERIC	
	BYTEINT	BIGNUMERIC	
	FLOAT/

FLOAT4/

FLOAT8	FLOAT64	The FLOAT data type in Snowflake establishes 'NaN' as > X, where X is any FLOAT value (other than 'NaN' itself).

The FLOAT data type in BigQuery establishes 'NaN' as < X, where X is any FLOAT value (other than 'NaN' itself).
	DOUBLE/

DOUBLE PRECISION/

REAL	FLOAT64	The DOUBLE data type in Snowflake is synonymous with the FLOAT data type in Snowflake, but is commonly incorrectly displayed as FLOAT. It is properly stored as DOUBLE.
	VARCHAR	STRING	The VARCHAR data type in Snowflake has a maximum length of 16 MB (uncompressed). If length is not specified, the default is the maximum length.

The STRING data type in BigQuery is stored as variable length UTF-8 encoded Unicode. The maximum length is 16,000 characters.
	CHAR/CHARACTER	STRING	The CHAR data type in Snowflake has a maximum length of 1.
	STRING/TEXT	STRING	The STRING data type in Snowflake is synonymous with Snowflake's VARCHAR.
	BINARY	BYTES	
	VARBINARY	BYTES	
	BOOLEAN	BOOL	The BOOL data type in BigQuery can only accept TRUE/FALSE, unlike the BOOL data type in Snowflake, which can accept TRUE/FALSE/NULL.
	DATE	DATE	The DATE type in Snowflake accepts most common date formats, unlike the DATE type in BigQuery, which only accepts dates in the format, 'YYYY-[M]M-[D]D'.
	TIME	TIME	The TIME type in Snowflake supports 0 to 9 nanoseconds of precision, whereas the TIME type in BigQuery supports 0 to 6 nanoseconds of precision.
	TIMESTAMP	DATETIME	TIMESTAMP is a user-configurable alias which defaults to TIMESTAMP_NTZ which maps to DATETIME in BigQuery.
	TIMESTAMP_LTZ	TIMESTAMP	
	TIMESTAMP_NTZ/DATETIME

	DATETIME	
	TIMESTAMP_TZ	TIMESTAMP	
	OBJECT	JSON	The OBJECT type in Snowflake does not support explicitly-typed values. Values are of the VARIANT type.

 	VARIANT	JSON	The OBJECT type in Snowflake does not support explicitly-typed values. Values are of the VARIANT type.

 	ARRAY	ARRAY<JSON>	The ARRAY type in Snowflake can only support VARIANT types, whereas the ARRAY type in BigQuery can support all data types with the exception of an array itself.

BigQuery also has the following data types which do not have a direct
Snowflake analogue:

	DATETIME
	GEOGRAPHY

Query syntax and query operators

This section addresses differences in query syntax between Snowflake and
BigQuery.

SELECT statement

Most
Snowflake SELECT statements
are compatible with BigQuery. The following table contains a list of
minor differences.

	Snowflake	BigQuery
	
SELECT TOP ...

FROM table

	
SELECT expression

FROM table

ORDER BY expression DESC

LIMIT number

	
SELECT

 x/total AS probability,

 ROUND(100 * probability, 1) AS pct

FROM raw_data

Note: Snowflake supports creating and referencing an alias in the same SELECT statement.	
SELECT

 x/total AS probability,

 ROUND(100 * (x/total), 1) AS pct

FROM raw_data

	
SELECT *
FROM (

VALUES (1), (2), (3)

)

	
SELECT AS VALUE STRUCT(1, 2, 3)

Snowflake aliases and identifiers are case-insensitive by default. To preserve
case, enclose aliases and identifiers with double quotes (").

BigQuery supports the following expressions in SELECT
statements, which do not have a Snowflake equivalent:

	EXCEPT
	REPLACE

FROM clause

A
FROM clause
in a query specifies the possible tables, views, subquery, or table functions to
use in a SELECT statement. All of these table references are supported in
BigQuery.

The following table contains a list of minor differences.

	Snowflake	BigQuery
	
SELECT $1, $2 FROM
(VALUES (1, 'one'), (2, 'two'));

	WITH table1 AS

(

SELECT STRUCT(1 as number, 'one' as spelling)

UNION ALL

SELECT STRUCT(2 as number, 'two' as spelling)

)

SELECT *

FROM table1
	
SELECT*
FROM table
SAMPLE(10)

	
SELECT*
FROM table

TABLESAMPLE

BERNOULLI (0.1 PERCENT)

	
SELECT * FROM table1 AT(TIMESTAMP => timestamp)

SELECT * FROM table1 BEFORE(STATEMENT => statementID)

	
SELECT * FROM table

FOR SYSTEM_TIME AS OF timestamp

Note: BigQuery does not have a direct alternative to Snowflake's BEFORE using a statement ID. The value of timestamp cannot be more than 7 days before the current timestamp.
	
@[namespace]<stage_name>[/path]

	
BigQuery does not support the concept of staged files.

	
SELECT*

FROM table

START WITH predicate

CONNECT BY

 [PRIOR] col1 = [PRIOR] col2

 [, ...]

...

	
BigQuery does not offer a direct alternative to Snowflake's CONNECT BY.

BigQuery tables can be referenced in the FROM clause using:

	[project_id].[dataset_id].[table_name]
	[dataset_id].[table_name]
	[table_name]

BigQuery also supports
additional table references:

	Historical versions of the table definition and rows using FOR SYSTEM_TIME
AS OF
	Field paths, or any path that resolves to a field within a data type (that
is, a STRUCT)
	Flattened arrays

WHERE clause

The Snowflake
WHERE
clause and BigQuery
WHERE
clause are identical, except for the following:

	Snowflake	BigQuery
	
SELECT col1, col2
FROM table1, table2
WHERE col1 = col2(+)

	SELECT col1, col2

FROM table1 INNER JOIN table2

ON col1 = col2

Note: BigQuery does not support the (+) syntax for JOINs

JOIN types

Both Snowflake and BigQuery support the following types of join:

	[INNER] JOIN
	LEFT [OUTER] JOIN
	RIGHT [OUTER] JOIN
	FULL [OUTER] JOIN
	CROSS JOINand the equivalent
implicit "comma cross join"

Both Snowflake and BigQuery support theONandUSING clause.

The following table contains a list of minor differences.

	Snowflake	BigQuery
	
SELECT col1

FROM table1

NATURAL JOIN

table2

	
SELECT col1

FROM table1

INNER JOIN

table2

USING (col1, col2 [, ...])

Note: In BigQuery, JOIN clauses require a JOIN condition unless it is a CROSS JOIN or one of the joined tables is a field within a data type or an array.
	
SELECT ...
FROM table1 AS t1,
LATERAL (
 SELECT*

 FROM table2 AS t2

 WHERE
 t1.col = t2.col
)

Note: Unlike the output of a non-lateral join, the output from a lateral join includes only the rows generated from the in-line view. The rows on the left-hand side do not need to be joined to the right hand side because the rows on the left-hand side have already been taken into account by being passed into the in-line view.	
SELECT ...
FROM table1 as t1
LEFT JOIN table2 as t2

ON t1.col = t2.col

Note: BigQuery does not support a direct alternative for LATERAL JOINs.

WITH clause

A BigQuery WITH
clause
contains one or more named subqueries which execute every time a subsequent
SELECT statement references them. Snowflake
WITH
clauses behave the same as BigQuery with the exception that
BigQuery does not support WITH RECURSIVE.

GROUP BY clause

Snowflake GROUP BY clauses support GROUP
BY,
GROUP BY
ROLLUP,
GROUP BY GROUPING
SETS,
and GROUP BY
CUBE,
while BigQuery GROUP BY clauses supports GROUP
BY and
GROUP BY
ROLLUP.

Snowflake
HAVING
and BigQuery
HAVING are
synonymous. Note that HAVING occurs after GROUP BY and aggregation, and
before ORDER BY.

	Snowflake	BigQuery
	
SELECT
col1 as one, col2 as two

FROM table
GROUP BY (one, 2)

	
SELECT col1 as one, col2 as two

FROM table
GROUP BY (one, 2)

	
SELECT
col1 as one, col2 as two

FROM table
GROUP BY ROLLUP (one, 2)

	
SELECT col1 as one, col2 as two

FROM table
GROUP BY ROLLUP (one, 2)

	
SELECT
col1 as one, col2 as two

FROM table
GROUP BY GROUPING SETS
(one, 2)

Note: Snowflake allows up to 128 grouping sets in the same query block	BigQuery does not support a direct alternative to Snowflake's GROUP BY GROUPING SETS.
	
SELECT
col1 as one, col2 as two

FROM table
GROUP BY CUBE
(one,2)

Note: Snowflake allows up to 7 elements (128 grouping sets) in each cube	BigQuery does not support a direct alternative to Snowflake's GROUP BY CUBE.

ORDER BY clause

There are some minor differences between
Snowflake ORDER BY clauses
and
BigQuery ORDER BY clauses.

	Snowflake	BigQuery
	In Snowflake, NULLs are ranked last by default (ascending order).	In BigQuery, NULLS are ranked first by default (ascending order).
	You can specify whether NULL values should be ordered first or last using NULLS FIRST or NULLS LAST, respectively. 	There's no equivalent to specify whether NULL values should be first or last in BigQuery.

LIMIT/FETCH clause

The
LIMIT/FETCH
clause in Snowflake constrains the maximum number of rows returned by a
statement or subquery.
LIMIT
(Postgres syntax) and
FETCH
(ANSI syntax) produce the same result.

In Snowflake and BigQuery, applying a LIMIT clause to a query does
not affect the amount of data that is read.

	Snowflake	BigQuery
	
SELECT col1, col2

FROM table

ORDER BY col1

LIMIT count OFFSET start

SELECT ...

FROM ...

ORDER BY ...

OFFSET start {[ROW | ROWS]} FETCH {[FIRST | NEXT]} count

{[ROW | ROWS]} [ONLY]

Note: NULL, empty string (''), and $$$$ values are accepted and are treated as "unlimited". Primary use is for connectors and drivers.	
SELECT col1, col2

FROM table

ORDER BY col1

LIMIT count OFFSET start

Note: BigQuery does not support FETCH. LIMIT replaces FETCH.

Note: In BigQuery, OFFSET must be used together with a LIMIT count. Make sure to set the count INT64 value to the minimum necessary ordered rows for best performance. Ordering all result rows unnecessarily will lead to worse query execution performance.

QUALIFY clause

The
QUALIFY
clause in Snowflake allows you to filter results for window functions similar to
what HAVING does with aggregate functions and GROUP BY clauses.

	Snowflake	BigQuery
	
SELECT col1, col2
FROM table
QUALIFY ROW_NUMBER() OVER (PARTITION BY col1 ORDER BY col2) = 1;

	The Snowflake QUALIFY clause with an analytics function like ROW_NUMBER(), COUNT(), and with OVER PARTITION BY is expressed in BigQuery as a WHERE clause on a subquery that contains the analytics value.

Using ROW_NUMBER():

SELECT col1, col2

FROM (
SELECT col1, col2

ROW NUMBER() OVER (PARTITION BY col1 ORDER by col2) RN
FROM table
) WHERE RN = 1;

Using ARRAY_AGG(), which supports larger partitions:

SELECT result.*
FROM (
SELECT ARRAY_AGG(table ORDER BY table.col2 DESC LIMIT 1) [OFFSET(0)]
FROM table

GROUP BY col1
) AS result;

Functions

The following sections list Snowflake functions and their BigQuery
equivalents.

Aggregate functions

The following table shows mappings between common Snowflake aggregate, aggregate
analytic, and approximate aggregate functions with their BigQuery
equivalents.

	Snowflake	BigQuery
	
ANY_VALUE([DISTINCT] expression)
[OVER ...]

Note: DISTINCT does not have any effect	
ANY_VALUE(expression)
[OVER ...]

	
APPROX_COUNT_DISTINCT([DISTINCT] expression) [OVER ...]

Note: DISTINCT does not have any effect	
APPROX_COUNT_DISTINCT(expression)

Note: BigQuery does not support APPROX_COUNT_DISTINCT with Window Functions
	
APPROX_PERCENTILE(expression, percentile) [OVER ...]

Note: Snowflake does not have the option to RESPECT NULLS	
APPROX_QUANTILES([DISTINCT] expression,100)
[OFFSET((CAST(TRUNC(percentile * 100) as INT64))]

Note: BigQuery does not support APPROX_QUANTILES with Window Functions
	
APPROX_PERCENTILE_ACCUMULATE
(expression)

	BigQuery does not support the ability to store intermediate state when predicting approximate values.
	
APPROX_PERCENTILE_COMBINE(state)

	BigQuery does not support the ability to store intermediate state when predicting approximate values.
	
APPROX_PERCENTILE_ESTIMATE(state, percentile)

	BigQuery does not support the ability to store intermediate state when predicting approximate values.
	
APPROX_TOP_K(expression, [number [counters]]

Note: If no number parameter is specified, default is 1. Counters should be significantly larger than number.	
APPROX_TOP_COUNT(expression, number)

Note: BigQuery does not support APPROX_TOP_COUNT with Window Functions.
	
APPROX_TOP_K_ACCUMULATE(expression,
counters)

	BigQuery does not support the ability to store intermediate state when predicting approximate values.
	
APPROX_TOP_K_COMBINE(state, [counters])

	BigQuery does not support the ability to store intermediate state when predicting approximate values.
	
APPROX_TOP_K_ESTIMATE(state, [k])

	BigQuery does not support the ability to store intermediate state when predicting approximate values.
	
