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    Snowflake SQL translation guide

    

This document details the similarities and differences in SQL syntax between
Snowflake and BigQuery to help accelerate the planning and execution of
moving your EDW (Enterprise Data Warehouse) to BigQuery. Snowflake data
warehousing is designed to work with Snowflake-specific SQL syntax. Scripts
written for Snowflake might need to be altered before you can use them in
BigQuery, because the SQL dialects vary between the services. Use
batch SQL translation to
migrate your SQL scripts in bulk, or
interactive SQL translation
to translate ad hoc queries. Snowflake SQL is supported by both
tools in preview.

Note: In some cases, there is no direct mapping between a SQL element in
Snowflake and BigQuery. However, in most cases, you can achieve the
same functionality in BigQuery that you can in Snowflake using an
alternative means, as shown in the examples in this document.
Data types


This section shows equivalents between data types in Snowflake and in
BigQuery.


	Snowflake	BigQuery	Notes
	

NUMBER/
DECIMAL/NUMERIC	NUMERIC	The NUMBER data type in Snowflake supports 38 digits of precision and 37 digits of scale. Precision and scale can be specified according to the user.



BigQuery supports NUMERIC and BIGNUMERIC with optionally specified precision and scale within certain bounds.
	INT/INTEGER 	BIGNUMERIC	INT/INTEGER and all other INT-like datatypes, such as BIGINT, TINYINT, SMALLINT, BYTEINT represent an alias for the NUMBER datatype where the precision and scale cannot be specified and is always NUMBER(38, 0)
	BIGINT	BIGNUMERIC	
	SMALLINT	BIGNUMERIC	
	TINYINT	BIGNUMERIC	
	BYTEINT	BIGNUMERIC	
	FLOAT/

FLOAT4/

FLOAT8	FLOAT64	The FLOAT data type in Snowflake establishes 'NaN' as > X, where X is any FLOAT value (other than 'NaN' itself).



The FLOAT data type in BigQuery establishes 'NaN' as < X, where X is any FLOAT value (other than 'NaN' itself).
	DOUBLE/

DOUBLE PRECISION/

REAL	FLOAT64	The DOUBLE data type in Snowflake is synonymous with the FLOAT data type in Snowflake, but is commonly incorrectly displayed as FLOAT. It is properly stored as DOUBLE.
	VARCHAR	STRING	The VARCHAR data type in Snowflake has a maximum length of 16 MB (uncompressed). If length is not specified, the default is the maximum length.



The STRING data type in BigQuery is stored as variable length UTF-8 encoded Unicode. The maximum length is 16,000 characters.
	CHAR/CHARACTER	STRING	The CHAR data type in Snowflake has a maximum length of 1.
	STRING/TEXT	STRING	The STRING data type in Snowflake is synonymous with Snowflake's VARCHAR.
	BINARY	BYTES	
	VARBINARY	BYTES	
	BOOLEAN	BOOL	The BOOL data type in BigQuery can only accept TRUE/FALSE, unlike the BOOL data type in Snowflake, which can accept TRUE/FALSE/NULL.
	DATE	DATE	The DATE type in Snowflake accepts most common date formats, unlike the DATE type in BigQuery, which only accepts dates in the format, 'YYYY-[M]M-[D]D'.
	TIME	TIME	The TIME type in Snowflake supports 0 to 9 nanoseconds of precision, whereas the TIME type in BigQuery supports 0 to 6 nanoseconds of precision.
	TIMESTAMP	DATETIME	TIMESTAMP is a user-configurable alias which defaults to TIMESTAMP_NTZ which maps to DATETIME in BigQuery.
	TIMESTAMP_LTZ	TIMESTAMP	
	TIMESTAMP_NTZ/DATETIME

	DATETIME	
	TIMESTAMP_TZ	TIMESTAMP	
	OBJECT	JSON	The OBJECT type in Snowflake does not support explicitly-typed values. Values are of the VARIANT type. 



    
    	VARIANT	JSON	The OBJECT type in Snowflake does not support explicitly-typed values. Values are of the VARIANT type.



    
    	ARRAY	ARRAY<JSON>	The ARRAY type in Snowflake can only support VARIANT types, whereas the ARRAY type in BigQuery can support all data types with the exception of an array itself.



BigQuery also has the following data types which do not have a direct
Snowflake analogue:


	DATETIME
	GEOGRAPHY



Query syntax and query operators


This section addresses differences in query syntax between Snowflake and
BigQuery.


SELECT statement


Most
Snowflake SELECT statements
are compatible with BigQuery. The following table contains a list of
minor differences.


	Snowflake	BigQuery
	
SELECT TOP ...




FROM table

	
SELECT expression




FROM table




ORDER BY expression DESC




LIMIT number


	
SELECT




  x/total AS probability,




  ROUND(100 * probability, 1) AS pct




FROM raw_data





Note: Snowflake supports creating and referencing an alias in the same SELECT statement.	
SELECT




  x/total AS probability,




  ROUND(100 * (x/total), 1) AS pct




FROM raw_data


	
SELECT *
FROM (




VALUES (1), (2), (3)




)

	
SELECT AS VALUE STRUCT(1, 2, 3)





Snowflake aliases and identifiers are case-insensitive by default. To preserve
case, enclose aliases and identifiers with double quotes (").


BigQuery supports the following expressions in SELECT
statements, which do not have a Snowflake equivalent:


	EXCEPT
	REPLACE



FROM clause


A
FROM clause
in a query specifies the possible tables, views, subquery, or table functions to
use in a SELECT statement. All of these table references are supported in
BigQuery.


The following table contains a list of minor differences.


	Snowflake	BigQuery
	
SELECT $1, $2 FROM
(VALUES (1, 'one'), (2, 'two'));

	WITH table1 AS 

(

SELECT STRUCT(1 as number, 'one' as spelling)

UNION ALL

SELECT STRUCT(2 as number, 'two' as spelling)

)

SELECT *

FROM table1
	
SELECT*
FROM table
SAMPLE(10)

	
SELECT*
FROM table




TABLESAMPLE




BERNOULLI (0.1 PERCENT)


	
SELECT * FROM table1 AT(TIMESTAMP => timestamp)

SELECT * FROM table1 BEFORE(STATEMENT => statementID)

	
SELECT * FROM table




FOR SYSTEM_TIME AS OF timestamp





Note: BigQuery does not have a direct alternative to Snowflake's BEFORE using a statement ID. The value of timestamp cannot be more than 7 days before the current timestamp.
	
@[namespace]<stage_name>[/path]

	
BigQuery does not support the concept of staged files.


	
SELECT*




FROM table




START WITH predicate




CONNECT BY




  [PRIOR] col1 = [PRIOR] col2




  [, ...]




...

	
BigQuery does not offer a direct alternative to Snowflake's CONNECT BY.





BigQuery tables can be referenced in the FROM clause using:


	[project_id].[dataset_id].[table_name]
	[dataset_id].[table_name]
	[table_name]



BigQuery also supports
additional table references:


	Historical versions of the table definition and rows using FOR SYSTEM_TIME
AS OF
	Field paths, or any path that resolves to a field within a data type (that
is, a STRUCT)
	Flattened arrays



WHERE clause


The Snowflake
WHERE
clause and BigQuery
WHERE
clause are identical, except for the following:


	Snowflake	BigQuery
	
SELECT col1, col2
FROM table1, table2
WHERE col1 = col2(+)

	SELECT col1, col2

FROM table1 INNER JOIN table2

ON col1 = col2



Note: BigQuery does not support the (+) syntax for JOINs



JOIN types


Both Snowflake and BigQuery support the following types of join:


	[INNER] JOIN
	LEFT [OUTER] JOIN
	RIGHT [OUTER] JOIN
	FULL [OUTER] JOIN
	CROSS JOINand the equivalent
implicit "comma cross join" 



Both Snowflake and BigQuery support theONandUSING clause.


The following table contains a list of minor differences.


	Snowflake	BigQuery
	
SELECT col1




FROM table1




NATURAL JOIN




table2

	
SELECT col1




FROM table1




INNER JOIN




table2




USING (col1, col2 [, ...])





Note: In BigQuery, JOIN clauses require a JOIN condition unless it is a CROSS JOIN or one of the joined tables is a field within a data type or an array.
	
SELECT ...
FROM table1 AS t1,
LATERAL (
  SELECT*




  FROM table2 AS t2




  WHERE
  t1.col = t2.col
)





Note: Unlike the output of a non-lateral join, the output from a lateral join includes only the rows generated from the in-line view. The rows on the left-hand side do not need to be joined to the right hand side because the rows on the left-hand side have already been taken into account by being passed into the in-line view.	
SELECT ...
FROM table1 as t1
LEFT JOIN table2 as t2




ON t1.col = t2.col




Note: BigQuery does not support a direct alternative for LATERAL JOINs.



WITH clause


A BigQuery WITH
clause
contains one or more named subqueries which execute every time a subsequent
SELECT statement references them. Snowflake
WITH
clauses behave the same as BigQuery with the exception that
BigQuery does not support WITH RECURSIVE.


GROUP BY clause


Snowflake GROUP BY clauses support GROUP
BY,
GROUP BY
ROLLUP,
GROUP BY GROUPING
SETS,
and GROUP BY
CUBE,
while BigQuery GROUP BY clauses supports GROUP
BY and
GROUP BY
ROLLUP.


Snowflake
HAVING
and BigQuery
HAVING are
synonymous. Note that HAVING occurs after GROUP BY and aggregation, and
before ORDER BY.


	Snowflake	BigQuery
	
SELECT
col1 as one, col2 as two




FROM table
GROUP BY (one, 2)

	
SELECT col1 as one, col2 as two




FROM table
GROUP BY (one, 2)


	
SELECT
col1 as one, col2 as two




FROM table
GROUP BY ROLLUP (one, 2)

	
SELECT col1 as one, col2 as two




FROM table
GROUP BY ROLLUP (one, 2)


	
SELECT
col1 as one, col2 as two




FROM table
GROUP BY GROUPING SETS
(one, 2)





Note: Snowflake allows up to 128 grouping sets in the same query block	BigQuery does not support a direct alternative to Snowflake's GROUP BY GROUPING SETS.
	
SELECT
col1 as one, col2 as two




FROM table
GROUP BY CUBE
(one,2)





Note: Snowflake allows up to 7 elements (128 grouping sets) in each cube	BigQuery does not support a direct alternative to Snowflake's GROUP BY CUBE.



ORDER BY clause


There are some minor differences between
Snowflake ORDER BY clauses
and
BigQuery ORDER BY clauses.


	Snowflake	BigQuery
	In Snowflake, NULLs are ranked last by default (ascending order).	In BigQuery, NULLS are ranked first by default (ascending order).
	You can specify whether NULL values should be ordered first or last using NULLS FIRST or NULLS LAST, respectively. 	There's no equivalent to specify whether NULL values should be first or last in BigQuery.



LIMIT/FETCH clause


The
LIMIT/FETCH
clause in Snowflake constrains the maximum number of rows returned by a
statement or subquery.
LIMIT
(Postgres syntax) and
FETCH
(ANSI syntax) produce the same result.


In Snowflake and BigQuery, applying a LIMIT clause to a query does
not affect the amount of data that is read.


	Snowflake	BigQuery
	
SELECT col1, col2




FROM table




ORDER BY col1




LIMIT count OFFSET start






SELECT ...




FROM ...




ORDER BY ...




OFFSET start {[ROW | ROWS]} FETCH {[FIRST | NEXT]} count




{[ROW | ROWS]} [ONLY]





Note: NULL, empty string (''), and $$$$ values are accepted and are treated as "unlimited". Primary use is for connectors and drivers.	
SELECT col1, col2




FROM table




ORDER BY col1




LIMIT count OFFSET start





Note: BigQuery does not support FETCH. LIMIT replaces FETCH.



Note: In BigQuery, OFFSET must be used together with a LIMIT count. Make sure to set the count INT64 value to the minimum necessary ordered rows for best performance. Ordering all result rows unnecessarily will lead to worse query execution performance.



QUALIFY clause


The
QUALIFY
clause in Snowflake allows you to filter results for window functions similar to
what HAVING does with aggregate functions and GROUP BY clauses.