APPROXIMATE_JACCARD_INDEX([DISTINCT] expression)

	

You can use a custom UDF to implement MINHASH with k distinct hash functions. Another approach to reduce the variance in MINHASH is to keep

k of the minimum values of one hash function. In this case Jaccard index can be approximated as following:

WITH

minhash_A AS (

 SELECT DISTINCT FARM_FINGERPRINT(TO_JSON_STRING(t)) AS h

 FROM TA AS t

 ORDER BY h

 LIMIT k),

minhash_B AS (

 SELECT DISTINCT FARM_FINGERPRINT(TO_JSON_STRING(t)) AS h

 FROM TB AS t

 ORDER BY h

 LIMIT k)

SELECT

 COUNT(*) / k AS APPROXIMATE_JACCARD_INDEX

FROM minhash_A

INNER JOIN minhash_B

ON minhash_A.h = minhash_B.h

	
APPROXIMATE_SIMILARITY([DISTINCT] expression)

	

It is a synonym for APPROXIMATE_JACCARD_INDEX and can be implemented in the same way.
	
ARRAY_AGG([DISTINCT] expression1)
[WITHIN GROUP (ORDER BY ...)]

[OVER ([PARTITION BY expression2])]

Note: Snowflake does not support ability to IGNORE|RESPECT NULLS and to LIMIT directly in ARRAY_AGG.

	
ARRAY_AGG([DISTINCT] expression1

[{IGNORE|RESPECT}] NULLS]
[ORDER BY ...]
LIMIT ...])

[OVER (...)]

	
AVG([DISTINCT] expression)
[OVER ...]

	
AVG([DISTINCT] expression)
[OVER ...]

Note: BigQuery's AVG does not perform automatic casting on STRINGs.
	
BITAND_AGG(expression)

[OVER ...]

	
BIT_AND(expression)
[OVER ...]

Note: BigQuery does not implicitly cast character/text columns to the nearest INTEGER.
	
BITOR_AGG(expression)

[OVER ...]

	
BIT_OR(expression)

[OVER ...]

Note: BigQuery does not implicitly cast character/text columns to the nearest INTEGER.
	
BITXOR_AGG([DISTINCT] expression)
[OVER ...]

	
BIT_XOR([DISTINCT] expression)
[OVER ...]

Note: BigQuery does not implicitly cast character/text columns to the nearest INTEGER.
	
BOOLAND_AGG(expression)
[OVER ...]

Note: Snowflake allows numeric, decimal, and floating point values to be treated as TRUE if not zero. 	
LOGICAL_AND(expression)

[OVER ...]

	
BOOLOR_AGG(expression)

[OVER ...]

Note: Snowflake allows numeric, decimal, and floating point values to be treated as TRUE if not zero. 	
LOGICAL_OR(expression)

[OVER ...]

	
BOOLXOR_AGG(expression)

[OVER ([PARTITION BY <partition_expr>])

Note: Snowflake allows numeric, decimal, and floating point values to be treated as TRUE if not zero. 	For numeric expression:

SELECT

 CASE COUNT(*)

 WHEN 1 THEN TRUE

 WHEN 0 THEN NULL

 ELSE FALSE

 END AS BOOLXOR_AGG

FROM T

WHERE expression != 0

To use OVER you can run the following (boolean example provided):

SELECT

 CASE COUNT(expression) OVER (PARTITION BY partition_expr)

 WHEN 0 THEN NULL

 ELSE

 CASE COUNT(

 CASE expression

 WHEN TRUE THEN 1

 END) OVER (PARTITION BY partition_expr)

 WHEN 1 THEN TRUE

 ELSE FALSE

 END

 END AS BOOLXOR_AGG

FROM T

	
CORR(dependent, independent)

[OVER ...]

	
CORR(dependent, independent)

[OVER ...]

	
COUNT([DISTINCT] expression [,expression2])
[OVER ...]

	
COUNT([DISTINCT] expression [,expression2])
[OVER ...]

	
COVAR_POP(dependent, independent)
[OVER ...]

	
COVAR_POP(dependent, independent)
[OVER ...]

	
COVAR_SAMP(dependent, independent)

[OVER ...]

	
COVAR_SAMP(dependent, independent)

[OVER ...]

	
GROUPING(expression1, [,expression2...])

	BigQuery does not support a direct alternative to Snowflake's GROUPING. Available through a User-Defined Function.
	
GROUPING_ID(expression1, [,expression2...])

	BigQuery does not support a direct alternative to Snowflake's GROUPING_ID. Available through a User-Defined Function.
	
HASH_AGG([DISTINCT] expression1, [,expression2])

[OVER ...]

	SELECT

 BIT_XOR(

 FARM_FINGERPRINT(

 TO_JSON_STRING(t))) [OVER]

FROM t
	
SELECT HLL([DISTINCT] expression1, [,expression2])

[OVER ...]

Note: Snowflake does not allow you to specify precision.	
SELECT HLL_COUNT.EXTRACT(sketch)
FROM (

 SELECT HLL_COUNT.INIT(expression)

 AS sketch
 FROM table
)

Note: BigQuery does not support HLL_COUNT… with Window Functions. A user cannot include multiple expressions in a single HLL_COUNT... function.
	
HLL_ACCUMULATE([DISTINCT] expression)

Note: Snowflake does not allow you to specify precision.	HLL_COUNT.INIT(expression [, precision])
	
HLL_COMBINE([DISTINCT] state)

	HLL_COUNT.MERGE_PARTIAL(sketch)
	
HLL_ESTIMATE(state)

	
HLL_COUNT.EXTRACT(sketch)

	
HLL_EXPORT(binary)

	BigQuery does not support a direct alternative to Snowflake's HLL_EXPORT.
	
HLL_IMPORT(object)

	BigQuery does not support a direct alternative to Snowflake's HLL_IMPORT.
	
KURTOSIS(expression)

[OVER ...]

	BigQuery does not support a direct alternative to Snowflake's KURTOSIS.
	
LISTAGG(

 [DISTINCT] aggregate_expression

 [, delimiter]

)

[OVER ...]

	
STRING_AGG(

 [DISTINCT] aggregate_expression

 [, delimiter]

)

[OVER ...]

	
MEDIAN(expression)
[OVER ...]

Note: Snowflake does not support ability to IGNORE|RESPECT NULLS and to LIMIT directly in ARRAY_AGG.	
PERCENTILE_CONT(

 value_expression,

 0.5

 [{RESPECT | IGNORE} NULLS]

) OVER()

	
MAX(expression)
[OVER ...]

MIN(expression)
[OVER ...]

	
MAX(expression)
[OVER ...]

MIN(expression)
[OVER ...]

	
MINHASH(k, [DISTINCT] expressions)

	You can use a custom UDF to implement MINHASH with k distinct hash functions. Another approach to reduce the variance in MINHASH is to keep k of the minimum values of one hash function: SELECT DISTINCT

 FARM_FINGERPRINT(

 TO_JSON_STRING(t)) AS MINHASH

FROM t

ORDER BY MINHASH

LIMIT k

	
MINHASH_COMBINE([DISTINCT] state)

	
FROM (

 SELECT DISTINCT

 FARM_FINGERPRINT(

 TO_JSON_STRING(t)) AS h

 FROM TA AS t

 ORDER BY h

 LIMIT k

 UNION

 SELECT DISTINCT

 FARM_FINGERPRINT(

 TO_JSON_STRING(t)) AS h

 FROM TB AS t

 ORDER BY h

 LIMIT k

)

ORDER BY h

LIMIT k
	
MODE(expr1)

OVER ([PARTITION BY <expr2>])

	
SELECT expr1

FROM (

 SELECT

 expr1,

 ROW_NUMBER() OVER (

 PARTITION BY expr2

 ORDER BY cnt DESC) rn

 FROM (

 SELECT

 expr1,

 expr2,

 COUNTIF(expr1 IS NOT NULL) OVER

 (PARTITION BY expr2, expr1) cnt

 FROM t))

WHERE rn = 1

	
OBJECT_AGG(key, value)
[OVER ...]

	You may consider using TO_JSON_STRING to convert a value into JSON-formatted string
	
PERCENTILE_CONT(percentile) WITHIN GROUP (ORDER BY value_expression)

[OVER ...]

	
PERCENTILE_CONT(

 value_expression,

 percentile

 [{RESPECT | IGNORE} NULLS]

) OVER()

	
PERCENTILE_DISC(percentile) WITHIN GROUP (ORDER BY value_expression)

[OVER ...]

	
PERCENTILE_DISC(

 value_expression,

 percentile

 [{RESPECT | IGNORE} NULLS]

) OVER()

	
REGR_AVGX(dependent, independent)

[OVER ...]

	
SELECT AVG(independent) [OVER ...]

FROM table

WHERE (

 (dependent IS NOT NULL) AND

 (independent IS NOT NULL)

)

	
REGR_AVGY(dependent, independent)

[OVER ...]

	
SELECT AVG(dependent) [OVER ...]

FROM table

WHERE (

 (dependent IS NOT NULL) AND

 (independent IS NOT NULL)

)

	
REGR_COUNT(dependent, independent)

[OVER ...]

	
SELECT COUNT(*) [OVER ...]

FROM table

WHERE (

 (dependent IS NOT NULL) AND

 (independent IS NOT NULL)

)

	
REGR_INTERCEPT(dependent, independent)

[OVER ...]

	
SELECT

 AVG(dependent) -

 COVAR_POP(dependent,independent)/

 VAR_POP(dependent) *

 AVG(independent)

 [OVER ...]

FROM table

WHERE (

 (dependent IS NOT NULL) AND

 (independent IS NOT NULL)

)

[GROUP BY ...]

	
REGR_R2(dependent, independent)

[OVER ...]

	
SELECT

 CASE

 WHEN VAR_POP(independent) = 0

 THEN NULL

 WHEN VAR_POP(dependent) = 0 AND VAR_POP(independent) != 0

 THEN 1

 ELSE POWER(CORR(dependent, independent), 2)

 END AS ...

FROM table

WHERE (

 (dependent IS NOT NULL) AND

 (independent IS NOT NULL)

)

[GROUP BY ...]

	
REGR_SLOPE(dependent, independent)

[OVER ...]

	
SELECT

 COVAR_POP(dependent,independent)/

 VAR_POP(dependent)

 [OVER ...]

FROM table

WHERE (

 (dependent IS NOT NULL) AND

 (independent IS NOT NULL)

)

[GROUP BY ...]

	
REGR_SXX(dependent, independent)

[OVER ...]

	
SELECT COUNT(*)*VAR_POP(independent)

 [OVER ...]

FROM table

WHERE (

 (dependent IS NOT NULL) AND

 (independent IS NOT NULL)

)

[GROUP BY ...]

	
REGR_SYY(dependent, independent)

[OVER ...]

	
SELECT COUNT(*)*VAR_POP(dependent)

 [OVER ...]

FROM table

WHERE (

 (dependent IS NOT NULL) AND

 (independent IS NOT NULL)

)

[GROUP BY ...]

	
SKEW(expression)

	BigQuery does not support a direct alternative to Snowflake's SKEW.
	
STDDEV([DISTINCT] expression)

[OVER ...]

	
STDDEV([DISTINCT] expression)

[OVER ...]

	
STDDEV_POP([DISTINCT] expression)

[OVER ...]

	
STDDEV_POP([DISTINCT] expression)

[OVER ...]

	
STDDEV_SAMP([DISTINCT] expression)

[OVER ...]

	
STDDEV_SAMP([DISTINCT] expression)

[OVER ...]

	
SUM([DISTINCT] expression)

[OVER ...]

	
SUM([DISTINCT] expression)

[OVER ...]

	
VAR_POP([DISTINCT] expression)

[OVER ...]

Note: Snowflake supports the ability to cast VARCHARs to floating point values.	
VAR_POP([DISTINCT] expression)

[OVER ...]

	
VARIANCE_POP([DISTINCT] expression)

[OVER ...]

Note: Snowflake supports the ability to cast VARCHARs to floating point values.	
VAR_POP([DISTINCT] expression)

[OVER ...]

	
VAR_SAMP([DISTINCT] expression)

[OVER ...]

Note: Snowflake supports the ability to cast VARCHARs to floating point values.	
VAR_SAMP([DISTINCT] expression)

[OVER ...]

	
VARIANCE([DISTINCT] expression)

[OVER ...]

Note: Snowflake supports the ability to cast VARCHARs to floating point values.	
VARIANCE([DISTINCT] expression)

[OVER ...]

BigQuery also offers the following
aggregate,
aggregate analytic,
and
approximate aggregate
functions, which do not have a direct analogue in Snowflake:

	COUNTIF
	ARRAY_CONCAT_AGG
	HLL_COUNT.MERGE

Bitwise expression functions

The following table shows mappings between common Snowflake bitwise expression
functions with their BigQuery equivalents.

If the data type of an expression is not INTEGER, Snowflake attempts to cast
to INTEGER. However, BigQuery does not attempt to cast to INTEGER.

	Snowflake	BigQuery
	
BITAND(expression1, expression2)

	
BIT_ADD(x)
FROM UNNEST([expression1, expression2]) AS x

expression1 & expression2

	
BITNOT(expression)

	
~ expression

	
BITOR(expression1, expression2)

	
BIT_OR(x)
FROM UNNEST([expression1, expression2]) AS x

expression1 | expression2

	
BITSHIFTLEFT
(expression, n)

	
expression n

	BITSHIFTRIGHT

(expression, n)

	
expression >> n

	
BITXOR(expression, expression)

Note: Snowflake does not support DISTINCT.	
BIT_XOR([DISTINCT] x)
FROM UNNEST([expression1, expression2]) AS x

expression ^ expression

Conditional expression functions

The following table shows mappings between common Snowflake conditional
expressions with their BigQuery equivalents.

	Snowflake	BigQuery
	
expression [NOT] BETWEEN
lower AND upper

	
(expression >= lower
AND expression

	
BOOLAND(expression1, expression2)

Note: Snowflake allows numeric, decimal, and floating point values to be treated as TRUE if not zero. 	
LOGICAL_AND(x)

FROM UNNEST([expression1, expression2]) AS x

expression1 AND expression2

	
BOOLNOT(expression1)

Note: Snowflake allows numeric, decimal, and floating point values to be treated as TRUE if not zero. 	
NOT expression

	BOOLOR

Note: Snowflake allows numeric, decimal, and floating point values to be treated as TRUE if not zero. 	
LOGICAL_OR(x)
FROM UNNEST([expression1, expression2]) AS x

expression1 OR expression2

	BOOLXOR

Note: Snowflake allows numeric, decimal, and floating point values to be treated as TRUE if not zero. 	BigQuery does not support a direct alternative to Snowflake's BOOLXOR.
	
CASE [expression]
 WHEN condition1 THEN result1
 [WHEN condition2 THEN result2]

 [...]

 [ELSE result3]

END

	
CASE [expression]
 WHEN condition1 THEN result1
 [WHEN condition2 THEN result2]

 [...]

 [ELSE result3]

END

	
COALESCE(expr1, expr2, [,...])

Note: Snowflake requires at least two expressions. BigQuery only requires one.	
COALESCE(expr1, [,...])

	
DECODE(expression, search1, result1,
[search2, result2...]
[,default])

	
CASE [expression]
 WHEN condition1 THEN result1
 [WHEN condition2 THEN result2]

 [...]

 [ELSE result3]

END

Note: BigQuery supports subqueries in condition statements. This can be used to reproduce Snowflake's DECODE. User must use IS NULL instead of = NULL to match NULL select expressions with NULL search expressions.
	
EQUAL_NULL(expression1, expression2)

	BigQuery does not support a direct alternative to Snowflake's EQUAL_NULL.
	
GREATEST(expression1, [,expression2]...)

	
GREATEST(expression1, [,expression2]...)

	
IFF(condition, true_result, false_result)

	
IF(condition, true_result, false_result)

	
IFNULL(expression1, expression2)

	
IFNULL(expression1, expression2)

	
[NOT] IN ...

	
[NOT] IN ...

	
expression1 IS [NOT] DISTINCT FROM expression2

	BigQuery does not support a direct alternative to Snowflake's IS [NOT] DISTINCT FROM.
	
expression IS [NOT] NULL

	
expression IS [NOT] NULL

	
IS_NULL_VALUE(variant_expr)

	BigQuery does not support VARIANT data types.
	
LEAST(expression,...)

	
LEAST(expression,...)

	
NULLIF(expression1,expression2)

	
NULLIF(expression1,expression2)

	
NVL(expression1, expression2)

	
IFNULL(expression1,expression2)

	
NVL2(expr1,expr2,expr2)

	
IF(expr1 IS NOT NULL,
expr2,expr3)

	
REGR_VALX(expr1,expr2)

	
IF(expr1 IS NULL, NULL, expr2)

Note: BigQuery does not support a direct alternative to Snowflake's REGR... functions.
	
REGR_VALY(expr1,expr2)

	
IF(expr2 IS NULL, NULL, expr1)

Note: BigQuery does not support a direct alternative to Snowflake's REGR... functions.
	
ZEROIFNULL(expression)

	
IFNULL(expression,0)

Context functions

The following table shows mappings between common Snowflake context functions
with their BigQuery equivalents.

	Snowflake	BigQuery
	
CURRENT_ACCOUNT()

	
SESSION_USER()

Note: Not direct comparison. Snowflake returns account ID, BigQuery returns user email address.
	
CURRENT_CLIENT()

	
Concept not used in BigQuery

	
CURRENT_DATABASE()

	
SELECT catalog_name

FROM INFORMATION_SCHEMA.SCHEMATA

This returns a table of project names. Not a direct comparison.

	
CURRENT_DATE[()]

Note: Snowflake does not enforce '()' after CURRENT_DATE command to comply with ANSI standards.	
CURRENT_DATE([timezone])

Note: BigQuery's CURRENT_DATE supports optional time zone specification.
	
CURRENT_REGION()

	
SELECT location

FROM INFORMATION_SCHEMA.SCHEMATA

Note: BigQuery's INFORMATION_SCHEMA.SCHEMATA returns more generalized location references than Snowflake's CURRENT_REGION(). Not a direct comparison.
	
CURRENT_ROLE()

	
Concept not used in BigQuery

	
CURRENT_SCHEMA()

	
SELECT schema_name

FROM INFORMATION_SCHEMA.SCHEMATA

This returns a table of all datasets (also called schemas) available in the project or region. Not a direct comparison.

	
CURRENT_SCHEMAS()

	
Concept not used in BigQuery

	
CURRENT_SESSION()

	
Concept not used in BigQuery

	
CURRENT_STATEMENT()

	
SELECT query

FROM INFORMATION_SCHEMA.JOBS_BY_*

Note: BigQuery's INFORMATION_SCHEMA.JOBS_BY_* allows for searching for queries by job type, start/end type, etc.
	
CURRENT_TIME[([frac_sec_prec])]

Note: Snowflake allows for optional fractional second precision. Valid values range from 0-9 nanoseconds. Default value is 9. To comply with ANSI, this can be called without '()'.	
CURRENT_TIME()

	
CURRENT_TIMESTAMP[([frac_sec_prec])]

Note: Snowflake allows for optional fractional second precision. Valid values range from 0-9 nanoseconds. Default value is 9. To comply with ANSI, this can be called without '()'. Set TIMEZONE as a session parameter.	
CURRENT_DATETIME([timezone])

CURRENT_TIMESTAMP()

Note: CURRENT_DATETIME returns DATETIME data type (not supported in Snowflake). CURRENT_TIMESTAMP returns TIMESTAMP data type.
	
CURRENT_TRANSACTION()

	
SELECT job_id

FROM INFORMATION_SCHEMA.JOBS_BY_*

Note: BigQuery's INFORMATION_SCHEMA.JOBS_BY_* allows for searching for job IDs by job type, start/end type, etc.
	
CURRENT_USER[()]

Note: Snowflake does not enforce '()' after CURRENT_USER command to comply with ANSI standards.	
SESSION_USER()

SELECT user_email

FROM INFORMATION_SCHEMA.JOBS_BY_*

Note: Not direct comparison. Snowflake returns username; BigQuery returns user email address.
	
CURRENT_VERSION()

	
Concept not used in BigQuery

	
CURRENT_WAREHOUSE()

	
SELECT catalg_name

FROM INFORMATION_SCHEMA.SCHEMATA

	
LAST_QUERY_ID([num])

	
SELECT job_id

FROM INFORMATION_SCHEMA.JOBS_BY_*

Note: BigQuery's INFORMATION_SCHEMA.JOBS_BY_* allows for searching for job IDs by job type, start/end type, etc.
	
LAST_TRANSACTION()

	
SELECT job_id

FROM INFORMATION_SCHEMA.JOBS_BY_*

Note: BigQuery's INFORMATION_SCHEMA.JOBS_BY_* allows for searching for job IDs by job type, start/end type, etc.
	
LOCALTIME()

Note: Snowflake does not enforce '()' after LOCALTIME command to comply with ANSI standards.	
CURRENT_TIME()

	
LOCALTIMESTAMP()

	
CURRENT_DATETIME([timezone])

CURRENT_TIMESTAMP()

Note: CURRENT_DATETIME returns DATETIME data type (not supported in Snowflake). CURRENT_TIMESTAMP returns TIMESTAMP data type.

Conversion functions

The following table shows mappings between common Snowflake conversion functions
with their BigQuery equivalents.

Keep in mind that functions that seem identical in Snowflake and
BigQuery may return different data types.

	Snowflake	BigQuery
	
CAST(expression AS type)

expression :: type

	
CAST(expression AS type)

	
TO_ARRAY(expression)

	
[expression]

ARRAY(subquery)

	
TO_BINARY(expression[, format])

Note: Snowflake supports HEX, BASE64, and UTF-8 conversion. Snowflake also supports TO_BINARY using the VARIANT data type. BigQuery does not have an alternative to the VARIANT data type.	
TO_HEX(CAST(expression AS BYTES))

TO_BASE64(CAST(expression AS BYTES))

CAST(expression AS BYTES)

Note: BigQuery's default STRING casting uses UTF-8 encoding. Snowflake does not have an option to support BASE32 encoding.
	
TO_BOOLEAN(expression)

Note:

	INT64

TRUE: otherwise, FALSE: 0

	STRING

TRUE: "true"/"t"/"yes"/"y"/"on"/"1", FALSE: "false"/"f"/"no"/"n"/"off"/"0"

	
CAST(expression AS BOOL)

Note:

	INT64

TRUE: otherwise, FALSE: 0

	STRING

TRUE: "true", FALSE: "false"

	
TO_CHAR(expression[, format])

TO_VARCHAR(expression[, format])

Note: Snowflake's format models can be found here. BigQuery does not have an alternative to the VARIANT data type.	
CAST(expression AS STRING)

Note: BigQuery's input expression can be formatted using FORMAT_DATE, FORMAT_DATETIME, FORMAT_TIME, or FORMAT_TIMESTAMP.
	
TO_DATE(expression[, format])

DATE(expression[, format])

Note: Snowflake supports the ability to directly convert INTEGER types to DATE types. Snowflake's format models can be found here. BigQuery does not have an alternative to the VARIANT data type.	
CAST(expression AS DATE)

Note: BigQuery's input expression can be formatted using FORMAT, FORMAT_DATETIME, or FORMAT_TIMESTAMP.
	
TO_DECIMAL(expression[, format]

[,precision[, scale]]

TO_NUMBER(expression[, format]

[,precision[, scale]]

TO_NUMERIC(expression[, format]

[,precision[, scale]]

Note: Snowflake's format models for the DECIMAL, NUMBER, and NUMERIC data types can be found here. BigQuery does not have an alternative to the VARIANT data type.	
ROUND(CAST(expression AS NUMERIC)

, x)

Note: BigQuery's input expression can be formatted using FORMAT.
	
TO_DOUBLE(expression[, format])

Note: Snowflake's format models for the DOUBLE data types can be found here. BigQuery does not have an alternative to the VARIANT data type.	
CAST(expression AS FLOAT64)

Note: BigQuery's input expression can be formatted using FORMAT.
	
TO_JSON(variant_expression)

	BigQuery does not have an alternative to Snowflake's VARIANT data type.
	
TO_OBJECT(variant_expression)

	BigQuery does not have an alternative to Snowflake's VARIANT data type.
	
TO_TIME(expression[, format])

TIME(expression[, format])

Note: Snowflake's format models for the STRING data types can be found here. BigQuery does not have an alternative to the VARIANT data type.	
CAST(expression AS TIME)

Note: BigQuery does not have an alternative to Snowflake's VARIANT data type. BigQuery's input expression can be formatted using FORMAT, FORMAT_DATETIME, FORMAT_TIMESTAMP, or FORMAT_TIME.
	
TO_TIMESTAMP(expression[, scale])

TO_TIMESTAMP_LTZ(expression[, scale])

TO_TIMESTAMP_NTZ(expression[, scale])

TO_TIMESTAMP_TZ(expression[, scale])

Note: BigQuery does not have an alternative to the VARIANT data type.	
CAST(expression AS TIMESTAMP)

Note: BigQuery's input expression can be formatted using FORMAT, FORMAT_DATE, FORMAT_DATETIME, FORMAT_TIME. Timezone can be included/not included through FORMAT_TIMESTAMP parameters.
	
TO_VARIANT(expression)

	BigQuery does not have an alternative to Snowflake's VARIANT data type.
	
TO_XML(variant_expression)

	BigQuery does not have an alternative to Snowflake's VARIANT data type.
	
TRY_CAST(expression AS type)

	
SAFE_CAST(expression AS type)

	
TRY_TO_BINARY(expression[, format])

	
TO_HEX(SAFE_CAST(expression AS BYTES))

TO_BASE64(SAFE_CAST(expression AS BYTES))

SAFE_CAST(expression AS BYTES)

	
TRY_TO_BOOLEAN(expression)

	
SAFE_CAST(expression AS BOOL)

	
TRY_TO_DATE(expression)

	
SAFE_CAST(expression AS DATE)

	
TRY_TO_DECIMAL(expression[, format]

[,precision[, scale]]

TRY_TO_NUMBER(expression[, format]

[,precision[, scale]]

TRY_TO_NUMERIC(expression[, format]

[,precision[, scale]]

	
ROUND(

 SAFE_CAST(expression AS NUMERIC)

, x)

	
TRY_TO_DOUBLE(expression)

	
SAFE_CAST(expression AS FLOAT64)

	
TRY_TO_TIME(expression)

	
SAFE_CAST(expression AS TIME)

	
TRY_TO_TIMESTAMP(expression)

TRY_TO_TIMESTAMP_LTZ(expression)

TRY_TO_TIMESTAMP_NTZ(expression)

TRY_TO_TIMESTAMP_TZ(expression)

	
SAFE_CAST(expression AS TIMESTAMP)

BigQuery also offers the following conversion functions, which do not
have a direct analogue in Snowflake:

	CODE_POINTS_TO_BYTES
	CODE_POINTS_TO_STRING
	FORMAT
	FROM_BASE32
	FROM_BASE64
	FROM_HEX
	SAFE_CONVERT_BYTES_TO_STRING
	TO_BASE32
	TO_CODE_POINTS

Data generation functions

The following table shows mappings between common Snowflake data generation
functions with their BigQuery equivalents.

	Snowflake	BigQuery
	
NORMAL(mean, stddev, gen)

	BigQuery does not support a direct comparison to Snowflake's NORMAL.
	
RANDOM([seed])

	
IF(RAND()>0.5,
 CAST(RAND()*POW(10, 18) AS INT64),

 (-1)*CAST(RAND()*POW(10, 18) AS

 INT64))

Note: BigQuery does not support seeding
	
RANDSTR(length, gen)

	BigQuery does not support a direct comparison to Snowflake's RANDSTR.
	SEQ1 / SEQ2 / SEQ4 / SEQ8	BigQuery does not support a direct comparison to Snowflake's SEQ_.
	
UNIFORM(min, max, gen)

	
CAST(min + RAND()*(max-min) AS INT64)

Note:Use persistent UDFs to create an equivalent to Snowflake's UNIFORM. Example here.
	UUID_STRING([uuid, name])

Note: Snowflake returns 128 random bits. Snowflake supports both version 4 (random) and version 5 (named) UUIDs.	
GENERATE_UUID()

Note: BigQuery returns 122 random bits. BigQuery only supports version 4 UUIDs.
	