	Snowflake	BigQuery
	
SELECT col1, col2
FROM table
QUALIFY ROW_NUMBER() OVER (PARTITION BY col1 ORDER BY col2) = 1;

	The Snowflake QUALIFY clause with an analytics function like ROW_NUMBER(), COUNT(), and with OVER PARTITION BY is expressed in BigQuery as a WHERE clause on a subquery that contains the analytics value.



Using ROW_NUMBER():



SELECT col1, col2


FROM (
SELECT col1, col2




ROW NUMBER() OVER (PARTITION BY col1 ORDER by col2) RN
FROM table
) WHERE RN = 1;





Using ARRAY_AGG(), which supports larger partitions:




SELECT result.*
FROM (
SELECT ARRAY_AGG(table ORDER BY table.col2 DESC LIMIT 1) [OFFSET(0)]
FROM table




GROUP BY col1
) AS result;





Functions


The following sections list Snowflake functions and their BigQuery
equivalents.


Aggregate functions


The following table shows mappings between common Snowflake aggregate, aggregate
analytic, and approximate aggregate functions with their BigQuery
equivalents.


	Snowflake	BigQuery
	
ANY_VALUE([DISTINCT] expression)
[OVER ...]





Note: DISTINCT does not have any effect	
ANY_VALUE(expression)
[OVER ...]


	
APPROX_COUNT_DISTINCT([DISTINCT] expression) [OVER ...]





Note: DISTINCT does not have any effect	
APPROX_COUNT_DISTINCT(expression)





Note: BigQuery does not support APPROX_COUNT_DISTINCT with Window Functions
	
APPROX_PERCENTILE(expression, percentile) [OVER ...]





Note: Snowflake does not have the option to RESPECT NULLS	
APPROX_QUANTILES([DISTINCT] expression,100)
[OFFSET((CAST(TRUNC(percentile * 100) as INT64))]





Note: BigQuery does not support APPROX_QUANTILES with Window Functions
	
APPROX_PERCENTILE_ACCUMULATE
(expression)

	BigQuery does not support the ability to store intermediate state when predicting approximate values.
	
APPROX_PERCENTILE_COMBINE(state)

	BigQuery does not support the ability to store intermediate state when predicting approximate values.
	
APPROX_PERCENTILE_ESTIMATE(state, percentile)

	BigQuery does not support the ability to store intermediate state when predicting approximate values.
	
APPROX_TOP_K(expression, [number [counters]]





Note: If no number parameter is specified, default is 1. Counters should be significantly larger than number.	
APPROX_TOP_COUNT(expression, number)





Note: BigQuery does not support APPROX_TOP_COUNT with Window Functions.
	
APPROX_TOP_K_ACCUMULATE(expression,
counters)

	BigQuery does not support the ability to store intermediate state when predicting approximate values.
	
APPROX_TOP_K_COMBINE(state, [counters])

	BigQuery does not support the ability to store intermediate state when predicting approximate values.
	
APPROX_TOP_K_ESTIMATE(state, [k])

	BigQuery does not support the ability to store intermediate state when predicting approximate values.
	
APPROXIMATE_JACCARD_INDEX([DISTINCT] expression)

	

You can use a custom UDF to implement MINHASH with k distinct hash functions. Another approach to reduce the variance in MINHASH is to keep

k of the minimum values of one hash function. In this case Jaccard index can be approximated as following:


WITH




minhash_A AS (




  SELECT DISTINCT FARM_FINGERPRINT(TO_JSON_STRING(t)) AS h




  FROM TA AS t




  ORDER BY h




  LIMIT k),




minhash_B AS (




  SELECT DISTINCT FARM_FINGERPRINT(TO_JSON_STRING(t)) AS h




  FROM TB AS t




  ORDER BY h




  LIMIT k)




SELECT




  COUNT(*) / k AS APPROXIMATE_JACCARD_INDEX




FROM minhash_A




INNER JOIN minhash_B




ON minhash_A.h = minhash_B.h


	
APPROXIMATE_SIMILARITY([DISTINCT] expression)

	

It is a synonym for APPROXIMATE_JACCARD_INDEX and can be implemented in the same way.
	
ARRAY_AGG([DISTINCT] expression1)
[WITHIN GROUP (ORDER BY ...)]




[OVER ([PARTITION BY expression2])]





Note: Snowflake does not support ability to IGNORE|RESPECT NULLS and to LIMIT directly in ARRAY_AGG.

	
ARRAY_AGG([DISTINCT] expression1




[{IGNORE|RESPECT}] NULLS]
[ORDER BY ...]
LIMIT ...])




[OVER (...)]


	
AVG([DISTINCT] expression)
[OVER ...]

	
AVG([DISTINCT] expression)
[OVER ...]





Note: BigQuery's AVG does not perform automatic casting on STRINGs.
	
BITAND_AGG(expression)




[OVER ...]

	
BIT_AND(expression)
[OVER ...]




Note: BigQuery does not implicitly cast character/text columns to the nearest INTEGER.
	
BITOR_AGG(expression)




[OVER ...]

	
BIT_OR(expression)




[OVER ...]





Note: BigQuery does not implicitly cast character/text columns to the nearest INTEGER.
	
BITXOR_AGG([DISTINCT] expression)
[OVER ...]

	
BIT_XOR([DISTINCT] expression)
[OVER ...]





Note: BigQuery does not implicitly cast character/text columns to the nearest INTEGER.
	
BOOLAND_AGG(expression)
[OVER ...]





Note: Snowflake allows numeric, decimal, and floating point values to be treated as TRUE if not zero. 	
LOGICAL_AND(expression)




[OVER ...]


	
BOOLOR_AGG(expression)




[OVER ...]





Note: Snowflake allows numeric, decimal, and floating point values to be treated as TRUE if not zero. 	
LOGICAL_OR(expression)




[OVER ...]


	
BOOLXOR_AGG(expression)




[OVER ([PARTITION BY <partition_expr> ])





Note: Snowflake allows numeric, decimal, and floating point values to be treated as TRUE if not zero. 	For numeric expression:


SELECT




  CASE COUNT(*)




    WHEN 1 THEN TRUE




    WHEN 0 THEN NULL




    ELSE FALSE




  END AS BOOLXOR_AGG




FROM T




WHERE expression != 0





To use OVER you can run the following (boolean example provided):


SELECT




  CASE COUNT(expression) OVER (PARTITION BY partition_expr)




    WHEN 0 THEN NULL




    ELSE




      CASE COUNT(




        CASE expression




          WHEN TRUE THEN 1




        END) OVER (PARTITION BY partition_expr)




        WHEN 1 THEN TRUE




        ELSE FALSE




      END




  END AS BOOLXOR_AGG




FROM T


	
CORR(dependent, independent)




[OVER ...]

	
CORR(dependent, independent)




[OVER ...]


	
COUNT([DISTINCT] expression [,expression2])
[OVER ...]

	
COUNT([DISTINCT] expression [,expression2])
[OVER ...]


	
COVAR_POP(dependent, independent)
[OVER ...]

	
COVAR_POP(dependent, independent)
[OVER ...]


	
COVAR_SAMP(dependent, independent)




[OVER ...]

	
COVAR_SAMP(dependent, independent)




[OVER ...]


	
GROUPING(expression1, [,expression2...])

	BigQuery does not support a direct alternative to Snowflake's GROUPING. Available through a User-Defined Function.
	
GROUPING_ID(expression1, [,expression2...])

	BigQuery does not support a direct alternative to Snowflake's GROUPING_ID. Available through a User-Defined Function.
	
HASH_AGG([DISTINCT] expression1, [,expression2])




[OVER ...]

	SELECT 

    BIT_XOR(

        FARM_FINGERPRINT(

            TO_JSON_STRING(t))) [OVER]

FROM t 
	
SELECT HLL([DISTINCT] expression1, [,expression2])




[OVER  ...]





Note: Snowflake does not allow you to specify precision.	
SELECT HLL_COUNT.EXTRACT(sketch)
FROM (




    SELECT HLL_COUNT.INIT(expression)




    AS  sketch
    FROM table
)





Note: BigQuery does not support HLL_COUNT… with Window Functions. A user cannot include multiple expressions in a single HLL_COUNT... function.
	
HLL_ACCUMULATE([DISTINCT] expression)





Note: Snowflake does not allow you to specify precision.	HLL_COUNT.INIT(expression [, precision])
	
HLL_COMBINE([DISTINCT] state)

	HLL_COUNT.MERGE_PARTIAL(sketch)
	
HLL_ESTIMATE(state)

	
HLL_COUNT.EXTRACT(sketch)


	
HLL_EXPORT(binary)

	BigQuery does not support a direct alternative to Snowflake's HLL_EXPORT.
	
HLL_IMPORT(object)

	BigQuery does not support a direct alternative to Snowflake's HLL_IMPORT.
	
KURTOSIS(expression)




[OVER ...]

	BigQuery does not support a direct alternative to Snowflake's KURTOSIS.
	
LISTAGG(




  [DISTINCT] aggregate_expression




  [, delimiter]




)




[OVER ...]

	
STRING_AGG(




  [DISTINCT] aggregate_expression




  [, delimiter]




)




[OVER ...]


	
MEDIAN(expression)
[OVER ...]





Note: Snowflake does not support ability to IGNORE|RESPECT NULLS and to LIMIT directly in ARRAY_AGG.	
PERCENTILE_CONT(




  value_expression,




  0.5



     [ {RESPECT | IGNORE} NULLS]


) OVER()


	
MAX(expression)
[OVER ...]






MIN(expression)
[OVER ...]

	
MAX(expression)
[OVER ...]






MIN(expression)
[OVER ...]


	
MINHASH(k, [DISTINCT] expressions)

	You can use a custom UDF to implement MINHASH with k distinct hash functions. Another approach to reduce the variance in MINHASH is to keep k of the minimum values of one hash function:  SELECT DISTINCT 

  FARM_FINGERPRINT(

   TO_JSON_STRING(t)) AS MINHASH


FROM t




ORDER BY MINHASH




LIMIT k


	
MINHASH_COMBINE([DISTINCT] state)

	
FROM (

  SELECT DISTINCT 

    FARM_FINGERPRINT(

      TO_JSON_STRING(t)) AS h

  FROM TA AS t

  ORDER BY h

  LIMIT k

  UNION

  SELECT DISTINCT 

    FARM_FINGERPRINT(

      TO_JSON_STRING(t)) AS h

  FROM TB AS t

  ORDER BY h

  LIMIT k

)  

ORDER BY h

LIMIT k
	
MODE(expr1)




OVER ( [ PARTITION BY <expr2> ] )

	
SELECT expr1




FROM (




  SELECT




    expr1,




    ROW_NUMBER() OVER (




      PARTITION BY expr2




      ORDER BY cnt DESC) rn




  FROM (




    SELECT




      expr1,




      expr2,




      COUNTIF(expr1 IS NOT NULL) OVER




        (PARTITION BY expr2, expr1) cnt




    FROM t))




WHERE rn = 1


	
OBJECT_AGG(key, value)
[OVER ...]

	You may consider using TO_JSON_STRING to convert a value into JSON-formatted string
	
PERCENTILE_CONT(percentile) WITHIN GROUP (ORDER BY value_expression)




[OVER ...]

	
PERCENTILE_CONT(




  value_expression,




  percentile



     [ {RESPECT | IGNORE} NULLS]


) OVER()


	
PERCENTILE_DISC(percentile) WITHIN GROUP (ORDER BY value_expression)




[OVER ...]

	
PERCENTILE_DISC(




  value_expression,




  percentile



     [ {RESPECT | IGNORE} NULLS]


) OVER()


	
REGR_AVGX(dependent, independent)




[OVER ...]

	
SELECT AVG(independent) [OVER ...]




FROM table




WHERE (




  (dependent IS NOT NULL) AND




  (independent IS NOT NULL)




)


	
REGR_AVGY(dependent, independent)




[OVER ...]

	
SELECT AVG(dependent) [OVER ...]




FROM table




WHERE (




  (dependent IS NOT NULL) AND




  (independent IS NOT NULL)




)


	
REGR_COUNT(dependent, independent)




[OVER ...]

	
SELECT COUNT(*) [OVER ...]




FROM table




WHERE (




  (dependent IS NOT NULL) AND




  (independent IS NOT NULL)




)


	
REGR_INTERCEPT(dependent, independent)




[OVER ...]

	
SELECT




  AVG(dependent) -




  COVAR_POP(dependent,independent)/




  VAR_POP(dependent) *




  AVG(independent)




  [OVER ...]




FROM table




WHERE (




  (dependent IS NOT NULL) AND




  (independent IS NOT NULL)




)




[GROUP BY ...]


	
REGR_R2(dependent, independent)




[OVER ...]

	
SELECT




  CASE




    WHEN VAR_POP(independent) = 0




    THEN NULL




    WHEN VAR_POP(dependent) = 0 AND VAR_POP(independent) != 0




    THEN 1




    ELSE POWER(CORR(dependent, independent), 2)




  END AS ...




FROM table




WHERE (




  (dependent IS NOT NULL) AND




  (independent IS NOT NULL)




)




[GROUP BY ...]


	
REGR_SLOPE(dependent, independent)




[OVER ...]

	
SELECT




  COVAR_POP(dependent,independent)/




  VAR_POP(dependent)




  [OVER ...]




FROM table




WHERE (




  (dependent IS NOT NULL) AND




  (independent IS NOT NULL)




)




[GROUP BY ...]


	
REGR_SXX(dependent, independent)




[OVER ...]

	
SELECT COUNT(*)*VAR_POP(independent)




  [OVER ...]




FROM table




WHERE (




  (dependent IS NOT NULL) AND




  (independent IS NOT NULL)




)




[GROUP BY ...]


	
REGR_SYY(dependent, independent)




[OVER ...]

	
SELECT COUNT(*)*VAR_POP(dependent)




  [OVER ...]




FROM table




WHERE (




  (dependent IS NOT NULL) AND




  (independent IS NOT NULL)




)




[GROUP BY ...]


	
SKEW(expression)

	BigQuery does not support a direct alternative to Snowflake's SKEW.
	
STDDEV([DISTINCT] expression)




[OVER ...]

	
STDDEV([DISTINCT] expression)




[OVER ...]


	
STDDEV_POP([DISTINCT] expression)




[OVER ...]

	
STDDEV_POP([DISTINCT] expression)




[OVER ...]


	
STDDEV_SAMP([DISTINCT] expression)




[OVER ...]

	
STDDEV_SAMP([DISTINCT] expression)




[OVER ...]


	
SUM([DISTINCT] expression)




[OVER ...]

	
SUM([DISTINCT] expression)




[OVER ...]


	
VAR_POP([DISTINCT] expression)




[OVER ...]





Note: Snowflake supports the ability to cast VARCHARs to floating point values.	
VAR_POP([DISTINCT] expression)




[OVER ...]


	
VARIANCE_POP([DISTINCT] expression)




[OVER ...]





Note: Snowflake supports the ability to cast VARCHARs to floating point values.	
VAR_POP([DISTINCT] expression)




[OVER ...]


	
VAR_SAMP([DISTINCT] expression)




[OVER ...]





Note: Snowflake supports the ability to cast VARCHARs to floating point values.	
VAR_SAMP([DISTINCT] expression)




[OVER ...]


	
VARIANCE([DISTINCT] expression)




[OVER ...]





Note: Snowflake supports the ability to cast VARCHARs to floating point values.	
VARIANCE([DISTINCT] expression)




[OVER ...]





BigQuery also offers the following
aggregate,
aggregate analytic,
and
approximate aggregate
functions, which do not have a direct analogue in Snowflake:


	COUNTIF
	ARRAY_CONCAT_AGG
	HLL_COUNT.MERGE



Bitwise expression functions


The following table shows mappings between common Snowflake bitwise expression
functions with their BigQuery equivalents.


If the data type of an expression is not INTEGER, Snowflake attempts to cast
to INTEGER. However, BigQuery does not attempt to cast to INTEGER.


	Snowflake	BigQuery
	
BITAND(expression1, expression2)

	
BIT_ADD(x)
FROM UNNEST([expression1, expression2]) AS x

expression1 & expression2


	
BITNOT(expression)

	
~ expression


	
BITOR(expression1, expression2)

	
BIT_OR(x)
FROM UNNEST([expression1, expression2]) AS x






expression1 | expression2


	
BITSHIFTLEFT
(expression, n)

	
expression  n


	BITSHIFTRIGHT


(expression, n)

	
expression >> n


	
BITXOR(expression, expression)





Note: Snowflake does not support DISTINCT.	
BIT_XOR([DISTINCT] x)
FROM UNNEST([expression1, expression2]) AS x






expression ^ expression





Conditional expression functions


The following table shows mappings between common Snowflake conditional
expressions with their BigQuery equivalents.


	Snowflake	BigQuery
	
expression [ NOT ] BETWEEN
lower AND upper

	
(expression >= lower
AND expression 

	
BOOLAND(expression1, expression2)





Note: Snowflake allows numeric, decimal, and floating point values to be treated as TRUE if not zero. 	
LOGICAL_AND(x)




FROM UNNEST([expression1, expression2]) AS x






expression1 AND expression2


	
BOOLNOT(expression1)





Note: Snowflake allows numeric, decimal, and floating point values to be treated as TRUE if not zero. 	
NOT expression


	BOOLOR



Note: Snowflake allows numeric, decimal, and floating point values to be treated as TRUE if not zero. 	
LOGICAL_OR(x)
FROM UNNEST([expression1, expression2]) AS x






expression1 OR expression2


	BOOLXOR



Note: Snowflake allows numeric, decimal, and floating point values to be treated as TRUE if not zero. 	BigQuery does not support a direct alternative to Snowflake's BOOLXOR.
	
CASE [expression]
    WHEN condition1 THEN result1
    [WHEN condition2 THEN result2]




    [...]




    [ELSE result3]




END

	
CASE [expression]
    WHEN condition1 THEN result1
    [WHEN condition2 THEN result2]




    [...]




    [ELSE result3]




END


	
COALESCE(expr1, expr2, [,...])





Note: Snowflake requires at least two expressions. BigQuery only requires one.	
COALESCE(expr1, [,...])


	
DECODE(expression, search1, result1,
[search2, result2...]
[,default])

	
CASE [expression]
    WHEN condition1 THEN result1
    [WHEN condition2 THEN result2]




    [...]




    [ELSE result3]




END



Note: BigQuery supports subqueries in condition statements. This can be used to reproduce Snowflake's DECODE. User must use IS NULL instead of = NULL to match NULL select expressions with NULL search expressions.
	
EQUAL_NULL(expression1, expression2)

	BigQuery does not support a direct alternative to Snowflake's EQUAL_NULL.
	
GREATEST(expression1, [,expression2]...)

	
GREATEST(expression1, [,expression2]...)


	
IFF(condition, true_result, false_result)

	
IF(condition, true_result, false_result)


	
IFNULL(expression1, expression2)

	
IFNULL(expression1, expression2)


	
[ NOT ] IN ...

	
[ NOT ] IN ...


	
expression1 IS [ NOT ] DISTINCT FROM expression2

	BigQuery does not support a direct alternative to Snowflake's IS [ NOT ] DISTINCT FROM.
	
expression IS [ NOT ] NULL

	
expression IS [ NOT ] NULL


	
IS_NULL_VALUE(variant_expr)

	BigQuery does not support VARIANT data types.
	
LEAST(expression,...)

	
LEAST(expression,...)


	
NULLIF(expression1,expression2)

	
NULLIF(expression1,expression2)


	
NVL(expression1, expression2)

	
IFNULL(expression1,expression2)


	
NVL2(expr1,expr2,expr2)

	
IF(expr1 IS NOT NULL,
expr2,expr3)


	
REGR_VALX(expr1,expr2)

	
IF(expr1 IS NULL, NULL, expr2)



Note: BigQuery does not support a direct alternative to Snowflake's REGR... functions.
	
REGR_VALY(expr1,expr2)

	
IF(expr2 IS NULL, NULL, expr1)





Note: BigQuery does not support a direct alternative to Snowflake's REGR... functions.
	
ZEROIFNULL(expression)

	
IFNULL(expression,0)





Context functions


The following table shows mappings between common Snowflake context functions
with their BigQuery equivalents.


	Snowflake	BigQuery
	
CURRENT_ACCOUNT()

	
SESSION_USER()





Note: Not direct comparison. Snowflake returns account ID, BigQuery returns user email address.
	
CURRENT_CLIENT()

	
Concept not used in BigQuery


	
CURRENT_DATABASE()

	
SELECT catalog_name




FROM INFORMATION_SCHEMA.SCHEMATA


This returns a table of project names. Not a direct comparison.

	
CURRENT_DATE[()]





Note: Snowflake does not enforce '()' after CURRENT_DATE command to comply with ANSI standards.	
CURRENT_DATE([timezone])





Note: BigQuery's CURRENT_DATE supports optional time zone specification.
	
CURRENT_REGION()

	
SELECT location




FROM INFORMATION_SCHEMA.SCHEMATA





Note: BigQuery's INFORMATION_SCHEMA.SCHEMATA returns more generalized location references than Snowflake's CURRENT_REGION(). Not a direct comparison.
	
CURRENT_ROLE()

	
Concept not used in BigQuery


	
CURRENT_SCHEMA()

	
SELECT schema_name




FROM INFORMATION_SCHEMA.SCHEMATA


This returns a table of all datasets (also called schemas) available in the project or region. Not a direct comparison.

	
CURRENT_SCHEMAS()

	
Concept not used in BigQuery


	
CURRENT_SESSION()

	
Concept not used in BigQuery


	
CURRENT_STATEMENT()

	
SELECT query




FROM INFORMATION_SCHEMA.JOBS_BY_*





Note: BigQuery's INFORMATION_SCHEMA.JOBS_BY_* allows for searching for queries by job type, start/end type, etc.
	
CURRENT_TIME[([frac_sec_prec])]





Note: Snowflake allows for optional fractional second precision. Valid values range from 0-9 nanoseconds. Default value is 9. To comply with ANSI, this can be called without '()'.	
CURRENT_TIME()


	
CURRENT_TIMESTAMP[([frac_sec_prec])]





Note: Snowflake allows for optional fractional second precision. Valid values range from 0-9 nanoseconds. Default value is 9. To comply with ANSI, this can be called without '()'. Set TIMEZONE as a session parameter.	
CURRENT_DATETIME([timezone])

CURRENT_TIMESTAMP()





Note: CURRENT_DATETIME returns DATETIME data type (not supported in Snowflake). CURRENT_TIMESTAMP returns TIMESTAMP data type.
	
CURRENT_TRANSACTION()

	
SELECT job_id




FROM INFORMATION_SCHEMA.JOBS_BY_*



Note: BigQuery's INFORMATION_SCHEMA.JOBS_BY_* allows for searching for job IDs by job type, start/end type, etc.
	
CURRENT_USER[()]





Note: Snowflake does not enforce '()' after CURRENT_USER command to comply with ANSI standards.	
SESSION_USER()






SELECT user_email




FROM INFORMATION_SCHEMA.JOBS_BY_*



Note: Not direct comparison. Snowflake returns username; BigQuery returns user email address.
	
CURRENT_VERSION()

	
Concept not used in BigQuery


	
CURRENT_WAREHOUSE()

	
SELECT catalg_name




FROM INFORMATION_SCHEMA.SCHEMATA


	
LAST_QUERY_ID([num])

	
SELECT job_id




FROM INFORMATION_SCHEMA.JOBS_BY_*





Note: BigQuery's INFORMATION_SCHEMA.JOBS_BY_* allows for searching for job IDs by job type, start/end type, etc.
	
LAST_TRANSACTION()

	
SELECT job_id




FROM INFORMATION_SCHEMA.JOBS_BY_*





Note: BigQuery's INFORMATION_SCHEMA.JOBS_BY_* allows for searching for job IDs by job type, start/end type, etc.
	
LOCALTIME()





Note: Snowflake does not enforce '()' after LOCALTIME command to comply with ANSI standards.	
CURRENT_TIME()


	
LOCALTIMESTAMP()

	
CURRENT_DATETIME([timezone])

CURRENT_TIMESTAMP()





Note: CURRENT_DATETIME returns DATETIME data type (not supported in Snowflake). CURRENT_TIMESTAMP returns TIMESTAMP data type.



Conversion functions


The following table shows mappings between common Snowflake conversion functions
with their BigQuery equivalents.


Keep in mind that functions that seem identical in Snowflake and
BigQuery may return different data types.