ZIPF(s, N, gen)

	BigQuery does not support a direct comparison to Snowflake's ZIPF.

Date and time functions

The following table shows mappings between common Snowflake date and time
functions with their BigQuery equivalents. BigQuery data and
time functions include
Date functions,
Datetime functions,
Time functions, and
Timestamp functions.

	Snowflake	BigQuery
	
ADD_MONTHS(date, months)

	
CAST(

 DATE_ADD(

 date,

 INTERVAL integer MONTH

) AS TIMESTAMP

)

	
CONVERT_TIMEZONE(source_tz, target_tz, source_timestamp)

CONVERT_TIMEZONE(target_tz, source_timestamp)

	
PARSE_TIMESTAMP(

 "%c%z",

 FORMAT_TIMESTAMP(

 "%c%z",

 timestamp,

 target_timezone

)

)

Note: source_timezone is always UTC in BigQuery
	
DATE_FROM_PARTS(year, month, day)

Note: Snowflake supports overflow and negative dates. For example, DATE_FROM_PARTS(2000, 1 + 24, 1) returns Jan 1, 2002. This is not supported in BigQuery.	
DATE(year, month, day)

DATE(timestamp_expression[, timezone])

DATE(datetime_expression)

	
DATE_PART(part, dateOrTime)

Note: Snowflake supports the day of week ISO, nanosecond, and epoch second/millisecond/microsecond/nanosecond part types. BigQuery does not. See full list of Snowflake part types here.	
EXTRACT(part FROM dateOrTime)

Note: BigQuery supports the week(<weekday>), microsecond, and millisecond part types. Snowflake does not. See full list of BigQuery part types here and here.
	
DATE_TRUNC(part, dateOrTime)

Note: Snowflake supports the nanosecond part type. BigQuery does not. See full list of Snowflake part types here.	
DATE_TRUNC(date, part)

DATETIME_TRUNC(datetime, part)

TIME_TRUNC(time, part)

TIMESTAMP_TRUNC(timestamp,
part[, timezone])

Note: BigQuery supports the week(<weekday>), ISO week, and ISO year part types. Snowflake does not.
	
DATEADD(part, value, dateOrTime)

	
DATE_ADD(date, INTERVAL value part)

	
DATEDIFF(

 part,

 expression1,

 expression2

)

Note: Snowflake supports calculating the difference between two date, time, and timestamp types in this function.	
DATE_DIFF(

 dateExpression1,

 dateExpression2,

 part

)

DATETIME_DIFF(

 datetimeExpression1,

 datetimeExpression2,

 part

)

TIME_DIFF(

 timeExpression1,

 timeExpression2,

 part

)

TIMESTAMP_DIFF(

 timestampExpression1,

 timestampExpression2,

 part

)

Note: BigQuery supports the week(<weekday>) and ISO year part types.
	
DAYNAME(dateOrTimestamp)

	
FORMAT_DATE('%a', date)

FORMAT_DATETIME('%a', datetime)

FORMAT_TIMESTAMP('%a', timestamp)

	
EXTRACT(part FROM dateOrTime)

Note: Snowflake supports the day of week ISO, nanosecond, and epoch second/millisecond/microsecond/nanosecond part types. BigQuery does not. See full list of Snowflake part types here.	
EXTRACT(part FROM dateOrTime)

Note: BigQuery supports the week(<weekday>), microsecond, and millisecond part types. Snowflake does not. See full list of BigQuery part types here and here.
	
 [HOUR, MINUTE, SECOND](timeOrTimestamp)

	
EXTRACT(part FROM timestamp [AT THE ZONE timezone])

	
LAST_DAY(dateOrTime[, part])

	
DATE_SUB(
 DATE_TRUNC(

 DATE_ADD(date, INTERVAL

 1 part),

 part),

INTERVAL 1 DAY)

	
MONTHNAME(dateOrTimestamp)

	
FORMAT_DATE('%b', date)

FORMAT_DATETIME('%b', datetime)

FORMAT_TIMESTAMP('%b', timestamp)

	
NEXT_DAY(dateOrTime, dowString)

	
DATE_ADD(

 DATE_TRUNC(

 date,

 WEEK(dowString)),

INTERVAL 1 WEEK)

Note: dowString might need to be reformatted. For example, Snowflake's 'su' will be BigQuery's 'SUNDAY'.
	
PREVIOUS_DAY(dateOrTime, dowString)

	
DATE_TRUNC(

 date,

 WEEK(dowString)

)

Note: dowString might need to be reformatted. For example, Snowflake's 'su' will be BigQuery's 'SUNDAY'.
	
TIME_FROM_PARTS(hour, minute, second[, nanosecond)

Note: Snowflake supports overflow times. For example, TIME_FROM_PARTS(0, 100, 0) returns 01:40:00... This is not supported in BigQuery. BigQuery does not support nanoseconds.	
TIME(hour, minute, second)

TIME(timestamp, [timezone])

TIME(datetime)

	
TIME_SLICE(dateOrTime, sliceLength,
part[, START]

TIME_SLICE(dateOrTime, sliceLength,
part[, END]

	
DATE_TRUNC(

 DATE_SUB(CURRENT_DATE(),

 INTERVAL value MONTH),

MONTH)

DATE_TRUNC(

 DATE_ADD(CURRENT_DATE(),

 INTERVAL value MONTH),

MONTH)

Note: BigQuery does not support a direct, exact comparison to Snowflake's TIME_SLICE. Use DATETINE_TRUNC, TIME_TRUNC, TIMESTAMP_TRUNC for appropriate data type.
	
TIMEADD(part, value, dateOrTime)

	
TIME_ADD(time, INTERVAL value part)

	
TIMEDIFF(

 part,

 expression1,

 expression2,

)

Note: Snowflake supports calculating the difference between two date, time, and timestamp types in this function.	
DATE_DIFF(

 dateExpression1,

 dateExpression2,

 part

)

DATETIME_DIFF(

 datetimeExpression1,

 datetimeExpression2,

 part

)

TIME_DIFF(

 timeExpression1,

 timeExpression2,

 part

)

TIMESTAMP_DIFF(

 timestampExpression1,

 timestampExpression2,

 part

)

Note: BigQuery supports the week(<weekday>) and ISO year part types.
	
TIMESTAMP_[LTZ, NTZ, TZ _]FROM_PARTS
(year, month, day, hour, second
[, nanosecond][, timezone])

	
TIMESTAMP(

 string_expression[, timezone] |
 date_expression[, timezone] |

 datetime_expression[, timezone]

)

Note: BigQuery requires timestamps be inputted as STRING types. Example: "2008-12-25 15:30:00"
	
TIMESTAMPADD(part, value, dateOrTime)

	
TIMESTAMPADD(timestamp,
INTERVAL value part)

	
TIMESTAMPDIFF(

 part,

 expression1,

 expression2,

)

Note: Snowflake supports calculating the difference between two date, time, and timestamp types in this function.	
DATE_DIFF(

 dateExpression1,

 dateExpression2,

 part

)

DATETIME_DIFF(

 datetimeExpression1,

 datetimeExpression2,

 part

)

TIME_DIFF(

 timeExpression1,

 timeExpression2,

 part

)

TIMESTAMP_DIFF(

 timestampExpression1,

 timestampExpression2,

 part

)

Note: BigQuery supports the week(<weekday>) and ISO year part types.
	
TRUNC(dateOrTime, part)

Note: Snowflake supports the nanosecond part type. BigQuery does not. See full list of Snowflake part types here.	
DATE_TRUNC(date, part)

DATETIME_TRUNC(datetime, part)

TIME_TRUNC(time, part)

TIMESTAMP_TRUNC(timestamp,
part[, timezone])

Note: BigQuery supports the week(<weekday>), ISO week, and ISO year part types. Snowflake does not.
	
[YEAR*, DAY*, WEEK*, MONTH, QUARTER](dateOrTimestamp)

	
EXTRACT(part FROM timestamp [AT THE ZONE timezone])

BigQuery also offers the following date and time functions, which do
not have a direct analogue in Snowflake:

		DATE_SUB

	PARSE_DATE

	DATETIME_ADD

	PARSE_DATETIME

	PARSE_TIME

	TIMESTAMP_SUB

	TIMESTAMP_SECONDS

	UNIX_SECONDS

		DATE_FROM_UNIX_DATE

	UNIX_DATE

	DATETIME_SUB

	TIME_SUB

	STRING

	FORMAT_TIMESTAMP

	TIMESTAMP_MILLIS

	UNIX_MILLIS

		FORMAT_DATE

	DATETIME

	FORMAT_DATETIME

	FORMAT_TIME

	TIMESTAMP_ADD

	PARSE_TIMESTAMP

	TIMESTAMP_MICROS

	UNIX_MICROS

Information schema and table functions

BigQuery does not conceptually support many of Snowflake's information
schema and table functions. Snowflake offers the following information schema
and table functions, which do not have a direct analogue in BigQuery:

	AUTOMATIC_CLUSTERING_HISTORY
	COPY_HISTORY
	DATA_TRANSFER_HISTORY
	DATABASE_REFRESH_HISTORY
	DATABASE_REFRESH_PROGRESS, DATABASE_REFRESH_PROGRESS_BY_JOB
	DATABASE_STORAGE_USAGE_HISTORY
	EXTERNAL_TABLE_FILES
	EXTERNAL_TABLE_FILE_REGISTRATION_HISTORY
	LOGIN_HISTORY, LOGIN_HISTORY_BY_USER
	MATERIALIZED_VIEW_REFRESH_HISTORY
	PIPE_USAGE_HISTORY
	REPLICATION_USAGE_HISTORY
	STAGE_STORAGE_USAGE_HISTORY
	TASK_DEPENDENTS
	VALIDATE_PIPE_LOAD
	WAREHOUSE_LOAD_HISTORY
	WAREHOUSE_METERING_HISTORY

Below is a list of associated BigQuery and Snowflake information schema
and table functions.

	Snowflake	BigQuery
	QUERY_HISTORY

QUERY_HISTORY_BY_*	INFORMATION_SCHEMA.JOBS_BY_*

Note: Not a direct alternative.
	TASK_HISTORY	INFORMATION_SCHEMA.JOBS_BY_*

Note: Not a direct alternative.

BigQuery offers the following information schema and table functions,
which do not have a direct analogue in Snowflake:

	INFORMATION_SCHEMA.SCHEMATA
	INFORMATION_SCHEMA.ROUTINES
	INFORMATION_SCHEMA.TABLES
	INFORMATION_SCHEMA.VIEWS

Numeric functions

The following table shows mappings between common Snowflake numeric functions
with their BigQuery equivalents.

	Snowflake	BigQuery
	
ABS(expression)

	
ABS(expression)

	
ACOS(expression)

	
ACOS(expression)

	
ACOSH(expression)

	
ACOSH(expression)

	
ASIN(expression)

	
ASIN(expression)

	
ASINH(expression)

	
ASINH(expression)

	
ATAN(expression)

	
ATAN(expression)

	
ATAN2(y, x)

	
ATAN2(y, x)

	
ATANH(expression)

	
ATANH(expression)

	
CBRT(expression)

	
POW(expression, ⅓)

	
CEIL(expression [, scale])

	
CEIL(expression)

Note: BigQuery's CEIL does not support the ability to indicate precision or scale. ROUND does not allow you to specify to round up.
	
COS(expression)

	
COS(expression)

	
COSH(expression)

	
COSH(expression)

	
COT(expression)

	
1/TAN(expression)

	
DEGREES(expression)

	
(expression)*(180/ACOS(-1))

	
EXP(expression)

	
EXP(expression)

	
FACTORIAL(expression)

	BigQuery does not have a direct alternative to Snowflake's FACTORIAL. Use a user-defined function.
	
FLOOR(expression [, scale])

	
FLOOR(expression)

Note: BigQuery's FLOOR does not support the ability to indicate precision or scale. ROUND does not allow you to specify to round up. TRUNC performs synonymously for positive numbers but not negative numbers, as it evaluates absolute value.
	
HAVERSINE(lat1, lon1, lat2, lon2)

	
ST_DISTANCE(
 ST_GEOGPOINT(lon1, lat1),

 ST_GEOGPOINT(lon2, lat2)

)/1000

Note: Not an exact match, but close enough.
	
LN(expression)

	
LN(expression)

	
LOG(base, expression)

	
LOG(expression [,base])

LOG10(expression)

Note:Default base for LOG is 10.
	
MOD(expression1, expression2)

	
MOD(expression1, expression2)

	
PI()

	
ACOS(-1)

	
POW(x, y)

POWER(x, y)

	
POW(x, y)

POWER(x, y)

	
RADIANS(expression)

	
(expression)*(ACOS(-1)/180)

	
ROUND(expression [, scale])

	
ROUND(expression, [, scale])

	
SIGN(expression)

	
SIGN(expression)

	
SIN(expression)

	
SIN(expression)

	
SINH(expression)

	
SINH(expression)

	
SQRT(expression)

	
SQRT(expression)

	
SQUARE(expression)

	
POW(expression, 2)

	
TAN(expression)

	
TAN(expression)

	
TANH(expression)

	
TANH(expression)

	
 TRUNC(expression [, scale])

TRUNCATE(expression [, scale])

	
TRUNC(expression [, scale])

Note: BigQuery's returned value must be smaller than the expression; it does not support equal to.