	Snowflake	BigQuery
	
CAST(expression AS type)






expression :: type

	
CAST(expression AS type)


	
TO_ARRAY(expression)

	
[expression]






ARRAY(subquery)


	
TO_BINARY(expression[, format])





Note: Snowflake supports HEX, BASE64, and UTF-8 conversion. Snowflake also supports TO_BINARY using the VARIANT data type. BigQuery does not have an alternative to the VARIANT data type.	
TO_HEX(CAST(expression AS BYTES))

TO_BASE64(CAST(expression AS BYTES))





CAST(expression AS BYTES)





Note: BigQuery's default STRING casting uses UTF-8 encoding. Snowflake does not have an option to support BASE32 encoding. 
	
TO_BOOLEAN(expression)





Note:

	INT64

TRUE: otherwise, FALSE: 0


	STRING

TRUE: "true"/"t"/"yes"/"y"/"on"/"1", FALSE: "false"/"f"/"no"/"n"/"off"/"0"


	
CAST(expression AS BOOL)





Note:

	INT64

TRUE: otherwise, FALSE: 0


	STRING

TRUE: "true", FALSE: "false"



	
TO_CHAR(expression[, format])






TO_VARCHAR(expression[, format])





Note: Snowflake's format models can be found here. BigQuery does not have an alternative to the VARIANT data type.	
CAST(expression AS STRING)





Note: BigQuery's input expression can be formatted using FORMAT_DATE, FORMAT_DATETIME, FORMAT_TIME, or FORMAT_TIMESTAMP.
	
TO_DATE(expression[, format])






DATE(expression[, format])





Note: Snowflake supports the ability to directly convert INTEGER types to DATE types. Snowflake's format models can be found here. BigQuery does not have an alternative to the VARIANT data type.	
CAST(expression AS DATE)





Note: BigQuery's input expression can be formatted using FORMAT, FORMAT_DATETIME, or FORMAT_TIMESTAMP.
	
TO_DECIMAL(expression[, format]




[,precision[, scale]]






TO_NUMBER(expression[, format]




[,precision[, scale]]






TO_NUMERIC(expression[, format]




[,precision[, scale]]





Note: Snowflake's format models for the DECIMAL, NUMBER, and NUMERIC data types can be found here. BigQuery does not have an alternative to the VARIANT data type.	
ROUND(CAST(expression AS NUMERIC)




, x)





Note: BigQuery's input expression can be formatted using FORMAT.
	
TO_DOUBLE(expression[, format])





Note: Snowflake's format models for the DOUBLE data types can be found here. BigQuery does not have an alternative to the VARIANT data type.	
CAST(expression AS FLOAT64)





Note: BigQuery's input expression can be formatted using FORMAT.
	
TO_JSON(variant_expression)

	BigQuery does not have an alternative to Snowflake's VARIANT data type.
	
TO_OBJECT(variant_expression)

	BigQuery does not have an alternative to Snowflake's VARIANT data type.
	
TO_TIME(expression[, format])






TIME(expression[, format])





Note: Snowflake's format models for the STRING data types can be found here. BigQuery does not have an alternative to the VARIANT data type.	
CAST(expression AS TIME)





Note: BigQuery does not have an alternative to Snowflake's VARIANT data type. BigQuery's input expression can be formatted using FORMAT, FORMAT_DATETIME, FORMAT_TIMESTAMP, or FORMAT_TIME.
	
TO_TIMESTAMP(expression[, scale])






TO_TIMESTAMP_LTZ(expression[, scale])






TO_TIMESTAMP_NTZ(expression[, scale])






TO_TIMESTAMP_TZ(expression[, scale])





Note: BigQuery does not have an alternative to the VARIANT data type.	
CAST(expression AS TIMESTAMP)





Note: BigQuery's input expression can be formatted using FORMAT, FORMAT_DATE, FORMAT_DATETIME, FORMAT_TIME. Timezone can be included/not included through FORMAT_TIMESTAMP parameters.
	
TO_VARIANT(expression)

	BigQuery does not have an alternative to Snowflake's VARIANT data type.
	
TO_XML(variant_expression)

	BigQuery does not have an alternative to Snowflake's VARIANT data type.
	
TRY_CAST(expression AS type)

	
SAFE_CAST(expression AS type)


	
TRY_TO_BINARY(expression[, format])

	
TO_HEX(SAFE_CAST(expression AS BYTES))

TO_BASE64(SAFE_CAST(expression AS BYTES))





SAFE_CAST(expression AS BYTES)


	
TRY_TO_BOOLEAN(expression)

	
SAFE_CAST(expression AS BOOL)


	
TRY_TO_DATE(expression)

	
SAFE_CAST(expression AS DATE)


	
TRY_TO_DECIMAL(expression[, format]




[,precision[, scale]]






TRY_TO_NUMBER(expression[, format]




[,precision[, scale]]






TRY_TO_NUMERIC(expression[, format]




[,precision[, scale]]

	
ROUND(




  SAFE_CAST(expression AS NUMERIC)




, x)


	
TRY_TO_DOUBLE(expression)

	
SAFE_CAST(expression AS FLOAT64)


	
TRY_TO_TIME(expression)

	
SAFE_CAST(expression AS TIME)


	
TRY_TO_TIMESTAMP(expression)






TRY_TO_TIMESTAMP_LTZ(expression)






TRY_TO_TIMESTAMP_NTZ(expression)






TRY_TO_TIMESTAMP_TZ(expression)

	
SAFE_CAST(expression AS TIMESTAMP)





BigQuery also offers the following conversion functions, which do not
have a direct analogue in Snowflake:


	CODE_POINTS_TO_BYTES
	CODE_POINTS_TO_STRING
	FORMAT
	FROM_BASE32
	FROM_BASE64
	FROM_HEX
	SAFE_CONVERT_BYTES_TO_STRING
	TO_BASE32
	TO_CODE_POINTS



Data generation functions


The following table shows mappings between common Snowflake data generation
functions with their BigQuery equivalents.


	Snowflake	BigQuery
	
NORMAL(mean, stddev, gen)

	BigQuery does not support a direct comparison to Snowflake's NORMAL.
	
RANDOM([seed])

	
IF(RAND()>0.5,
  CAST(RAND()*POW(10, 18) AS INT64),




  (-1)*CAST(RAND()*POW(10, 18) AS




  INT64))





Note: BigQuery does not support seeding
	
RANDSTR(length, gen)

	BigQuery does not support a direct comparison to Snowflake's RANDSTR.
	SEQ1 / SEQ2 / SEQ4 / SEQ8	BigQuery does not support a direct comparison to Snowflake's SEQ_.
	
UNIFORM(min, max, gen)

	
CAST(min + RAND()*(max-min) AS INT64)





Note:Use persistent UDFs to create an equivalent to Snowflake's UNIFORM. Example here.
	UUID_STRING([uuid, name])



Note: Snowflake returns 128 random bits. Snowflake supports both version 4 (random) and version 5 (named) UUIDs.	
GENERATE_UUID()





Note: BigQuery returns 122 random bits. BigQuery only supports version 4 UUIDs.
	
ZIPF(s, N, gen)

	BigQuery does not support a direct comparison to Snowflake's ZIPF.



Date and time functions


The following table shows mappings between common Snowflake date and time
functions with their BigQuery equivalents. BigQuery data and
time functions include
Date functions,
Datetime functions,
Time functions, and
Timestamp functions.


	Snowflake	BigQuery
	
ADD_MONTHS(date, months)

	
CAST(




  DATE_ADD(




    date,




    INTERVAL integer MONTH




  ) AS TIMESTAMP




)


	
CONVERT_TIMEZONE(source_tz, target_tz, source_timestamp)






CONVERT_TIMEZONE(target_tz, source_timestamp)

	
PARSE_TIMESTAMP(




  "%c%z",




  FORMAT_TIMESTAMP(




    "%c%z",




    timestamp,




    target_timezone




  )




)





Note: source_timezone is always UTC in BigQuery
	
DATE_FROM_PARTS(year, month, day)





Note: Snowflake supports overflow and negative dates. For example, DATE_FROM_PARTS(2000, 1 + 24, 1) returns Jan 1, 2002. This is not supported in BigQuery.	
DATE(year, month, day)






DATE(timestamp_expression[, timezone])






DATE(datetime_expression)


	
DATE_PART(part, dateOrTime)





Note: Snowflake supports the day of week ISO, nanosecond, and epoch second/millisecond/microsecond/nanosecond part types. BigQuery does not. See full list of Snowflake part types here.	
EXTRACT(part FROM dateOrTime)





Note: BigQuery supports the week(<weekday>), microsecond, and millisecond part types. Snowflake does not. See full list of BigQuery part types here and here. 
	
DATE_TRUNC(part, dateOrTime)





Note: Snowflake supports the nanosecond part type. BigQuery does not. See full list of Snowflake part types here.	
DATE_TRUNC(date, part)






DATETIME_TRUNC(datetime, part)






TIME_TRUNC(time, part)






TIMESTAMP_TRUNC(timestamp,
part[, timezone])





Note: BigQuery supports the week(<weekday>), ISO week, and ISO year part types. Snowflake does not.
	
DATEADD(part, value, dateOrTime)

	
DATE_ADD(date, INTERVAL value part)


	
DATEDIFF(




  part,




  expression1,




  expression2




)





Note: Snowflake supports calculating the difference between two date, time, and timestamp types in this function.	
DATE_DIFF(




  dateExpression1,




  dateExpression2,




  part




)






DATETIME_DIFF(




  datetimeExpression1,




  datetimeExpression2,




  part




)






TIME_DIFF(




  timeExpression1,




  timeExpression2,




  part




)






TIMESTAMP_DIFF(




  timestampExpression1,




  timestampExpression2,




  part




)





Note: BigQuery supports the week(<weekday>) and ISO year part types.
	
DAYNAME(dateOrTimestamp)

	
FORMAT_DATE('%a', date)






FORMAT_DATETIME('%a', datetime)






FORMAT_TIMESTAMP('%a', timestamp)


	
EXTRACT(part FROM dateOrTime)





Note: Snowflake supports the day of week ISO, nanosecond, and epoch second/millisecond/microsecond/nanosecond part types. BigQuery does not. See full list of Snowflake part types here.	
EXTRACT(part FROM dateOrTime)





Note: BigQuery supports the week(<weekday>), microsecond, and millisecond part types. Snowflake does not. See full list of BigQuery part types here and here. 
	
 [HOUR, MINUTE, SECOND](timeOrTimestamp)

	
EXTRACT(part FROM timestamp [AT THE ZONE timezone])


	
LAST_DAY(dateOrTime[, part])

	
DATE_SUB(
  DATE_TRUNC(




    DATE_ADD(date, INTERVAL




    1 part),




  part),




INTERVAL 1 DAY)


	
MONTHNAME(dateOrTimestamp)

	
FORMAT_DATE('%b', date)






FORMAT_DATETIME('%b', datetime)






FORMAT_TIMESTAMP('%b', timestamp)


	
NEXT_DAY(dateOrTime, dowString)

	
DATE_ADD(




  DATE_TRUNC(




    date,




    WEEK(dowString)),




INTERVAL 1 WEEK)





Note: dowString might need to be reformatted. For example, Snowflake's 'su' will be BigQuery's 'SUNDAY'.
	
PREVIOUS_DAY(dateOrTime, dowString)

	
DATE_TRUNC(




  date,




  WEEK(dowString)




)





Note: dowString might need to be reformatted. For example, Snowflake's 'su' will be BigQuery's 'SUNDAY'.
	
TIME_FROM_PARTS(hour, minute, second[, nanosecond)





Note: Snowflake supports overflow times. For example, TIME_FROM_PARTS(0, 100, 0) returns 01:40:00... This is not supported in BigQuery. BigQuery does not support nanoseconds.	
TIME(hour, minute, second)






TIME(timestamp, [timezone])






TIME(datetime)


	
TIME_SLICE(dateOrTime, sliceLength,
part[, START]






TIME_SLICE(dateOrTime, sliceLength,
part[, END]

	
DATE_TRUNC(




  DATE_SUB(CURRENT_DATE(),




  INTERVAL value MONTH),




MONTH)






DATE_TRUNC(




  DATE_ADD(CURRENT_DATE(),




  INTERVAL value MONTH),




MONTH)





Note: BigQuery does not support a direct, exact comparison to Snowflake's TIME_SLICE. Use DATETINE_TRUNC, TIME_TRUNC, TIMESTAMP_TRUNC for appropriate data type.
	
TIMEADD(part, value, dateOrTime)

	
TIME_ADD(time, INTERVAL value part)


	
TIMEDIFF(




  part,




  expression1,




  expression2,




)





Note: Snowflake supports calculating the difference between two date, time, and timestamp types in this function.	
DATE_DIFF(




  dateExpression1,




  dateExpression2,




  part




)






DATETIME_DIFF(




  datetimeExpression1,




  datetimeExpression2,




  part




)






TIME_DIFF(




  timeExpression1,




  timeExpression2,




  part




)






TIMESTAMP_DIFF(




  timestampExpression1,




  timestampExpression2,




  part




)





Note: BigQuery supports the week(<weekday>) and ISO year part types.
	
TIMESTAMP_[LTZ, NTZ, TZ _]FROM_PARTS
(year, month, day, hour, second
[, nanosecond][, timezone])

	
TIMESTAMP(




  string_expression[, timezone] |
  date_expression[, timezone] |




  datetime_expression[, timezone]




)





Note: BigQuery requires timestamps be inputted as STRING types. Example: "2008-12-25 15:30:00"
	
TIMESTAMPADD(part, value, dateOrTime)

	
TIMESTAMPADD(timestamp,
INTERVAL value part)


	
TIMESTAMPDIFF(




  part,




  expression1,




  expression2,




)





Note: Snowflake supports calculating the difference between two date, time, and timestamp types in this function.	
DATE_DIFF(




  dateExpression1,




  dateExpression2,




  part




)






DATETIME_DIFF(




  datetimeExpression1,




  datetimeExpression2,




  part




)






TIME_DIFF(




  timeExpression1,




  timeExpression2,




  part




)






TIMESTAMP_DIFF(




  timestampExpression1,




  timestampExpression2,




  part




)





Note: BigQuery supports the week(<weekday>) and ISO year part types.
	
TRUNC(dateOrTime, part)





Note: Snowflake supports the nanosecond part type. BigQuery does not. See full list of Snowflake part types here.	
DATE_TRUNC(date, part)






DATETIME_TRUNC(datetime, part)






TIME_TRUNC(time, part)






TIMESTAMP_TRUNC(timestamp,
part[, timezone])





Note: BigQuery supports the week(<weekday>), ISO week, and ISO year part types. Snowflake does not.
	
[YEAR*, DAY*, WEEK*, MONTH, QUARTER](dateOrTimestamp)

	
EXTRACT(part FROM timestamp [AT THE ZONE timezone])





BigQuery also offers the following date and time functions, which do
not have a direct analogue in Snowflake:


		DATE_SUB


	PARSE_DATE


	DATETIME_ADD


	PARSE_DATETIME


	PARSE_TIME


	TIMESTAMP_SUB


	TIMESTAMP_SECONDS


	UNIX_SECONDS


		DATE_FROM_UNIX_DATE


	UNIX_DATE


	DATETIME_SUB


	TIME_SUB


	STRING


	FORMAT_TIMESTAMP


	TIMESTAMP_MILLIS


	UNIX_MILLIS


		FORMAT_DATE


	DATETIME


	FORMAT_DATETIME


	FORMAT_TIME


	TIMESTAMP_ADD


	PARSE_TIMESTAMP


	TIMESTAMP_MICROS


	UNIX_MICROS






Information schema and table functions


BigQuery does not conceptually support many of Snowflake's information
schema and table functions. Snowflake offers the following information schema
and table functions, which do not have a direct analogue in BigQuery:


	AUTOMATIC_CLUSTERING_HISTORY
	COPY_HISTORY
	DATA_TRANSFER_HISTORY
	DATABASE_REFRESH_HISTORY
	DATABASE_REFRESH_PROGRESS, DATABASE_REFRESH_PROGRESS_BY_JOB
	DATABASE_STORAGE_USAGE_HISTORY
	EXTERNAL_TABLE_FILES
	EXTERNAL_TABLE_FILE_REGISTRATION_HISTORY
	LOGIN_HISTORY, LOGIN_HISTORY_BY_USER
	MATERIALIZED_VIEW_REFRESH_HISTORY
	PIPE_USAGE_HISTORY
	REPLICATION_USAGE_HISTORY
	STAGE_STORAGE_USAGE_HISTORY
	TASK_DEPENDENTS
	VALIDATE_PIPE_LOAD
	WAREHOUSE_LOAD_HISTORY
	WAREHOUSE_METERING_HISTORY



Below is a list of associated BigQuery and Snowflake information schema
and table functions.


	Snowflake	BigQuery
	QUERY_HISTORY



QUERY_HISTORY_BY_*	INFORMATION_SCHEMA.JOBS_BY_*



Note: Not a direct alternative.
	TASK_HISTORY	INFORMATION_SCHEMA.JOBS_BY_*



Note: Not a direct alternative.



BigQuery offers the following information schema and table functions,
which do not have a direct analogue in Snowflake:


	INFORMATION_SCHEMA.SCHEMATA
	INFORMATION_SCHEMA.ROUTINES
	INFORMATION_SCHEMA.TABLES
	INFORMATION_SCHEMA.VIEWS



Numeric functions


The following table shows mappings between common Snowflake numeric functions
with their BigQuery equivalents.


	Snowflake	BigQuery
	
ABS(expression)

	
ABS(expression)


	
ACOS(expression)

	
ACOS(expression)


	
ACOSH(expression)

	
ACOSH(expression)


	
ASIN(expression)

	
ASIN(expression)


	
ASINH(expression)

	
ASINH(expression)


	
ATAN(expression)

	
ATAN(expression)


	
ATAN2(y, x)

	
ATAN2(y, x)


	
ATANH(expression)

	
ATANH(expression)


	
CBRT(expression)

	
POW(expression, ⅓)


	
CEIL(expression [, scale])

	
CEIL(expression)





Note: BigQuery's CEIL does not support the ability to indicate precision or scale. ROUND does not allow you to specify to round up.
	
COS(expression)

	
COS(expression)


	
COSH(expression)

	
COSH(expression)


	
COT(expression)

	
1/TAN(expression)


	
DEGREES(expression)

	
(expression)*(180/ACOS(-1))


	
EXP(expression)

	
EXP(expression)


	
FACTORIAL(expression)

	BigQuery does not have a direct alternative to Snowflake's FACTORIAL. Use a user-defined function.
	
FLOOR(expression [, scale])

	
FLOOR(expression)





Note: BigQuery's FLOOR does not support the ability to indicate precision or scale. ROUND does not allow you to specify to round up. TRUNC performs synonymously for positive numbers but not negative numbers, as it evaluates absolute value.
	
HAVERSINE(lat1, lon1, lat2, lon2)

	
ST_DISTANCE(
  ST_GEOGPOINT(lon1, lat1),




  ST_GEOGPOINT(lon2, lat2)




)/1000





Note: Not an exact match, but close enough.
	
LN(expression)

	
LN(expression)


	
LOG(base, expression)

	
LOG(expression [,base])






LOG10(expression)





Note:Default base for LOG is 10.
	
MOD(expression1, expression2)

	
MOD(expression1, expression2)


	
PI()

	
ACOS(-1)


	
POW(x, y)






POWER(x, y)

	
POW(x, y)






POWER(x, y)


	
RADIANS(expression)

	
(expression)*(ACOS(-1)/180)


	
ROUND(expression [, scale])

	
ROUND(expression, [, scale])


	
SIGN(expression)

	
SIGN(expression)


	
SIN(expression)

	
SIN(expression)


	
SINH(expression)

	
SINH(expression)


	
SQRT(expression)

	
SQRT(expression)


	
SQUARE(expression)

	
POW(expression, 2)


	
TAN(expression)

	
TAN(expression)


	
TANH(expression)

	
TANH(expression)


	
 TRUNC(expression [, scale])






TRUNCATE(expression [, scale])

	
TRUNC(expression [, scale])





Note: BigQuery's returned value must be smaller than the expression; it does not support equal to.



BigQuery also offers the following
mathematical
functions, which do not have a direct analogue in Snowflake:


	IS_INF
	IS_NAN
	IEEE_DIVIDE
	DIV
	SAFE_DIVIDE
	SAFE_MULTIPLY
	SAFE_NEGATE
	SAFE_ADD
	SAFE_SUBTRACT
	RANGE_BUCKET



Semi-structured data functions


	Snowflake	BigQuery
	ARRAY_APPEND	Custom user-defined function
	ARRAY_CAT	ARRAY_CONCAT
	ARRAY_COMPACT	Custom user-defined function
	ARRAY_CONSTRUCT	[ ]
	ARRAY_CONSTRUCT_COMPACT	Custom user-defined function
	ARRAY_CONTAINS	Custom user-defined function
	ARRAY_INSERT	Custom user-defined function
	ARRAY_INTERSECTION	Custom user-defined function
	ARRAY_POSITION	Custom user-defined function
	ARRAY_PREPEND	Custom user-defined function
	ARRAY_SIZE	ARRAY_LENGTH
	ARRAY_SLICE	Custom user-defined function
	ARRAY_TO_STRING	ARRAY_TO_STRING
	ARRAYS_OVERLAP	Custom user-defined function
	AS_<object_type>	CAST
	AS_ARRAY	CAST
	AS_BINARY	CAST
	AS_BOOLEAN	CAST
	AS_CHAR , AS_VARCHAR	CAST
	AS_DATE	CAST
	AS_DECIMAL , AS_NUMBER	CAST
	AS_DOUBLE , AS_REAL	CAST
	AS_INTEGER	CAST
	AS_OBJECT	CAST
	AS_TIME	CAST
	AS_TIMESTAMP_*	CAST
	CHECK_JSON	Custom user-defined function
	CHECK_XML	Custom user-defined function
	FLATTEN	UNNEST
	GET	Custom user-defined function
	GET_IGNORE_CASE	Custom user-defined function
	
 GET_PATH , :

	Custom user-defined function
	IS_<object_type>	Custom user-defined function
	IS_ARRAY	Custom user-defined function
	IS_BINARY	Custom user-defined function
	IS_BOOLEAN	Custom user-defined function
	IS_CHAR , IS_VARCHAR	Custom user-defined function
	IS_DATE , IS_DATE_VALUE	Custom user-defined function
	IS_DECIMAL	Custom user-defined function
	IS_DOUBLE , IS_REAL	Custom user-defined function
	IS_INTEGER	Custom user-defined function
	IS_OBJECT	Custom user-defined function
	IS_TIME	Custom user-defined function
	IS_TIMESTAMP_*	Custom user-defined function
	OBJECT_CONSTRUCT	Custom user-defined function
	OBJECT_DELETE	Custom user-defined function
	OBJECT_INSERT	Custom user-defined function
	PARSE_JSON	JSON_EXTRACT
	PARSE_XML	Custom user-defined function
	STRIP_NULL_VALUE	Custom user-defined function
	STRTOK_TO_ARRAY	SPLIT
	TRY_PARSE_JSON	Custom user-defined function
	TYPEOF	Custom user-defined function
	XMLGET	Custom user-defined function
		



String and binary functions


	Snowflake	BigQuery
	
string1 || string2

	
CONCAT(string1, string2)


	ASCII	
TO_CODE_POINTS(string1)[OFFSET(0)]


	BASE64_DECODE_BINARY	
SAFE_CONVERT_BYTES_TO_STRING(




FROM_BASE64(<bytes_input>)




)


	BASE64_DECODE_STRING	
SAFE_CONVERT_BYTES_TO_STRING(




FROM_BASE64(<string1>)




)


	BASE64_ENCODE	
TO_BASE64(




SAFE_CAST(<string1> AS BYTES)




)


	BIT_LENGTH	
BYTE_LENGTH * 8



CHARACTER_LENGTH
	
CHARINDEX(substring, string)

	
STRPOS(string, substring)


	CHR,CHAR	
CODE_POINTS_TO_STRING([number])


	COLLATE	Custom user-defined function
	COLLATION	Custom user-defined function
	COMPRESS	Custom user-defined function
		
	
CONCAT(string1, string2)

	
CONCAT(string1, string2)