BigQuery also offers the following
mathematical
functions, which do not have a direct analogue in Snowflake:

	IS_INF
	IS_NAN
	IEEE_DIVIDE
	DIV
	SAFE_DIVIDE
	SAFE_MULTIPLY
	SAFE_NEGATE
	SAFE_ADD
	SAFE_SUBTRACT
	RANGE_BUCKET

Semi-structured data functions

	Snowflake	BigQuery
	ARRAY_APPEND	Custom user-defined function
	ARRAY_CAT	ARRAY_CONCAT
	ARRAY_COMPACT	Custom user-defined function
	ARRAY_CONSTRUCT	[]
	ARRAY_CONSTRUCT_COMPACT	Custom user-defined function
	ARRAY_CONTAINS	Custom user-defined function
	ARRAY_INSERT	Custom user-defined function
	ARRAY_INTERSECTION	Custom user-defined function
	ARRAY_POSITION	Custom user-defined function
	ARRAY_PREPEND	Custom user-defined function
	ARRAY_SIZE	ARRAY_LENGTH
	ARRAY_SLICE	Custom user-defined function
	ARRAY_TO_STRING	ARRAY_TO_STRING
	ARRAYS_OVERLAP	Custom user-defined function
	AS_<object_type>	CAST
	AS_ARRAY	CAST
	AS_BINARY	CAST
	AS_BOOLEAN	CAST
	AS_CHAR , AS_VARCHAR	CAST
	AS_DATE	CAST
	AS_DECIMAL , AS_NUMBER	CAST
	AS_DOUBLE , AS_REAL	CAST
	AS_INTEGER	CAST
	AS_OBJECT	CAST
	AS_TIME	CAST
	AS_TIMESTAMP_*	CAST
	CHECK_JSON	Custom user-defined function
	CHECK_XML	Custom user-defined function
	FLATTEN	UNNEST
	GET	Custom user-defined function
	GET_IGNORE_CASE	Custom user-defined function
	
 GET_PATH , :

	Custom user-defined function
	IS_<object_type>	Custom user-defined function
	IS_ARRAY	Custom user-defined function
	IS_BINARY	Custom user-defined function
	IS_BOOLEAN	Custom user-defined function
	IS_CHAR , IS_VARCHAR	Custom user-defined function
	IS_DATE , IS_DATE_VALUE	Custom user-defined function
	IS_DECIMAL	Custom user-defined function
	IS_DOUBLE , IS_REAL	Custom user-defined function
	IS_INTEGER	Custom user-defined function
	IS_OBJECT	Custom user-defined function
	IS_TIME	Custom user-defined function
	IS_TIMESTAMP_*	Custom user-defined function
	OBJECT_CONSTRUCT	Custom user-defined function
	OBJECT_DELETE	Custom user-defined function
	OBJECT_INSERT	Custom user-defined function
	PARSE_JSON	JSON_EXTRACT
	PARSE_XML	Custom user-defined function
	STRIP_NULL_VALUE	Custom user-defined function
	STRTOK_TO_ARRAY	SPLIT
	TRY_PARSE_JSON	Custom user-defined function
	TYPEOF	Custom user-defined function
	XMLGET	Custom user-defined function
		

String and binary functions

	Snowflake	BigQuery
	
string1 || string2

	
CONCAT(string1, string2)

	ASCII	
TO_CODE_POINTS(string1)[OFFSET(0)]

	BASE64_DECODE_BINARY	
SAFE_CONVERT_BYTES_TO_STRING(

FROM_BASE64(<bytes_input>)

)

	BASE64_DECODE_STRING	
SAFE_CONVERT_BYTES_TO_STRING(

FROM_BASE64(<string1>)

)

	BASE64_ENCODE	
TO_BASE64(

SAFE_CAST(<string1> AS BYTES)

)

	BIT_LENGTH	
BYTE_LENGTH * 8

CHARACTER_LENGTH
	
CHARINDEX(substring, string)

	
STRPOS(string, substring)

	CHR,CHAR	
CODE_POINTS_TO_STRING([number])

	COLLATE	Custom user-defined function
	COLLATION	Custom user-defined function
	COMPRESS	Custom user-defined function
		
	
CONCAT(string1, string2)

	
CONCAT(string1, string2)

Note: BigQuery's CONCAT(...) supports concatenating any number of strings.
	CONTAINS	Custom user-defined function
	DECOMPRESS_BINARY	Custom user-defined function
	DECOMPRESS_STRING	Custom user-defined function
	EDITDISTANCE	Custom user-defined function
	ENDSWITH	Custom user-defined function
	HEX_DECODE_BINARY	
SAFE_CONVERT_BYTES_TO_STRING(

FROM_HEX(<string1>)

	HEX_DECODE_STRING	
SAFE_CONVERT_BYTES_TO_STRING(

FROM_HEX(<string1>)

	HEX_ENCODE	
TO_HEX(

SAFE_CAST(<string1> AS BYTES))

	ILIKE	Custom user-defined function
	ILIKE ANY	Custom user-defined function
	INITCAP	INITCAP
	INSERT	Custom user-defined function
	LEFT	User Defined Function
	LENGTH	
LENGTH(expression)

	LIKE	LIKE
	LIKE ALL	Custom user-defined function
	LIKE ANY	Custom user-defined function
	LOWER	
LOWER(string)

	LPAD	
LPAD(string1, length[, string2])

	LTRIM	
LTRIM(string1, trim_chars)

	
 MD5,MD5_HEX

	
MD5(string)

	MD5_BINARY	Custom user-defined function
	OCTET_LENGTH	Custom user-defined function
	PARSE_IP	Custom user-defined function
	PARSE_URL	Custom user-defined function
	POSITION	
STRPOS(string, substring)

	REPEAT	
REPEAT(string, integer)

	REPLACE	
REPLACE(string1, old_chars, new_chars)

	REVERSE

 number_characters

)

	
REVERSE(expression)

	RIGHT	User Defined Function
	RPAD	RPAD
	RTRIM	
RTRIM(string, trim_chars)

	RTRIMMED_LENGTH	Custom user-defined function
	SHA1,SHA1_HEX	
SHA1(string)

	SHA1_BINARY	Custom user-defined function
	SHA2,SHA2_HEX	Custom user-defined function
	SHA2_BINARY	Custom user-defined function
	SOUNDEX	Custom user-defined function
	SPACE	Custom user-defined function
	SPLIT	SPLIT
	SPLIT_PART	Custom user-defined function
	SPLIT_TO_TABLE	Custom user-defined function
	STARTSWITH	Custom user-defined function
	STRTOK	
SPLIT(instring, delimiter)[ORDINAL(tokennum)]

Note: The entire delimiter string argument is used as a single delimiter. The default delimiter is a comma.
	STRTOK_SPLIT_TO_TABLE	Custom user-defined function
	SUBSTR,SUBSTRING	SUBSTR
	TRANSLATE	Custom user-defined function
	TRIM	TRIM
	TRY_BASE64_DECODE_BINARY	Custom user-defined function
	TRY_BASE64_DECODE_STRING	
SUBSTR(string, 0, integer)

	TRY_HEX_DECODE_BINARY	
SUBSTR(string, -integer)

	TRY_HEX_DECODE_STRING	
LENGTH(expression)

	UNICODE	Custom user-defined function
	
 UPPER

	UPPER
		

String functions (regular expressions)

	Snowflake	BigQuery
	REGEXP	
IF(REGEXP_CONTAINS,1,0)=1

	REGEXP_COUNT	
ARRAY_LENGTH(

 REGEXP_EXTRACT_ALL(

 source_string,

 pattern

)

)

If position is specified:

ARRAY_LENGTH(

 REGEXP_EXTRACT_ALL(

 SUBSTR(source_string, IF(position

 pattern

)

)

Note: BigQuery provides regular expression support using the re2 library; see that documentation for its regular expression syntax.
	REGEXP_INSTR	
IFNULL(

 STRPOS(

 source_string,

 REGEXP_EXTRACT(

 source_string,

 pattern)

), 0)

If position is specified:

IFNULL(

 STRPOS(

 SUBSTR(source_string, IF(position

 REGEXP_EXTRACT(

 SUBSTR(source_string, IF(position

 pattern)

) + IF(position

If occurrence is specified:

IFNULL(

 STRPOS(

 SUBSTR(source_string, IF(position

 REGEXP_EXTRACT_ALL(

 SUBSTR(source_string, IF(position

 pattern

)[SAFE_ORDINAL(occurrence)]

) + IF(position

Note: BigQuery provides regular expression support using the re2 library; see that documentation for its regular expression syntax.
	
 REGEXP_LIKE

	
IF(REGEXP_CONTAINS,1,0)=1

	REGEXP_REPLACE	
REGEXP_REPLACE(

 source_string,

 pattern,

 ""

)

If replace_string is specified:

REGEXP_REPLACE(

 source_string,

 pattern,

 replace_string

)

If position is specified:

CASE

WHEN position > LENGTH(source_string) THEN source_string

WHEN position

 REGEXP_REPLACE(

 source_string,

 pattern,

 ""

)

ELSE

 CONCAT(

 SUBSTR(

 source_string, 1, position - 1),

 REGEXP_REPLACE(

 SUBSTR(source_string, position),

 pattern,

 replace_string

)

)

END

Note: BigQuery provides regular expression support using the re2 library; see that documentation for its regular expression syntax.
	REGEXP_SUBSTR	
REGEXP_EXTRACT(

 source_string,

 pattern

)

If position is specified:

REGEXP_EXTRACT(

 SUBSTR(source_string, IF(position

 pattern

)

If occurrence is specified:

REGEXP_EXTRACT_ALL(

 SUBSTR(source_string, IF(position

 pattern

)[SAFE_ORDINAL(occurrence)]

Note: BigQuery provides regular expression support using the re2 library; see that documentation for its regular expression syntax.
	RLIKE	
IF(REGEXP_CONTAINS,1,0)=1

System functions

	Snowflake	BigQuery
	SYSTEM$ABORT_SESSION	Custom user-defined function
	SYSTEM$ABORT_TRANSACTION	Custom user-defined function
	SYSTEM$CANCEL_ALL_QUERIES	Custom user-defined function
	SYSTEM$CANCEL_QUERY	Custom user-defined function
	SYSTEM$CLUSTERING_DEPTH	Custom user-defined function
	SYSTEM$CLUSTERING_INFORMATION	Custom user-defined function
	SYSTEM$CLUSTERING_RATIO — Deprecated	Custom user-defined function
	SYSTEM$CURRENT_USER_TASK_NAME	Custom user-defined function
	SYSTEM$DATABASE_REFRESH_HISTORY	Custom user-defined function
	SYSTEM$DATABASE_REFRESH_PROGRESS , SYSTEM$DATABASE_REFRESH_PROGRESS_BY_JOB	Custom user-defined function
	SYSTEM$GET_AWS_SNS_IAM_POLICY	Custom user-defined function
	SYSTEM$GET_PREDECESSOR_RETURN_VALUE	Custom user-defined function
	SYSTEM$LAST_CHANGE_COMMIT_TIME	Custom user-defined function
	SYSTEM$PIPE_FORCE_RESUME	Custom user-defined function
	SYSTEM$PIPE_STATUS	Custom user-defined function
	SYSTEM$SET_RETURN_VALUE	Custom user-defined function
	SYSTEM$SHOW_OAUTH_CLIENT_SECRETS	Custom user-defined function
	SYSTEM$STREAM_GET_TABLE_TIMESTAMP	Custom user-defined function
	SYSTEM$STREAM_HAS_DATA	Custom user-defined function
	SYSTEM$TASK_DEPENDENTS_ENABLE	Custom user-defined function
	SYSTEM$TYPEOF	Custom user-defined function
	SYSTEM$USER_TASK_CANCEL_ONGOING_EXECUTIONS	Custom user-defined function
	SYSTEM$WAIT	Custom user-defined function
	SYSTEM$WHITELIST	Custom user-defined function
	SYSTEM$WHITELIST_PRIVATELINK	Custom user-defined function
		

Table functions

	Snowflake	BigQuery
	GENERATOR	Custom user-defined function
	GET_OBJECT_REFERENCES	Custom user-defined function
	RESULT_SCAN	Custom user-defined function
	VALIDATE	Custom user-defined function

Utility and hash functions

	Snowflake	BigQuery
	GET_DDL	Feature Request
	HASH	HASH is a Snowflake-specific proprietary function. Can't be translated without knowing the underlying logic used by Snowflake.

Window functions

	Snowflake	BigQuery
	CONDITIONAL_CHANGE_EVENT	Custom user-defined function
	CONDITIONAL_TRUE_EVENT	Custom user-defined function
	CUME_DIST	CUME_DIST
	DENSE_RANK	DENSE_RANK
	FIRST_VALUE	FIRST_VALUE
	LAG	LAG
	LAST_VALUE	LAST_VALUE
	LEAD	LEAD
	NTH_VALUE	NTH_VALUE
	NTILE	NTILE
	PERCENT_RANK	PERCENT_RANK
	RANK	RANK
	RATIO_TO_REPORT	Custom user-defined function
	ROW_NUMBER	ROW_NUMBER
	WIDTH_BUCKET	Custom user-defined function

BigQuery also supports
SAFE_CAST(expression
AS typename), which returns NULL if BigQuery is unable to perform a
cast (for example,
SAFE_CAST("apple"
AS INT64) returns NULL).

Operators

The following sections list Snowflake operators and their BigQuery
equivalents.

Arithmetic operators

The following table shows mappings between Snowflake
arithmetic operators
with their BigQuery equivalents.

	Snowflake	BigQuery
	
(Unary) (+'5')

	
CAST("5" AS NUMERIC)

	
a + b

	
a + b

	
(Unary) (-'5')

	
(-1) * CAST("5" AS NUMERIC)

Note: BigQuery supports standard unary minus, but does not convert integers in string format to INT64, NUMERIC, or FLOAT64 type.
	
a - b

	
a - b

	
date1 - date2

date1 - 365

	
DATE_DIFF(date1, date2, date_part)

DATE_SUB(date1, date2, date_part)

	
a * b

	
a * b

	
a / b

	
a / b

	
a % b

	
MOD(a, b)

To view Snowflake scale and precision details when performing arithmetic
operations, see the Snowflake
documentation.

Comparison operators

Snowflake
comparison operators
and BigQuery
comparison operators
are the same.

Logical/boolean operators

Snowflake
logical/boolean operators
and BigQuery
logical/boolean operators
are the same.

Set operators

The following table shows mappings between Snowflake
set operators
with their BigQuery equivalents.