Note: BigQuery's CONCAT(...) supports concatenating any number of strings.
	CONTAINS	Custom user-defined function
	DECOMPRESS_BINARY	Custom user-defined function
	DECOMPRESS_STRING	Custom user-defined function
	EDITDISTANCE	Custom user-defined function
	ENDSWITH	Custom user-defined function
	HEX_DECODE_BINARY	
SAFE_CONVERT_BYTES_TO_STRING(




FROM_HEX(<string1>)


	HEX_DECODE_STRING	
SAFE_CONVERT_BYTES_TO_STRING(




FROM_HEX(<string1>)


	HEX_ENCODE	
TO_HEX(




SAFE_CAST(<string1> AS BYTES))


	ILIKE	Custom user-defined function
	ILIKE ANY	Custom user-defined function
	INITCAP	INITCAP
	INSERT	Custom user-defined function
	LEFT	User Defined Function
	LENGTH	
LENGTH(expression)


	LIKE	LIKE
	LIKE ALL	Custom user-defined function
	LIKE ANY	Custom user-defined function
	LOWER	
LOWER(string)


	LPAD	
LPAD(string1, length[, string2])


	LTRIM	
LTRIM(string1, trim_chars)


	
 MD5,MD5_HEX

	
MD5(string)


	MD5_BINARY	Custom user-defined function
	OCTET_LENGTH	Custom user-defined function
	PARSE_IP	Custom user-defined function
	PARSE_URL	Custom user-defined function
	POSITION	
STRPOS(string, substring)


	REPEAT	
REPEAT(string, integer)


	REPLACE	
REPLACE(string1, old_chars, new_chars)


	REVERSE


  number_characters




)

	
REVERSE(expression)







	RIGHT	User Defined Function
	RPAD	RPAD
	RTRIM	
RTRIM(string, trim_chars)


	RTRIMMED_LENGTH	Custom user-defined function
	SHA1,SHA1_HEX	
SHA1(string)


	SHA1_BINARY	Custom user-defined function
	SHA2,SHA2_HEX	Custom user-defined function
	SHA2_BINARY	Custom user-defined function
	SOUNDEX	Custom user-defined function
	SPACE	Custom user-defined function
	SPLIT	SPLIT
	SPLIT_PART	Custom user-defined function
	SPLIT_TO_TABLE	Custom user-defined function
	STARTSWITH	Custom user-defined function
	STRTOK	
SPLIT(instring, delimiter)[ORDINAL(tokennum)]





Note: The entire delimiter string argument is used as a single delimiter. The default delimiter is a comma.
	STRTOK_SPLIT_TO_TABLE	Custom user-defined function
	SUBSTR,SUBSTRING	SUBSTR
	TRANSLATE	Custom user-defined function
	TRIM	TRIM
	TRY_BASE64_DECODE_BINARY	Custom user-defined function
	TRY_BASE64_DECODE_STRING	
SUBSTR(string, 0, integer)


	TRY_HEX_DECODE_BINARY	
SUBSTR(string, -integer)


	TRY_HEX_DECODE_STRING	
LENGTH(expression)


	UNICODE	Custom user-defined function
	
 UPPER

	UPPER
		



String functions (regular expressions)


	Snowflake	BigQuery
	REGEXP	
IF(REGEXP_CONTAINS,1,0)=1


	REGEXP_COUNT	
ARRAY_LENGTH(




  REGEXP_EXTRACT_ALL(




    source_string,




    pattern




  )




)





If position is specified:


ARRAY_LENGTH(




  REGEXP_EXTRACT_ALL(




    SUBSTR(source_string, IF(position 



    pattern




  )




)





Note: BigQuery provides regular expression support using the re2 library; see that documentation for its regular expression syntax.
	REGEXP_INSTR	
IFNULL(




  STRPOS(




    source_string,




    REGEXP_EXTRACT(




      source_string,




      pattern)




    ), 0)





If position is specified:


IFNULL(




  STRPOS(




    SUBSTR(source_string, IF(position 



    REGEXP_EXTRACT(




      SUBSTR(source_string, IF(position 



      pattern)




  ) + IF(position 




If occurrence is specified:


IFNULL(




  STRPOS(




    SUBSTR(source_string, IF(position 



    REGEXP_EXTRACT_ALL(




      SUBSTR(source_string, IF(position 



      pattern




   )[SAFE_ORDINAL(occurrence)]




  ) + IF(position 




Note: BigQuery provides regular expression support using the re2 library; see that documentation for its regular expression syntax.
	
 REGEXP_LIKE

	
IF(REGEXP_CONTAINS,1,0)=1


	REGEXP_REPLACE	
REGEXP_REPLACE(




  source_string,




  pattern,




  ""




)





If replace_string is specified:


REGEXP_REPLACE(




  source_string,




  pattern,




  replace_string




)





If position is specified:


CASE




WHEN position > LENGTH(source_string) THEN source_string




WHEN position 



  REGEXP_REPLACE(




    source_string,




    pattern,




    ""




  )




ELSE




  CONCAT(




    SUBSTR(




      source_string, 1, position - 1),




    REGEXP_REPLACE(




      SUBSTR(source_string, position),




      pattern,




      replace_string




    )




  )




END





Note: BigQuery provides regular expression support using the re2 library; see that documentation for its regular expression syntax.
	REGEXP_SUBSTR	
REGEXP_EXTRACT(




  source_string,




  pattern




)





If position is specified:


REGEXP_EXTRACT(




  SUBSTR(source_string, IF(position 



  pattern




)





If occurrence is specified:


REGEXP_EXTRACT_ALL(




  SUBSTR(source_string, IF(position 



  pattern




)[SAFE_ORDINAL(occurrence)]





Note: BigQuery provides regular expression support using the re2 library; see that documentation for its regular expression syntax.
	RLIKE	
IF(REGEXP_CONTAINS,1,0)=1





System functions


	Snowflake	BigQuery
	SYSTEM$ABORT_SESSION	Custom user-defined function
	SYSTEM$ABORT_TRANSACTION	Custom user-defined function
	SYSTEM$CANCEL_ALL_QUERIES	Custom user-defined function
	SYSTEM$CANCEL_QUERY	Custom user-defined function
	SYSTEM$CLUSTERING_DEPTH	Custom user-defined function
	SYSTEM$CLUSTERING_INFORMATION	Custom user-defined function
	SYSTEM$CLUSTERING_RATIO — Deprecated	Custom user-defined function
	SYSTEM$CURRENT_USER_TASK_NAME	Custom user-defined function
	SYSTEM$DATABASE_REFRESH_HISTORY	Custom user-defined function
	SYSTEM$DATABASE_REFRESH_PROGRESS , SYSTEM$DATABASE_REFRESH_PROGRESS_BY_JOB	Custom user-defined function
	SYSTEM$GET_AWS_SNS_IAM_POLICY	Custom user-defined function
	SYSTEM$GET_PREDECESSOR_RETURN_VALUE	Custom user-defined function
	SYSTEM$LAST_CHANGE_COMMIT_TIME	Custom user-defined function
	SYSTEM$PIPE_FORCE_RESUME	Custom user-defined function
	SYSTEM$PIPE_STATUS	Custom user-defined function
	SYSTEM$SET_RETURN_VALUE	Custom user-defined function
	SYSTEM$SHOW_OAUTH_CLIENT_SECRETS	Custom user-defined function
	SYSTEM$STREAM_GET_TABLE_TIMESTAMP	Custom user-defined function
	SYSTEM$STREAM_HAS_DATA	Custom user-defined function
	SYSTEM$TASK_DEPENDENTS_ENABLE	Custom user-defined function
	SYSTEM$TYPEOF	Custom user-defined function
	SYSTEM$USER_TASK_CANCEL_ONGOING_EXECUTIONS	Custom user-defined function
	SYSTEM$WAIT	Custom user-defined function
	SYSTEM$WHITELIST	Custom user-defined function
	SYSTEM$WHITELIST_PRIVATELINK	Custom user-defined function
		



Table functions


	Snowflake	BigQuery
	GENERATOR	Custom user-defined function
	GET_OBJECT_REFERENCES	Custom user-defined function
	RESULT_SCAN	Custom user-defined function
	VALIDATE	Custom user-defined function



Utility and hash functions


	Snowflake	BigQuery
	GET_DDL	Feature Request
	HASH	HASH is a Snowflake-specific proprietary function. Can't be translated without knowing the underlying logic used by Snowflake.



Window functions


	Snowflake	BigQuery
	CONDITIONAL_CHANGE_EVENT	Custom user-defined function
	CONDITIONAL_TRUE_EVENT	Custom user-defined function
	CUME_DIST	CUME_DIST
	DENSE_RANK	DENSE_RANK
	FIRST_VALUE	FIRST_VALUE
	LAG	LAG
	LAST_VALUE	LAST_VALUE
	LEAD	LEAD
	NTH_VALUE	NTH_VALUE
	NTILE	NTILE
	PERCENT_RANK	PERCENT_RANK
	RANK	RANK
	RATIO_TO_REPORT	Custom user-defined function
	ROW_NUMBER	ROW_NUMBER
	WIDTH_BUCKET	Custom user-defined function



BigQuery also supports
SAFE_CAST(expression
AS typename), which returns NULL if BigQuery is unable to perform a
cast (for example,
SAFE_CAST("apple"
AS INT64) returns NULL).


Operators


The following sections list Snowflake operators and their BigQuery
equivalents.


Arithmetic operators


The following table shows mappings between Snowflake
arithmetic operators
with their BigQuery equivalents.


	Snowflake	BigQuery
	
(Unary) (+'5')

	
CAST("5" AS NUMERIC)


	
a + b

	
a + b


	
(Unary) (-'5')

	
(-1) * CAST("5" AS NUMERIC)





Note: BigQuery supports standard unary minus, but does not convert integers in string format to INT64, NUMERIC, or FLOAT64 type.
	
a - b

	
a - b


	
date1 - date2






date1 - 365

	
DATE_DIFF(date1, date2, date_part)

DATE_SUB(date1, date2, date_part)


	
a * b

	
a * b


	
a / b

	
a / b


	
a % b

	
MOD(a, b)





To view Snowflake scale and precision details when performing arithmetic
operations, see the Snowflake
documentation.


Comparison operators


Snowflake
comparison operators
and BigQuery
comparison operators
are the same.


Logical/boolean operators


Snowflake
logical/boolean operators
and BigQuery
logical/boolean operators
are the same.


Set operators


The following table shows mappings between Snowflake
set operators
with their BigQuery equivalents.


	Snowflake	BigQuery
	
SELECT ...
INTERSECT
SELECT ...

	
SELECT ...



INTERSECT DISTINCT


SELECT...


	
SELECT ...
MINUS
SELECT ...





SELECT ...
EXCEPT
SELECT …





Note: MINUS and EXCEPT are synonyms.	
SELECT ...
EXCEPT DISTINCT
SELECT ...


	
SELECT ...
UNION
SELECT ...





SELECT ...
UNION ALL
SELECT ...

	
SELECT ...
UNION DISTINCT
SELECT ...






SELECT ...
UNION ALL
SELECT ...





Subquery operators


The following table shows mappings between Snowflake
subquery operators
with their BigQuery equivalents.


	Snowflake	BigQuery
	
SELECT ...
FROM ...
WHERE col <operator> ALL …

SELECT ...
FROM ...
WHERE col <operator> ANY ...

	BigQuery does not support a direct alternative to Snowflake's ALL/ANY.
	
SELECT ...
FROM ...




WHERE [NOT] EXISTS...

	
SELECT ...
FROM ...




WHERE [NOT] EXISTS...


	
SELECT ...
FROM ...




WHERE [NOT] IN...

	
SELECT ...
FROM ...




WHERE [NOT] IN...


	
SELECT * FROM table1




UNION




SELECT * FROM table2




EXCEPT




SELECT * FROM table3

	
SELECT * FROM table1




UNION ALL




(




  SELECT * FROM table2




  EXCEPT




  SELECT * FROM table3




)





Note: BigQuery requires parentheses to separate different set operations. If the same set operator is repeated, parentheses are not necessary.



DML syntax


This section addresses differences in data management language syntax between
Snowflake and BigQuery.


INSERT statement


Snowflake offers a configurable DEFAULT keyword for columns. In
BigQuery, the DEFAULT value for nullable columns is NULL and
DEFAULT is not supported for required columns. Most
Snowflake INSERT statements
are compatible with BigQuery. The following table shows exceptions.


	Snowflake	BigQuery
	
INSERT [OVERWRITE] INTO table




VALUES [... | DEFAULT | NULL] ...





Note: BigQuery does not support inserting JSON objects with an INSERT statement.	
INSERT [INTO] table (column1 [, ...])



VALUES (DEFAULT [, ...])



Note: BigQuery does not support a direct alternative to Snowflake's OVERWRITE. Use DELETE instead.
	
INSERT INTO table (column1 [, ...])
SELECT...
FROM ...

	
INSERT [INTO] table (column1, [,...])




SELECT ...




FROM ...


	
INSERT [OVERWRITE] ALL <intoClause>
...

INSERT [OVERWRITE] {FIRST | ALL}
{WHEN condition THEN <intoClause>}




[...]




[ELSE <intoClause>]



...



Note: <intoClause> represents standard INSERT statement, listed above.	BigQuery does not support conditional and unconditional multi-table INSERTs. 



BigQuery also supports inserting values using a subquery (where one of
the values is computed using a subquery), which is not supported in Snowflake.
For example:

INSERT INTO table (column1, column2)
VALUES ('value_1', (
  SELECT column2
  FROM table2
))


COPY statement


Snowflake supports copying data from stages files to an existing table and from
a table to a named internal stage, a named external stage, and an external
location (Amazon S3, Google Cloud Storage, or Microsoft Azure).


	COPY INTO <table>
	COPY INTO <location>



BigQuery does not use the SQL COPY command to load data, but you can
use any of several non-SQL tools and options to
load data into BigQuery tables. You can also use data pipeline sinks
provided in
Apache Spark
or
Apache Beam
to write data into BigQuery.


UPDATE statement


Most Snowflake UPDATE statements are compatible with BigQuery. The
following table shows exceptions.


	Snowflake	BigQuery
	
UPDATE table
SET col = value [,...]
[FROM ...]
[WHERE ...]

	
UPDATE table




SET column = expression [,...]




[FROM ...]




WHERE TRUE





Note: All UPDATE statements in BigQuery require a WHERE keyword, followed by a condition. 



DELETE and TRUNCATE TABLE statements


The DELETE and TRUNCATE TABLE statements are both ways to remove rows from a
table without affecting the table schema or indexes.


In Snowflake, both DELETE and TRUNCATE TABLE maintain deleted data using
Snowflake's Time Travel for recovery purposes for the data retention period.
However, DELETE does not delete the external file load history and load
metadata.


In BigQuery, the DELETE statement must have a WHERE clause. For
more information about DELETE in BigQuery, see the
BigQueryDELETEexamples
in the DML documentation.


	Snowflake	BigQuery
	
DELETE FROM table_name
[USING ...]




[WHERE ...]








TRUNCATE [TABLE] [IF EXISTS] table_name

	
DELETE [FROM] table_name [alias]




WHERE ...





Note: BigQuery DELETE statements require a WHERE clause.



MERGE statement


The MERGE statement can combine INSERT, UPDATE, and DELETE operations
into a single "upsert" statement and perform the operations automatically. The
MERGE operation must match at most one source row for each target row.


BigQuery tables are limited to 1,000 DML statements per day, so you
should optimally consolidate INSERT, UPDATE, and DELETE statements into a single
MERGE statement as shown in the following table:


	Snowflake	BigQuery
	
MERGE INTO target
USING source
ON target.key = source.key
WHEN MATCHED AND source.filter =
'Filter_exp' THEN




  UPDATE SET
    target.col1 = source.col1,
    target.col1 = source.col2,




    ...





Note: Snowflake supports a ERROR_ON_NONDETERMINISTIC_MERGE session parameter to handle nondeterministic results.	
MERGE target




USING source




ON target.key = source.key




WHEN MATCHED AND source.filter = 'filter_exp' THEN




  UPDATE SET




    target.col1 = source.col1,




    target.col2 = source.col2,




     ...







Note: All columns must be listed if updating all columns.



GET and LIST statements


The GET
statement downloads data files from one of the following Snowflake stages to a
local directory/folder on a client machine:


	Named internal stage
	Internal stage for a specified table
	Internal stage for the current user



The LIST
(LS) statement returns a list of files that have been staged (that is, uploaded
from a local file system or unloaded from a table) in one of the following
Snowflake stages:


	Named internal stage
	Named external stage
	Stage for a specified table
	Stage for the current user



BigQuery does not support the concept of staging and does not have
GET and LIST equivalents.


PUT and REMOVE statements


The PUT
statement uploads (that is, stages) data files from a local directory/folder on
a client machine to one of the following Snowflake stages:


	Named internal stage
	Internal stage for a specified table
	Internal stage for the current user



The REMOVE
(RM) statement removes files that have been staged in one of the following
Snowflake internal stages:


	Named internal stage
	Stage for a specified table
	Stage for the current user



BigQuery does not support the concept of staging and does not have
PUT and REMOVE equivalents.


DDL syntax


This section addresses differences in data definition language syntax between
Snowflake and BigQuery.


Database, Schema, and Share DDL


Most of Snowflake's terminology matches that of BigQuery's except that
Snowflake Database is similar to BigQuery Dataset. See the
detailed Snowflake to BigQuery terminology mapping.


CREATE DATABASE statement


Snowflake supports creating and managing a database via
database management commands
while BigQuery provides multiple options like using Console, CLI,
Client Libraries, etc. for creating datasets. This
section will use BigQuery CLI commands corresponding to the Snowflake
commands to address the differences.


	Snowflake	BigQuery
	
CREATE DATABASE <name>





Note: Snowflake provides these requirements for naming databases. It allows only 255 characters in the name.	
bq mk <name>





Note: BigQuery has similar dataset naming requirements as Snowflake except that it allows 1024 characters in the name.
	
CREATE OR REPLACE DATABASE <name>

	Replacing the dataset is not supported in BigQuery.
	
CREATE TRANSIENT DATABASE <name>

	Creating temporary dataset is not supported in BigQuery.
	
CREATE DATABASE IF NOT EXISTS <name>

	Concept not supported in BigQuery
	
CREATE DATABASE <name>




CLONE <source_db>




 [ { AT | BEFORE }




   ( { TIMESTAMP => <timestamp> |




       OFFSET => <time_difference> |




       STATEMENT => <id> } ) ]

	Cloning datasets is  not yet supported in BigQuery.
	
CREATE DATABASE <name>




DATA_RETENTION_TIME_IN_DAYS = <num>

	Time travel at the dataset level is not supported in BigQuery. However, time travel for table and query results is supported.  
	
CREATE DATABASE <name>




DEFAULT_DDL_COLLATION = '<collation_specification>'

	Collation in DDL is not supported in BigQuery.
	
CREATE DATABASE <name>




COMMENT = '<string_literal>'

	
bq mk \




--description "<string_literal>" \




<name>


	
CREATE DATABASE <name>




FROM SHARE <provider_account>.<share_name>

	Creating shared datasets is not supported in BigQuery. However, users can share the dataset via Console/UI once the dataset is created.
	
CREATE DATABASE <name>




 AS REPLICA OF




 <region>.<account>.<primary_db_name>




AUTO_REFRESH_MATERIALIZED_VIEWS_ON_SECONDARY = { TRUE | FALSE }





Note: Snowflake provides the option for automatic background maintenance of materialized views in the secondary database which is not supported in BigQuery.	
bq mk --transfer_config \




--target_dataset = <name> \




--data_source = cross_region_copy \ --params='




{"source_dataset_id":"<primary_db_name>"




,"source_project_id":"<project_id>"




,"overwrite_destination_table":"true"}'



Note: BigQuery supports copying datasets using the BigQuery Data Transfer Service. See here for a dataset copying prerequisites.



BigQuery also offers the following bq mk command options, which do
not have a direct analogue in Snowflake:


	--location <dataset_location>
	--default_table_expiration <time_in_seconds>
	--default_partition_expiration <time_in_seconds>



ALTER DATABASE statement


This section will use BigQuery CLI commands corresponding to the
Snowflake commands to address the differences in ALTER statements.


	Snowflake	BigQuery
	
ALTER DATABASE [ IF EXISTS ] <name> RENAME TO <new_db_name>

	Renaming datasets is not supported in BigQuery but copying datasets is supported.
	
ALTER DATABASE <name>




SWAP WITH <target_db_name>

	Swapping datasets is not supported in BigQuery.
	
ALTER DATABASE <name>




SET




[DATA_RETENTION_TIME_IN_DAYS = <num>]




[ DEFAULT_DDL_COLLATION = '<value>']

	Managing data retention and collation at dataset level is not supported in BigQuery. 
	
ALTER DATABASE <name>




SET COMMENT = '<string_literal>'

	
bq update \




--description "<string_literal>" <name>


	
ALTER DATABASE <name>




ENABLE REPLICATION TO ACCOUNTS <snowflake_region>.<account_name>




[ , <snowflake_region>.<account_name> ... ]

	Concept not supported in BigQuery.
	
ALTER DATABASE <name>




DISABLE REPLICATION [ TO ACCOUNTS <snowflake_region>.<account_name>




[ , <snowflake_region>.<account_name> ... ]]

	Concept not supported in BigQuery.
	
ALTER DATABASE <name>




SET AUTO_REFRESH_MATERIALIZED_VIEWS_ON_SECONDARY = { TRUE | FALSE }

	Concept not supported in BigQuery.
	
ALTER DATABASE <name> REFRESH

	Concept not supported in BigQuery.
	
ALTER DATABASE <name>




ENABLE FAILOVER TO ACCOUNTS <snowflake_region>.<account_name>




[ , <snowflake_region>.<account_name> ... ]

	Concept not supported in BigQuery.
	
ALTER DATABASE <name>




DISABLE FAILOVER [ TO ACCOUNTS <snowflake_region>.<account_name>




[ , <snowflake_region>.<account_name> ... ]]

	Concept not supported in BigQuery.
	
ALTER DATABASE <name>




PRIMARY

	Concept not supported in BigQuery.



DROP DATABASE statement


This section will use BigQuery CLI command corresponding to the
Snowflake command to address the difference in DROP statement.


	Snowflake	BigQuery
	
DROP DATABASE [ IF EXISTS ] <name>




[ CASCADE | RESTRICT ]





Note: In Snowflake, dropping a database does not permanently remove it from the system. A version of the dropped database is retained for the number of days specified by the DATA_RETENTION_TIME_IN_DAYS parameter for the database.	
bq rm -r -f -d <name>






Where



-r is to remove all objects in the dataset


-f is to skip confirmation for execution



-d indicates dataset



Note: In BigQuery, deleting a dataset is permanent. Also, cascading is not supported at the dataset level as all the data and objects in the dataset are deleted.



Snowflake also supports
UNDROP DATASET
command which restores the most recent version of a dropped datasets. This is
currently not supported in BigQuery at the dataset level.


USE DATABASE statement


Snowflake provides the option to set the database for a user session using
USE DATABASE
command. This removes the need for specifying fully-qualified object names in
SQL commands. BigQuery does not provide any alternative to Snowflake's
USE DATABASE command.


SHOW DATABASE statement


This section will use BigQuery CLI command corresponding to the
Snowflake command to address the difference in SHOW statement.


	Snowflake	BigQuery
	
SHOW DATABASES





Note: Snowflake provides a single option to list and show details about all the databases including dropped databases that are within the retention period. 	bq ls --format=prettyjson

and / or


bq show <dataset_name>





Note: In BigQuery, the ls command provides only dataset names and basic information, and the show command provides details like last modified timestamp, ACLs, and labels of a dataset. BigQuery also provides more details about the datasets via Information Schema.
	
SHOW TERSE DATABASES





Note: With the TERSE option, Snowflake allows to display only specific information/fields about datasets.	Concept not supported in BigQuery.
	
SHOW DATABASES HISTORY

	Time travel concept is not supported in BigQuery at the dataset level.
	SHOW DATABASES


[LIKE '<pattern>']




[STARTS WITH '<name_string>']

	Filtering results by dataset names is  not supported in BigQuery. However, filtering by labels is supported. 
	SHOW DATABASES


LIMIT <rows> [FROM '<name_string>']





Note: By default, Snowflake does not limit the number of results. However, the value for LIMIT cannot exceed 10K.	
bq ls \




--max_results <rows>





Note: By default, BigQuery only displays 50 results.