	Snowflake	BigQuery
	
SELECT ...
INTERSECT
SELECT ...

	
SELECT ...

INTERSECT DISTINCT

SELECT...

	
SELECT ...
MINUS
SELECT ...

SELECT ...
EXCEPT
SELECT …

Note: MINUS and EXCEPT are synonyms.	
SELECT ...
EXCEPT DISTINCT
SELECT ...

	
SELECT ...
UNION
SELECT ...

SELECT ...
UNION ALL
SELECT ...

	
SELECT ...
UNION DISTINCT
SELECT ...

SELECT ...
UNION ALL
SELECT ...

Subquery operators

The following table shows mappings between Snowflake
subquery operators
with their BigQuery equivalents.

	Snowflake	BigQuery
	
SELECT ...
FROM ...
WHERE col <operator> ALL …

SELECT ...
FROM ...
WHERE col <operator> ANY ...

	BigQuery does not support a direct alternative to Snowflake's ALL/ANY.
	
SELECT ...
FROM ...

WHERE [NOT] EXISTS...

	
SELECT ...
FROM ...

WHERE [NOT] EXISTS...

	
SELECT ...
FROM ...

WHERE [NOT] IN...

	
SELECT ...
FROM ...

WHERE [NOT] IN...

	
SELECT * FROM table1

UNION

SELECT * FROM table2

EXCEPT

SELECT * FROM table3

	
SELECT * FROM table1

UNION ALL

(

 SELECT * FROM table2

 EXCEPT

 SELECT * FROM table3

)

Note: BigQuery requires parentheses to separate different set operations. If the same set operator is repeated, parentheses are not necessary.

DML syntax

This section addresses differences in data management language syntax between
Snowflake and BigQuery.

INSERT statement

Snowflake offers a configurable DEFAULT keyword for columns. In
BigQuery, the DEFAULT value for nullable columns is NULL and
DEFAULT is not supported for required columns. Most
Snowflake INSERT statements
are compatible with BigQuery. The following table shows exceptions.

	Snowflake	BigQuery
	
INSERT [OVERWRITE] INTO table

VALUES [... | DEFAULT | NULL] ...

Note: BigQuery does not support inserting JSON objects with an INSERT statement.	
INSERT [INTO] table (column1 [, ...])

VALUES (DEFAULT [, ...])

Note: BigQuery does not support a direct alternative to Snowflake's OVERWRITE. Use DELETE instead.
	
INSERT INTO table (column1 [, ...])
SELECT...
FROM ...

	
INSERT [INTO] table (column1, [,...])

SELECT ...

FROM ...

	
INSERT [OVERWRITE] ALL <intoClause>
...

INSERT [OVERWRITE] {FIRST | ALL}
{WHEN condition THEN <intoClause>}

[...]

[ELSE <intoClause>]

...

Note: <intoClause> represents standard INSERT statement, listed above.	BigQuery does not support conditional and unconditional multi-table INSERTs.

BigQuery also supports inserting values using a subquery (where one of
the values is computed using a subquery), which is not supported in Snowflake.
For example:

INSERT INTO table (column1, column2)
VALUES ('value_1', (
 SELECT column2
 FROM table2
))

COPY statement

Snowflake supports copying data from stages files to an existing table and from
a table to a named internal stage, a named external stage, and an external
location (Amazon S3, Google Cloud Storage, or Microsoft Azure).

	COPY INTO <table>
	COPY INTO <location>

BigQuery does not use the SQL COPY command to load data, but you can
use any of several non-SQL tools and options to
load data into BigQuery tables. You can also use data pipeline sinks
provided in
Apache Spark
or
Apache Beam
to write data into BigQuery.

UPDATE statement

Most Snowflake UPDATE statements are compatible with BigQuery. The
following table shows exceptions.

	Snowflake	BigQuery
	
UPDATE table
SET col = value [,...]
[FROM ...]
[WHERE ...]

	
UPDATE table

SET column = expression [,...]

[FROM ...]

WHERE TRUE

Note: All UPDATE statements in BigQuery require a WHERE keyword, followed by a condition.

DELETE and TRUNCATE TABLE statements

The DELETE and TRUNCATE TABLE statements are both ways to remove rows from a
table without affecting the table schema or indexes.

In Snowflake, both DELETE and TRUNCATE TABLE maintain deleted data using
Snowflake's Time Travel for recovery purposes for the data retention period.
However, DELETE does not delete the external file load history and load
metadata.

In BigQuery, the DELETE statement must have a WHERE clause. For
more information about DELETE in BigQuery, see the
BigQueryDELETEexamples
in the DML documentation.

	Snowflake	BigQuery
	
DELETE FROM table_name
[USING ...]

[WHERE ...]

TRUNCATE [TABLE] [IF EXISTS] table_name

	
DELETE [FROM] table_name [alias]

WHERE ...

Note: BigQuery DELETE statements require a WHERE clause.

MERGE statement

The MERGE statement can combine INSERT, UPDATE, and DELETE operations
into a single "upsert" statement and perform the operations automatically. The
MERGE operation must match at most one source row for each target row.

BigQuery tables are limited to 1,000 DML statements per day, so you
should optimally consolidate INSERT, UPDATE, and DELETE statements into a single
MERGE statement as shown in the following table:

	Snowflake	BigQuery
	
MERGE INTO target
USING source
ON target.key = source.key
WHEN MATCHED AND source.filter =
'Filter_exp' THEN

 UPDATE SET
 target.col1 = source.col1,
 target.col1 = source.col2,

 ...

Note: Snowflake supports a ERROR_ON_NONDETERMINISTIC_MERGE session parameter to handle nondeterministic results.	
MERGE target

USING source

ON target.key = source.key

WHEN MATCHED AND source.filter = 'filter_exp' THEN

 UPDATE SET

 target.col1 = source.col1,

 target.col2 = source.col2,

 ...

Note: All columns must be listed if updating all columns.

GET and LIST statements

The GET
statement downloads data files from one of the following Snowflake stages to a
local directory/folder on a client machine:

	Named internal stage
	Internal stage for a specified table
	Internal stage for the current user

The LIST
(LS) statement returns a list of files that have been staged (that is, uploaded
from a local file system or unloaded from a table) in one of the following
Snowflake stages:

	Named internal stage
	Named external stage
	Stage for a specified table
	Stage for the current user

BigQuery does not support the concept of staging and does not have
GET and LIST equivalents.

PUT and REMOVE statements

The PUT
statement uploads (that is, stages) data files from a local directory/folder on
a client machine to one of the following Snowflake stages:

	Named internal stage
	Internal stage for a specified table
	Internal stage for the current user

The REMOVE
(RM) statement removes files that have been staged in one of the following
Snowflake internal stages:

	Named internal stage
	Stage for a specified table
	Stage for the current user

BigQuery does not support the concept of staging and does not have
PUT and REMOVE equivalents.

DDL syntax

This section addresses differences in data definition language syntax between
Snowflake and BigQuery.

Database, Schema, and Share DDL

Most of Snowflake's terminology matches that of BigQuery's except that
Snowflake Database is similar to BigQuery Dataset. See the
detailed Snowflake to BigQuery terminology mapping.

CREATE DATABASE statement

Snowflake supports creating and managing a database via
database management commands
while BigQuery provides multiple options like using Console, CLI,
Client Libraries, etc. for creating datasets. This
section will use BigQuery CLI commands corresponding to the Snowflake
commands to address the differences.

	Snowflake	BigQuery
	
CREATE DATABASE <name>

Note: Snowflake provides these requirements for naming databases. It allows only 255 characters in the name.	
bq mk <name>

Note: BigQuery has similar dataset naming requirements as Snowflake except that it allows 1024 characters in the name.
	
CREATE OR REPLACE DATABASE <name>

	Replacing the dataset is not supported in BigQuery.
	
CREATE TRANSIENT DATABASE <name>

	Creating temporary dataset is not supported in BigQuery.
	
CREATE DATABASE IF NOT EXISTS <name>

	Concept not supported in BigQuery
	
CREATE DATABASE <name>

CLONE <source_db>

 [{ AT | BEFORE }

 ({ TIMESTAMP => <timestamp> |

 OFFSET => <time_difference> |

 STATEMENT => <id> })]

	Cloning datasets is not yet supported in BigQuery.
	
CREATE DATABASE <name>

DATA_RETENTION_TIME_IN_DAYS = <num>

	Time travel at the dataset level is not supported in BigQuery. However, time travel for table and query results is supported.
	
CREATE DATABASE <name>

DEFAULT_DDL_COLLATION = '<collation_specification>'

	Collation in DDL is not supported in BigQuery.
	
CREATE DATABASE <name>

COMMENT = '<string_literal>'

	
bq mk \

--description "<string_literal>" \

<name>

	
CREATE DATABASE <name>

FROM SHARE <provider_account>.<share_name>

	Creating shared datasets is not supported in BigQuery. However, users can share the dataset via Console/UI once the dataset is created.
	
CREATE DATABASE <name>

 AS REPLICA OF

 <region>.<account>.<primary_db_name>

AUTO_REFRESH_MATERIALIZED_VIEWS_ON_SECONDARY = { TRUE | FALSE }

Note: Snowflake provides the option for automatic background maintenance of materialized views in the secondary database which is not supported in BigQuery.	
bq mk --transfer_config \

--target_dataset = <name> \

--data_source = cross_region_copy \ --params='

{"source_dataset_id":"<primary_db_name>"

,"source_project_id":"<project_id>"

,"overwrite_destination_table":"true"}'

Note: BigQuery supports copying datasets using the BigQuery Data Transfer Service. See here for a dataset copying prerequisites.

BigQuery also offers the following bq mk command options, which do
not have a direct analogue in Snowflake:

	--location <dataset_location>
	--default_table_expiration <time_in_seconds>
	--default_partition_expiration <time_in_seconds>

ALTER DATABASE statement

This section will use BigQuery CLI commands corresponding to the
Snowflake commands to address the differences in ALTER statements.

	Snowflake	BigQuery
	
ALTER DATABASE [IF EXISTS] <name> RENAME TO <new_db_name>

	Renaming datasets is not supported in BigQuery but copying datasets is supported.
	
ALTER DATABASE <name>

SWAP WITH <target_db_name>

	Swapping datasets is not supported in BigQuery.
	
ALTER DATABASE <name>

SET

[DATA_RETENTION_TIME_IN_DAYS = <num>]

[DEFAULT_DDL_COLLATION = '<value>']

	Managing data retention and collation at dataset level is not supported in BigQuery.
	
ALTER DATABASE <name>

SET COMMENT = '<string_literal>'

	
bq update \

--description "<string_literal>" <name>

	
ALTER DATABASE <name>

ENABLE REPLICATION TO ACCOUNTS <snowflake_region>.<account_name>

[, <snowflake_region>.<account_name> ...]

	Concept not supported in BigQuery.
	
ALTER DATABASE <name>

DISABLE REPLICATION [TO ACCOUNTS <snowflake_region>.<account_name>

[, <snowflake_region>.<account_name> ...]]

	Concept not supported in BigQuery.
	
ALTER DATABASE <name>

SET AUTO_REFRESH_MATERIALIZED_VIEWS_ON_SECONDARY = { TRUE | FALSE }

	Concept not supported in BigQuery.
	
ALTER DATABASE <name> REFRESH

	Concept not supported in BigQuery.
	
ALTER DATABASE <name>

ENABLE FAILOVER TO ACCOUNTS <snowflake_region>.<account_name>

[, <snowflake_region>.<account_name> ...]

	Concept not supported in BigQuery.
	
ALTER DATABASE <name>

DISABLE FAILOVER [TO ACCOUNTS <snowflake_region>.<account_name>

[, <snowflake_region>.<account_name> ...]]

	Concept not supported in BigQuery.
	
ALTER DATABASE <name>

PRIMARY

	Concept not supported in BigQuery.

DROP DATABASE statement

This section will use BigQuery CLI command corresponding to the
Snowflake command to address the difference in DROP statement.

	Snowflake	BigQuery
	
DROP DATABASE [IF EXISTS] <name>

[CASCADE | RESTRICT]

Note: In Snowflake, dropping a database does not permanently remove it from the system. A version of the dropped database is retained for the number of days specified by the DATA_RETENTION_TIME_IN_DAYS parameter for the database.	
bq rm -r -f -d <name>

Where

-r is to remove all objects in the dataset

-f is to skip confirmation for execution

-d indicates dataset

Note: In BigQuery, deleting a dataset is permanent. Also, cascading is not supported at the dataset level as all the data and objects in the dataset are deleted.

Snowflake also supports
UNDROP DATASET
command which restores the most recent version of a dropped datasets. This is
currently not supported in BigQuery at the dataset level.

USE DATABASE statement

Snowflake provides the option to set the database for a user session using
USE DATABASE
command. This removes the need for specifying fully-qualified object names in
SQL commands. BigQuery does not provide any alternative to Snowflake's
USE DATABASE command.

SHOW DATABASE statement

This section will use BigQuery CLI command corresponding to the
Snowflake command to address the difference in SHOW statement.

	Snowflake	BigQuery
	
SHOW DATABASES

Note: Snowflake provides a single option to list and show details about all the databases including dropped databases that are within the retention period. 	bq ls --format=prettyjson

and / or

bq show <dataset_name>

Note: In BigQuery, the ls command provides only dataset names and basic information, and the show command provides details like last modified timestamp, ACLs, and labels of a dataset. BigQuery also provides more details about the datasets via Information Schema.
	
SHOW TERSE DATABASES

Note: With the TERSE option, Snowflake allows to display only specific information/fields about datasets.	Concept not supported in BigQuery.
	
SHOW DATABASES HISTORY

	Time travel concept is not supported in BigQuery at the dataset level.
	SHOW DATABASES

[LIKE '<pattern>']

[STARTS WITH '<name_string>']

	Filtering results by dataset names is not supported in BigQuery. However, filtering by labels is supported.
	SHOW DATABASES

LIMIT <rows> [FROM '<name_string>']

Note: By default, Snowflake does not limit the number of results. However, the value for LIMIT cannot exceed 10K.	
bq ls \

--max_results <rows>

Note: By default, BigQuery only displays 50 results.

BigQuery also offers the following bq command options, which do
not have a direct analogue in Snowflake:

	bq ls --format=pretty: Returns basic formatted results
	*bq ls -a: *Returns only anonymous datasets (the ones starting with an
underscore)
	bq ls --all: Returns all datasets including anonymous ones
	bq ls --filter labels.key:value: Returns results filtered by dataset label
	bq ls --d: Excludes anonymous datasets form results
	bq show --format=pretty: Returns detailed basic formatted results for all
datasets

SCHEMA management

Snowflake provides multiple
schema management commands
similar to its database management commands. This concept of creating and
managing schema is not supported in BigQuery.

However, BigQuery allows you to specify a table's schema when you load
data into a table, and when you create an empty table. Alternatively, you can
use schema auto-detection for
supported data formats.

SHARE management

Snowflake provides multiple
share management commands
similar to its database and schema management commands. This concept of
creating and managing share is not supported in BigQuery.

Table, View, and Sequence DDL

CREATE TABLE statement

Most Snowflake CREATE TABLE statements are compatible with BigQuery,
except for the following syntax elements, which are not used in
BigQuery:

	Snowflake	BigQuery
	
CREATE TABLE table_name

(

 col1 data_type1 NOT NULL,

 col2 data_type2 NULL,

 col3 data_type3 UNIQUE,

 col4 data_type4 PRIMARY KEY,

 col5 data_type5

)

Note: UNIQUE and PRIMARY KEY constraints are informational and are not enforced by the Snowflake system.	
CREATE TABLE table_name

(

 col1 data_type1 NOT NULL,

 col2 data_type2,

 col3 data_type3,

 col4 data_type4,

 col5 data_type5,

)

	
CREATE TABLE table_name

(

 col1 data_type1[,...]

 table_constraints

)

where table_constraints are:

 [UNIQUE(column_name [, ...])]

 [PRIMARY KEY(column_name [, ...])]

 [FOREIGN KEY(column_name [, ...])

 REFERENCES reftable [(refcolumn)]

Note: UNIQUE and PRIMARY KEY constraints are informational and are not enforced by the Snowflake system.	
CREATE TABLE table_name

(

 col1 data_type1[,...]

)

PARTITION BY column_name

CLUSTER BY column_name [, ...]

Note: BigQuery does not use UNIQUE, PRIMARY KEY, or FOREIGN KEY table constraints. To achieve similar optimization that these constraints provide during query execution, partition and cluster your BigQuery tables. CLUSTER BY supports up to four columns.
	
CREATE TABLE table_name

LIKE original_table_name

	See this example to learn how to use the INFORMATION_SCHEMA tables to copy column names, data types, and NOT NULL constraints to a new table.
	
CREATE TABLE table_name

(

 col1 data_type1

)

BACKUP NO

Note:In Snowflake, the BACKUP NO setting is specified to "save processing time when creating snapshots and restoring from snapshots and to reduce storage space."	The BACKUP NO table option is not used nor needed because BigQuery automatically keeps up to 7 days of historical versions of all your tables, without any effect on processing time nor billed storage.
	
CREATE TABLE table_name

(

 col1 data_type1

)

table_attributes

where table_attributes are:

 [DISTSTYLE {AUTO|EVEN|KEY|ALL}]

 [DISTKEY (column_name)]

 [[COMPOUND|INTERLEAVED] SORTKEY

 (column_name [, ...])]

	BigQuery supports clustering which allows storing keys in sorted order.
	
CREATE TABLE table_name

AS SELECT ...

	
CREATE TABLE table_name

AS SELECT ...

	
CREATE TABLE IF NOT EXISTS table_name

...

	
CREATE TABLE IF NOT EXISTS table_name

...

BigQuery also supports the DDL statement CREATE OR REPLACE
TABLEstatement which overwrites a table if it already exists.

BigQuery's CREATE TABLEstatement also supports the following clauses,
which do not have a Snowflake equivalent:

	PARTITION BY
partition_statement
	CLUSTER BY
clustering_column_list
	OPTIONS(table_options_list)

For more information about CREATE TABLE in BigQuery, see the
BigQuery CREATE examples
in the DML documentation.

ALTER TABLE statement

This section will use BigQuery CLI commands corresponding to the
Snowflake commands to address the differences in ALTER statements for tables.

	Snowflake	BigQuery
	
ALTER TABLE [IF EXISTS] <name> RENAME TO <new_name>

	
ALTER TABLE [IF EXISTS] <name>

SET OPTIONS (friendly_name="<new_name>")

	
ALTER TABLE <name>

SWAP WITH <target_db_name>

	Swapping tables is not supported in BigQuery.
	
ALTER TABLE <name>

SET

[DEFAULT_DDL_COLLATION = '<value>']

	Managing data collation for tables is not supported in BigQuery.
	
ALTER TABLE <name>

SET

[DATA_RETENTION_TIME_IN_DAYS = <num>]

	
ALTER TABLE [IF EXISTS] <name>

SET OPTIONS (expiration_timestamp=<timestamp>)

	
ALTER TABLE <name>

SET

COMMENT = '<string_literal>'

	
ALTER TABLE [IF EXISTS] <name>

SET OPTIONS (description='<string_literal>')

Additionally, Snowflake provides
clustering, column, and constraint options
for altering tables that are not supported by BigQuery.

DROP TABLE and UNDROP TABLE statements

This section will use BigQuery CLI command corresponding to the
Snowflake command to address the difference in DROP and UNDROP statements.

	Snowflake	BigQuery
	
DROP TABLE [IF EXISTS] <table_name>

[CASCADE | RESTRICT]

Note: In Snowflake, dropping a table does not permanently remove it from the system. A version of the dropped table is retained for the number of days specified by the DATA_RETENTION_TIME_IN_DAYS parameter for the database.	
bq rm -r -f -d <dataset_name>.<table_name>

Where

-r is to remove all objects in the dataset

-f is to skip confirmation for execution

-d indicates dataset

Note: In BigQuery, deleting a table is also not permanent but a snapshot is currently maintained only for 7 days.
	
UNDROP TABLE <table_name>

	
bq cp \ <dataset_name>.<table_name>@<unix_timestamp> <dataset_name>.<new_table_name>

Note: In BigQuery, you need to first, determine a UNIX timestamp of when the table existed (in milliseconds). Then, copy the table at that timestamp to a new table. The new table must have a different name than the deleted table.

CREATE EXTERNAL TABLE statement

BigQuery allows creating both
permanent and temporary external tables
and querying data directly from:

	Bigtable
	Cloud Storage
	Google Drive
	Cloud SQL (beta)

Snowflake allows creating a
permanent external table
which when queried, reads data from a set of one or more files in a specified
external stage.

This section will use BigQuery CLI command corresponding to the
Snowflake command to address the differences in CREATE EXTERNAL TABLE statement.

	Snowflake	BigQuery
	CREATE [OR REPLACE] EXTERNAL TABLE

table

((<col_name> <col_type> AS <expr>)

| (<part_col_name> <col_type> AS <part_expr>)[inlineConstraint]

[, ...])

LOCATION = externalStage

FILE_FORMAT =

({FORMAT_NAME='<file_format_name>'

|TYPE=source_format [formatTypeOptions]})

Where:

externalStage = @[namespace.]ext_stage_name[/path]

Note: Snowflake allows staging the files containing data to be read and specifying format type options for external tables. Snowflake format types - CSV, JSON, AVRO, PARQUET, ORC are all supported by BigQuery except the XML type.	
[1] bq mk \

--external_table_definition=definition_file \

dataset.table

OR

[2] bq mk \

--external_table_definition=schema_file@source_format={Cloud Storage URI | drive_URI} \

dataset.table

OR

[3] bq mk \

--external_table_definition=schema@source_format = {Cloud Storage URI | drive_URI} \

dataset.table

Note: BigQuery allows creating a permanent table linked to your data source using a table definition file [1], a JSON schema file [2] or an inline schema definition [3]. Staging files to be read and specifying format type options is not supported in BigQuery.
	
CREATE [OR REPLACE] EXTERNAL TABLE [IF EXISTS]

<table_name>

((<col_name> <col_type> AS <expr>)

[, ...])

[PARTITION BY (<identifier>, ...)]

LOCATION = externalStage

[REFRESH_ON_CREATE = {TRUE|FALSE}]

[AUTO_REFRESH = {TRUE|FALSE}]

[PATTERN = '<regex_pattern>']

FILE_FORMAT = ({FORMAT_NAME = '<file_format_name>' | TYPE = { CSV | JSON | AVRO | ORC | PARQUET} [formatTypeOptions]})

[COPY GRANTS]

[COMMENT = '<string_literal>']

	
bq mk \

--external_table_definition=definition_file \

dataset.table

Note: BigQuery currently does not support any of the optional parameter options provided by Snowflake for creating external tables. For partitioning, BigQuery supports using the _FILE_NAME pseudo column to create partitioned tables/views on top of the external tables. For more information, see
Query the _FILE_NAME pseudo-column.

Additionally, BigQuery also supports
querying externally partitioned data
in AVRO, PARQUET, ORC, JSON and CSV formats that is stored on Google Cloud
Storage using a
default hive partitioning layout.

CREATE VIEW statement

The following table shows equivalents between Snowflake and BigQuery
for the CREATE VIEW statement.

	Snowflake	BigQuery
	
CREATE VIEW view_name AS SELECT ...

	
CREATE VIEW view_name AS SELECT ...

	
CREATE OR REPLACE VIEW view_name AS SELECT ...

	CREATE OR REPLACE VIEW

view_name AS SELECT ...

	
CREATE VIEW view_name

(column_name, ...)

AS SELECT ...

	
CREATE VIEW view_name

AS SELECT ...

	Not supported	CREATE VIEW IF NOT EXISTS

view_name

OPTIONS(view_option_list)

AS SELECT ...

	
CREATE VIEW view_name

AS SELECT ...

WITH NO SCHEMA BINDING

	In BigQuery, to create a view all referenced objects must already exist.

BigQuery allows to query external data sources.

CREATE SEQUENCE statement

Sequences are not used in BigQuery, this can be achieved with the
following batch way. For more information on surrogate keys and slowly changing
dimensions (SCD), see the following guides:

	BigQuery Surrogate Keys
	BigQuery and surrogate keys: A practical approach

	
INSERT INTO dataset.table SELECT
 *,
 ROW_NUMBER() OVER () AS id
FROM dataset.table

Data loading and unloading DDL

Snowflake supports data loading and unloading via stage, file format and pipe
management commands. BigQuery also provides multiple options for such
as bq load, BigQuery Data Transfer Service, bq extract, etc. This
section highlights the differences in the usage of these methodologies for data
loading and unloading.

Account and Session DDL

Snowflake's Account and Session concepts are not supported in BigQuery.
BigQuery allows management of accounts via
Cloud IAM at all levels. Also, multi statement
transactions are not yet supported in BigQuery.

User-defined functions (UDF)

A UDF enables you to create functions for custom operations. These functions
accept columns of input, perform actions, and return the result of those actions
as a value

Both
Snowflake
and
BigQuery
support UDF using SQL expressions and Javascript Code.

See the
GoogleCloudPlatform/bigquery-utils/
GitHub repository for a library of common BigQuery UDFs.

CREATE FUNCTION syntax

The following table addresses differences in SQL UDF creation syntax between
Snowflake and BigQuery.

	Snowflake	BigQuery
	
CREATE [OR REPLACE] FUNCTION

function_name

([sql_arg_name sql_arg_data_type[,..]])

RETURNS data_type

AS sql_function_definition

s

	
CREATE [OR REPLACE] FUNCTION function_name

([sql_arg_name sql_arg_data_type[,..]])

AS sql_function_definition

Note: In BigQuery SQL UDF, return data type is optional. BigQuery infers the result type of the function from the SQL function body when a query calls the function.
	
CREATE [OR REPLACE] FUNCTION

function_name

([sql_arg_name sql_arg_data_type[,..]])

RETURNS TABLE (col_name, col_data_type[,..])

AS sql_function_definition

	
CREATE [OR REPLACE] FUNCTION function_name

([sql_arg_name sql_arg_data_type[,..]])

RETURNS data_type

AS sql_function_definition

Note:In BigQuery SQL UDF, returning table type is currently not supported but is on the product roadmap and will be available soon. However, BigQuery supports returning ARRAY of type STRUCT.
	
CREATE [SECURE] FUNCTION

function_name

([sql_arg_name sql_arg_data_type[,..]])

RETURNS data_type

AS sql_function_definition

Note: Snowflake provides secure option to restrict UDF definition and details only to authorized users (that is, users who are granted the role that owns the view).	
CREATE FUNCTION

function_name

([sql_arg_name sql_arg_data_type[,..]])

RETURNS data_type

AS sql_function_definition

Note: Function security is not a configurable parameter in BigQuery. BigQuery supports creating IAM roles and permissions to restrict access to underlying data and function definition.

	
CREATE [OR REPLACE] FUNCTION

function_name

([sql_arg_name sql_arg_data_type[,..]])

RETURNS data_type

 [{ CALLED ON NULL INPUT | { RETURNS NULL ON NULL INPUT | STRICT } }]

AS sql_function_definition

	
CREATE [OR REPLACE] FUNCTION function_name

([sql_arg_name sql_arg_data_type[,..]])

RETURNS data_type

AS sql_function_definition

Note: Function behaviour for null inputs is implicitly handled in BigQuery and need not be specified as a separate option.
	
CREATE [OR REPLACE] FUNCTION

function_name

([sql_arg_name sql_arg_data_type[,..]])

RETURNS data_type

 [VOLATILE | IMMUTABLE]

AS sql_function_definition

	
CREATE [OR REPLACE] FUNCTION

function_name

([sql_arg_name sql_arg_data_type[,..]])

RETURNS data_type

AS sql_function_definition

Note:Function volatility is not a configurable parameter in BigQuery. All BigQuery UDF volatility is equivalent to Snowflake's IMMUTABLE volatility (that is, it does not do database lookups or otherwise use information not directly present in its argument list).
	
CREATE [OR REPLACE] FUNCTION

function_name

([sql_arg_name sql_arg_data_type[,..]])

RETURNS data_type

AS [' | $$]

 sql_function_definition

[' | $$]

	CREATE [OR REPLACE] FUNCTION

function_name

([sql_arg_name sql_arg_data_type[,..]])

RETURNS data_type

AS sql_function_definition

Note: Using single quotes or a character sequence like dollar quoting ($$) is not required or supported in BigQuery. BigQuery implicitly interprets the SQL expression.

	
CREATE [OR REPLACE] FUNCTION

function_name

([sql_arg_name sql_arg_data_type[,..]])

RETURNS data_type

 [COMMENT = '<string_literal>']

AS sql_function_definition

	
CREATE [OR REPLACE] FUNCTION

function_name

([sql_arg_name sql_arg_data_type[,..]])

RETURNS data_type

AS sql_function_definition

Note:Adding comments or descriptions in UDFs is currently not supported in BigQuery.
	
CREATE [OR REPLACE] FUNCTION function_name

(x integer, y integer)

RETURNS integer

AS $$

 SELECT x + y

$$

Note: Snowflake does not support ANY TYPE for SQL UDFs. However, it supports using VARIANT data types. 	
CREATE [OR REPLACE] FUNCTION function_name

(x ANY TYPE, y ANY TYPE)

AS

 SELECT x + y

Note: BigQuery supports using ANY TYPE as argument type. The function will accept an input of any type for this argument. For more information, see templated parameter in BigQuery.

BigQuery also supports the CREATE FUNCTION IF NOT EXISTSstatement
which treats the query as successful and takes no action if a function with the
same name already exists.

BigQuery's CREATE FUNCTIONstatement also supports creating
TEMPORARY or TEMP functions,
which do not have a Snowflake equivalent. See
calling UDFs
for details on executing a BigQuery persistent UDF.

DROP FUNCTION syntax

The following table addresses differences in DROP FUNCTION syntax between
Snowflake and BigQuery.

	Snowflake	BigQuery
	
DROP FUNCTION [IF EXISTS]

function_name

([arg_data_type, ...])

	
DROP FUNCTION [IF EXISTS] dataset_name.function_name

Note: BigQuery does not require using the function's signature (argument data type) for deleting the function.

BigQuery requires that you
specify the project_name if
the function is not located in the current project.

Additional function commands

This section covers additional UDF commands supported by Snowflake that are not
directly available in BigQuery.

ALTER FUNCTION syntax

Snowflake supports the following operations using
ALTER FUNCTION
syntax.

	Renaming a UDF
	Converting to (or reverting from) a secure UDF
	Adding, overwriting, removing a comment for a UDF

As configuring function security and adding function comments is not available
in BigQuery, ALTER FUNCTION syntax is currently not supported. However,
the
CREATE FUNCTION
statement can be used to create a UDF with the same function definition but a
different name.

DESCRIBE FUNCTION syntax

Snowflake supports describing a UDF using
DESC[RIBE] FUNCTION
syntax. This is currently not supported in BigQuery. However, querying
UDF metadata via INFORMATION SCHEMA will be available soon as part of the
product roadmap.

SHOW USER FUNCTIONS syntax

In Snowflake,
SHOW USER FUNCTIONS
syntax can be used to list all UDFs for which users have access privileges. This
is currently not supported in BigQuery. However, querying UDF metadata
via INFORMATION SCHEMA will be available soon as part of the product roadmap.

Stored procedures

Snowflake
stored procedures
are written in JavaScript, which can execute SQL statements by calling a
JavaScript API. In BigQuery, stored procedures are defined using a
block of SQL
statements.

CREATE PROCEDURE syntax

In Snowflake, a stored procedure is executed with a
CALL command
while in BigQuery, stored procedures are
executed
like any other BigQuery function.

The following table addresses differences in stored procedure creation syntax
between Snowflake and BigQuery.

	Snowflake	BigQuery
	
CREATE [OR REPLACE] PROCEDURE

procedure_name

([arg_name arg_data_type[,..]])

RETURNS data_type

AS procedure_definition;

Note: Snowflake requires that stored procedures return a single value. Hence, return data type is a required option.	CREATE [OR REPLACE] PROCEDURE

procedure_name

([arg_mode arg_name arg_data_type[,..]])

BEGIN

procedure_definition

END;

arg_mode: IN | OUT | INOUT

Note: BigQuery doesn't support a return type for stored procedures. Also, it requires specifying argument mode for each argument passed.
	
CREATE [OR REPLACE] PROCEDURE

procedure_name

([arg_name arg_data_type[,..]])

RETURNS data_type

AS

 $$

 javascript_code

 $$;

	
CREATE [OR REPLACE] PROCEDURE

procedure_name

([arg_name arg_data_type[,..]])

BEGIN

statement_list

END;

	
CREATE [OR REPLACE] PROCEDURE

procedure_name

([arg_name arg_data_type[,..]])

RETURNS data_type

 [{CALLED ON NULL INPUT | {RETURNS NULL ON NULL INPUT | STRICT}}]

AS procedure_definition;

	CREATE [OR REPLACE] PROCEDURE

procedure_name

([arg_name arg_data_type[,..]])

BEGIN

procedure_definition

END;

Note: Procedure behavior for null inputs is implicitly handled in BigQuery and need not be specified as a separate option.
	CREATE [OR REPLACE] PROCEDURE

procedure_name

([arg_name arg_data_type[,..]])

RETURNS data_type

 [VOLATILE | IMMUTABLE]

AS procedure_definition;

	
CREATE [OR REPLACE] PROCEDURE

procedure_name

([arg_name arg_data_type[,..]])

BEGIN

procedure_definition

END;

Note:Procedure volatility is not a configurable parameter in BigQuery. It's equivalent to Snowflake's IMMUTABLE volatility.
	CREATE [OR REPLACE] PROCEDURE

procedure_name

([arg_name arg_data_type[,..]])

RETURNS data_type

 [COMMENT = '<string_literal>']

AS procedure_definition;

	
CREATE [OR REPLACE] PROCEDURE

procedure_name

([arg_name arg_data_type[,..]])

BEGIN

procedure_definition

END;

Note:Adding comments or descriptions in procedure definitions is currently not supported in BigQuery.
	CREATE [OR REPLACE] PROCEDURE

procedure_name

([arg_name arg_data_type[,..]])

RETURNS data_type

 [EXECUTE AS { CALLER | OWNER }]

AS procedure_definition;

Note: Snowflake supports specifying the caller or owner of the procedure for execution	
CREATE [OR REPLACE] PROCEDURE

procedure_name

([arg_name arg_data_type[,..]])

BEGIN

procedure_definition

END;

Note: BigQuery stored procedures are always executed as the caller

BigQuery also supports the CREATE PROCEDURE IF NOT EXISTS statement
which treats the query as successful and takes no action if a function with the
same name already exists.

DROP PROCEDURE syntax

The following table addresses differences in DROP FUNCTION syntax between
Snowflake and BigQuery.

	Snowflake	BigQuery
	
DROP PROCEDURE [IF EXISTS]

procedure_name

([arg_data_type, ...])

	
DROP PROCEDURE [IF EXISTS] dataset_name.procedure_name

Note: BigQuery does not require using procedure's signature (argument data type) for deleting the procedure.

BigQuery requires that you
specify the project_name if
the procedure is not located in the current project.

Additional procedure commands

Snowflake provides additional commands like
ALTER PROCEDURE,
DESC[RIBE] PROCEDURE,
and
SHOW PROCEDURES
to manage the stored procedures. These are currently not supported in
BigQuery.

Metadata and transaction SQL statements

	Snowflake	BigQuery
	
BEGIN [{ WORK | TRANSACTION }] [NAME <name>];

START_TRANSACTION [name <name>];

	BigQuery always uses Snapshot Isolation. For details, see Consistency guarantees elsewhere in this document.
	
COMMIT;

	Not used in BigQuery.
	
ROLLBACK;

	Not used in BigQuery
	
SHOW LOCKS [IN ACCOUNT];
SHOW TRANSACTIONS [IN ACCOUNT];

Note: If the user has the ACCOUNTADMIN role, the user can see locks/transactions for all users in the account.

	Not used in BigQuery.

Multi-statement and multi-line SQL statements

Both Snowflake and BigQuery support transactions (sessions)
and therefore support statements separated by semicolons that are consistently
executed together. For more information, see
Multi-statement transactions.

Metadata columns for staged files

Snowflake automatically generates metadata for files in internal and external
stages. This metadata can be
queried and
loaded
into a table alongside regular data columns. The following metadata columns can
be utilized:

	METADATA$FILENAME
	METADATA$FILE_ROW_NUMBER

Consistency guarantees and transaction isolation

Both Snowflake and BigQuery are atomic—that is, ACID-compliant on a
per-mutation level across many rows.

Transactions

Each Snowflake transaction is assigned a unique start time (includes
milliseconds) that is set as the transaction ID. Snowflake only supports the
READ COMMITTED
isolation level. However, a statement can see changes made by another statement
if they are both in the same transaction - even though those changes are not
committed yet. Snowflake transactions acquire locks on resources (tables) when
that resource is being modified. Users can adjust the maximum time a blocked
statement will wait until the statement times out. DML statements are
autocommitted if the
AUTOCOMMIT
parameter is turned on.

BigQuery also
supports transactions.
BigQuery helps ensure
optimistic concurrency control
(first to commit wins) with
snapshot isolation, in which
a query reads the last committed data before the query starts. This approach
guarantees the same level of consistency on a per-row, per-mutation basis and
across rows within the same DML statement, yet avoids deadlocks. In the case of
multiple DML updates against the same table, BigQuery switches to
pessimistic concurrency control.
Load jobs can run completely independently and append to tables. However,
BigQuery does not yet provide an explicit transaction boundary or
session.

Rollback

If a Snowflake transaction's session is unexpectedly terminated before the
transaction is committed or rolled back, the transaction is left in a detached
state. The user should run SYSTEM$ABORT_TRANSACTION to abort the detached
transaction or Snowflake will roll back the detached transaction after four idle
hours. If a deadlock occurs, Snowflake detects the deadlock and selects the more
recent statement to roll back. If the DML statement in an explicitly opened
transaction fails, the changes are rolled back, but the transaction is kept open
until it is committed or rolled back. DDL statements in Snowflake cannot be
rolled back as they are autocommitted.

BigQuery supports the
ROLLBACK TRANSACTION statement.
There is no ABORT statement
in BigQuery.

Database limits

Always check the BigQuery public documentation for
the latest quotas and limits. Many quotas for large-volume users can be raised
by contacting the Cloud Support team.

All Snowflake accounts have soft-limits set by default. Soft-limits are set
during account creation and can vary. Many Snowflake soft-limits can be raised
through the Snowflake account team or a support ticket.

The following table shows a comparison of the Snowflake and BigQuery
database limits.

	Limit	Snowflake	BigQuery
	Size of query text	1 MB	1 MB
	Maximum number of concurrent queries	XS Warehouse - 8

S Warehouse - 16

M Warehouse - 32

L Warehouse - 64

XL Warehouse - 128	100

 Send feedback

 Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.

 Last updated 2024-03-28 UTC.

 [{
 "type": "thumb-down",
 "id": "hardToUnderstand",
 "label":"Hard to understand"
 },{
 "type": "thumb-down",
 "id": "incorrectInformationOrSampleCode",
 "label":"Incorrect information or sample code"
 },{
 "type": "thumb-down",
 "id": "missingTheInformationSamplesINeed",
 "label":"Missing the information/samples I need"
 },{
 "type": "thumb-down",
 "id": "otherDown",
 "label":"Other"
 }]

 [{
 "type": "thumb-up",
 "id": "easyToUnderstand",
 "label":"Easy to understand"
 },{
 "type": "thumb-up",
 "id": "solvedMyProblem",
 "label":"Solved my problem"
 },{
 "type": "thumb-up",
 "id": "otherUp",
 "label":"Other"
 }]

 Need to tell us more?

 	
 Why Google

 	

 Choosing Google Cloud

	

 Trust and security

	

 Open cloud

	

 Multicloud

	

 Global infrastructure

	

 Customers and case studies

	

 Analyst reports

	

 Whitepapers

	

 Blog

	
 Products and pricing

 	

 Google Cloud pricing

	

 Google Workspace pricing

	

 See all products

	
 Solutions

 	

 Infrastructure modernization

	

 Databases

	

 Application modernization

	

 Smart analytics

	

 Artificial Intelligence

	

 Security

	

 Productivity & work transformation

	

 Industry solutions

	

 DevOps solutions

	

 Small business solutions

	

 See all solutions

	
 Resources

 	

 Google Cloud documentation

	

 Google Cloud quickstarts

	

 Google Cloud Marketplace

	

 Learn about cloud computing

	

 Support

	

 Code samples

	

 Cloud Architecture Center

	

 Training

	

 Certifications

	

 Google for Developers

	

 Google Cloud for Startups

	

 System status

	

 Release Notes

	
 Engage

 	

 Contact sales

	

 Find a Partner

	

 Become a Partner

	

 Events

	

 Podcasts

	

 Developer Center

	

 Press Corner

	

 Google Cloud on YouTube

	

 Google Cloud Tech on YouTube

	

 Follow on X

	

 Join User Research

	

 We're hiring. Join Google Cloud!

	

 Google Cloud Community

 	

 About Google

	

 Privacy

	

 Site terms

	

 Google Cloud terms

	

 Manage cookies

	

 Our third decade of climate action: join us

	

 Sign up for the Google Cloud newsletter

 Subscribe

 	
 English

	
 Deutsch

	
 Español – América Latina

	
 Français

	
 Indonesia

	
 Italiano

	
 Português – Brasil

	
 中文 – 简体

	
 日本語

	
 한국어