BigQuery also offers the following bq command options, which do
not have a direct analogue in Snowflake:


	bq ls --format=pretty: Returns basic formatted results
	*bq ls -a: *Returns only anonymous datasets (the ones starting with an
underscore)
	bq ls --all: Returns all datasets including anonymous ones
	bq ls --filter labels.key:value: Returns results filtered by dataset label
	bq ls --d: Excludes anonymous datasets form results
	bq show --format=pretty: Returns detailed basic formatted results for all
datasets



SCHEMA management


Snowflake provides multiple
schema management commands
similar to its database management commands. This concept of creating and
managing schema is not supported in BigQuery.


However, BigQuery allows you to specify a table's schema when you load
data into a table, and when you create an empty table. Alternatively, you can
use schema auto-detection for
supported data formats.


SHARE management


Snowflake provides multiple
share management commands
similar to its database and schema management commands. This concept of
creating and managing share is not supported in BigQuery.


Table, View, and Sequence DDL


CREATE TABLE statement


Most Snowflake CREATE TABLE statements are compatible with BigQuery,
except for the following syntax elements, which are not used in
BigQuery:


	Snowflake	BigQuery
	
CREATE TABLE table_name




(




  col1 data_type1 NOT NULL,




  col2 data_type2 NULL,




  col3 data_type3 UNIQUE,




  col4 data_type4 PRIMARY KEY,




  col5 data_type5




)





Note: UNIQUE and PRIMARY KEY constraints are informational and are not enforced by the Snowflake system.	
CREATE TABLE table_name




(




  col1 data_type1 NOT NULL,




  col2 data_type2,




  col3 data_type3,




  col4 data_type4,




  col5 data_type5,




)




	
CREATE TABLE table_name




(




  col1 data_type1[,...]




  table_constraints




)





where table_constraints are:


 [UNIQUE(column_name [, ... ])]




 [PRIMARY KEY(column_name [, ...])]




 [FOREIGN KEY(column_name [, ...])




   REFERENCES reftable [(refcolumn)]





Note: UNIQUE and PRIMARY KEY constraints are informational and are not enforced by the Snowflake system.	
CREATE TABLE table_name




(




  col1 data_type1[,...]




)




PARTITION BY column_name




CLUSTER BY column_name [, ...]





Note: BigQuery does not use UNIQUE, PRIMARY KEY, or FOREIGN KEY table constraints. To achieve similar optimization that these constraints provide during query execution, partition and cluster your BigQuery tables. CLUSTER BY supports up to four columns.
	
CREATE TABLE table_name




LIKE original_table_name

	See this example to learn how to use the INFORMATION_SCHEMA tables to copy column names, data types, and NOT NULL constraints to a new table. 
	
CREATE TABLE table_name




(




  col1 data_type1




)




BACKUP NO





Note:In Snowflake, the BACKUP NO setting is specified to "save processing time when creating snapshots and restoring from snapshots and to reduce storage space."	The BACKUP NO table option is not used nor needed because BigQuery automatically keeps up to 7 days of historical versions of all your tables, without any effect on processing time nor billed storage.
	
CREATE TABLE table_name




(




  col1 data_type1




)




table_attributes





where table_attributes are:


 [DISTSTYLE {AUTO|EVEN|KEY|ALL}]




 [DISTKEY (column_name)]




 [[COMPOUND|INTERLEAVED] SORTKEY




   (column_name [, ...])]






	BigQuery supports clustering which allows storing keys in sorted order.
	
CREATE TABLE table_name




AS SELECT ...

	
CREATE TABLE table_name




AS SELECT ...


	
CREATE TABLE IF NOT EXISTS table_name




...

	
CREATE TABLE IF NOT EXISTS table_name




...





BigQuery also supports the DDL statement CREATE OR REPLACE
TABLEstatement which overwrites a table if it already exists.


BigQuery's CREATE TABLEstatement also supports the following clauses,
which do not have a Snowflake equivalent:


	PARTITION BY
partition_statement
	CLUSTER BY
clustering_column_list
	OPTIONS(table_options_list)



For more information about CREATE TABLE in BigQuery, see the
BigQuery CREATE examples
in the DML documentation.


ALTER TABLE statement


This section will use BigQuery CLI commands corresponding to the
Snowflake commands to address the differences in ALTER statements for tables.


	Snowflake	BigQuery
	
ALTER TABLE [ IF EXISTS ] <name> RENAME TO <new_name>

	
ALTER TABLE [IF EXISTS] <name>




SET OPTIONS (friendly_name="<new_name>")


	
ALTER TABLE <name>




SWAP WITH <target_db_name>

	Swapping tables is not supported in BigQuery.
	
ALTER TABLE <name>




SET




[DEFAULT_DDL_COLLATION = '<value>']

	Managing data collation for tables is not supported in BigQuery.
	
ALTER TABLE <name>




SET




[DATA_RETENTION_TIME_IN_DAYS = <num>]

	
ALTER TABLE [IF EXISTS] <name>




SET OPTIONS (expiration_timestamp=<timestamp>)


	
ALTER TABLE <name>




SET




COMMENT = '<string_literal>'

	
ALTER TABLE [IF EXISTS] <name>




SET OPTIONS (description='<string_literal>')





Additionally, Snowflake provides
clustering, column, and constraint options
for altering tables that are not supported by BigQuery.


DROP TABLE and UNDROP TABLE statements


This section will use BigQuery CLI command corresponding to the
Snowflake command to address the difference in DROP and UNDROP statements.


	Snowflake	BigQuery
	
DROP TABLE [IF EXISTS] <table_name>




[CASCADE | RESTRICT]





Note: In Snowflake, dropping a table does not permanently remove it from the system. A version of the dropped table is retained for the number of days specified by the DATA_RETENTION_TIME_IN_DAYS parameter for the database.	
bq rm -r -f -d <dataset_name>.<table_name>






Where



-r is to remove all objects in the dataset

-f is to skip confirmation for execution 

-d indicates dataset



Note: In BigQuery, deleting a table is also not permanent but a snapshot is currently maintained only for 7 days.
	
UNDROP TABLE <table_name>



	
bq cp \ <dataset_name>.<table_name>@<unix_timestamp> <dataset_name>.<new_table_name>





Note: In BigQuery, you need to first, determine a UNIX timestamp of when the table existed (in milliseconds). Then, copy the table at that timestamp to a new table. The new table must have a different name than the deleted table. 



CREATE EXTERNAL TABLE statement


BigQuery allows creating both
permanent and temporary external tables
and querying data directly from:


	Bigtable
	Cloud Storage
	Google Drive
	Cloud SQL (beta)



Snowflake allows creating a
permanent external table
which when queried, reads data from a set of one or more files in a specified
external stage.


This section will use BigQuery CLI command corresponding to the
Snowflake command to address the differences in CREATE EXTERNAL TABLE statement.


	Snowflake	BigQuery
	CREATE [OR REPLACE] EXTERNAL TABLE


table




((<col_name> <col_type> AS <expr> )




| (<part_col_name> <col_type> AS <part_expr>)[ inlineConstraint ]




[ , ... ] )




LOCATION = externalStage




FILE_FORMAT =




({FORMAT_NAME='<file_format_name>'




|TYPE=source_format [formatTypeOptions]})






Where:




externalStage = @[namespace.]ext_stage_name[/path]





Note: Snowflake allows staging the files containing data to be read and specifying format type options for external tables. Snowflake format types - CSV, JSON, AVRO, PARQUET, ORC are all supported by BigQuery except the XML type.	
[1] bq mk \




--external_table_definition=definition_file \




dataset.table






OR






[2] bq mk \




--external_table_definition=schema_file@source_format={Cloud Storage URI | drive_URI} \




dataset.table






OR






[3] bq mk \




--external_table_definition=schema@source_format = {Cloud Storage URI | drive_URI} \




dataset.table





Note: BigQuery allows creating a permanent table linked to your data source using a table definition file [1], a JSON schema file [2] or an inline schema definition [3]. Staging files to be read and specifying format type options is not supported in BigQuery.
	
CREATE [OR REPLACE] EXTERNAL TABLE [IF EXISTS]




<table_name>




((<col_name> <col_type> AS <expr> )




[ , ... ] )




[PARTITION BY (<identifier>, ...)]




LOCATION = externalStage




[REFRESH_ON_CREATE = {TRUE|FALSE}]




[AUTO_REFRESH = {TRUE|FALSE}]




[PATTERN = '<regex_pattern>']




FILE_FORMAT = ({FORMAT_NAME = '<file_format_name>' | TYPE = { CSV | JSON | AVRO | ORC | PARQUET} [ formatTypeOptions]})




[COPY GRANTS]




[COMMENT = '<string_literal>']

	
bq mk \




--external_table_definition=definition_file \




dataset.table





Note: BigQuery currently does not support any of the optional parameter options provided by Snowflake for creating external tables. For partitioning, BigQuery supports using the _FILE_NAME pseudo column to create partitioned tables/views on top of the external tables. For more information, see
Query the _FILE_NAME pseudo-column.



Additionally, BigQuery also supports
querying externally partitioned data
in AVRO, PARQUET, ORC, JSON and CSV formats that is stored on Google Cloud
Storage using a
default hive partitioning layout.


CREATE VIEW statement


The following table shows equivalents between Snowflake and BigQuery
for the CREATE VIEW statement.


	Snowflake	BigQuery
	
CREATE VIEW view_name AS SELECT ...

	
CREATE VIEW view_name AS SELECT ...


	
CREATE OR REPLACE VIEW view_name AS SELECT ...

	CREATE OR REPLACE VIEW


view_name AS SELECT ...


	
CREATE VIEW view_name




(column_name, ...)




AS SELECT ...

	
CREATE VIEW view_name




AS SELECT ...


	Not supported	CREATE VIEW IF NOT EXISTS


view_name




OPTIONS(view_option_list)




AS SELECT ...


	
CREATE VIEW view_name




AS SELECT ...




WITH NO SCHEMA BINDING

	In BigQuery, to create a view all referenced objects must already exist.



BigQuery allows to query external data sources.



CREATE SEQUENCE statement


Sequences are not used in BigQuery, this can be achieved with the
following batch way. For more information on surrogate keys and slowly changing
dimensions (SCD), see the following guides:


	BigQuery Surrogate Keys
	BigQuery and surrogate keys: A practical approach



	
INSERT INTO dataset.table SELECT
  *,
  ROW_NUMBER() OVER () AS id
FROM dataset.table





Data loading and unloading DDL


Snowflake supports data loading and unloading via stage, file format and pipe
management commands. BigQuery also provides multiple options for such
as bq load, BigQuery Data Transfer Service, bq extract, etc. This
section highlights the differences in the usage of these methodologies for data
loading and unloading.


Account and Session DDL


Snowflake's Account and Session concepts are not supported in BigQuery.
BigQuery allows management of accounts via
Cloud IAM at all levels. Also, multi statement
transactions are not yet supported in BigQuery.


User-defined functions (UDF)


A UDF enables you to create functions for custom operations. These functions
accept columns of input, perform actions, and return the result of those actions
as a value


Both
Snowflake
and
BigQuery
support UDF using SQL expressions and Javascript Code.


See the
GoogleCloudPlatform/bigquery-utils/
GitHub repository for a library of common BigQuery UDFs.


CREATE FUNCTION syntax


The following table addresses differences in SQL UDF creation syntax between
Snowflake and BigQuery.


	Snowflake	BigQuery
	
CREATE [ OR REPLACE ] FUNCTION




function_name




([sql_arg_name sql_arg_data_type[,..]])




RETURNS data_type




AS  sql_function_definition




s

	
CREATE [OR REPLACE] FUNCTION function_name




([sql_arg_name sql_arg_data_type[,..]])




AS sql_function_definition





Note: In BigQuery SQL UDF, return data type is optional. BigQuery infers the result type of the function from the SQL function body when a query calls the function.
	
CREATE [OR REPLACE] FUNCTION




function_name




([sql_arg_name sql_arg_data_type[,..]])




RETURNS TABLE (col_name, col_data_type[,..])




AS  sql_function_definition





	
CREATE [OR REPLACE] FUNCTION function_name




([sql_arg_name sql_arg_data_type[,..]])




RETURNS data_type




AS  sql_function_definition





Note:In BigQuery SQL UDF, returning table type is currently not supported but is on the product roadmap and  will be available soon. However, BigQuery supports returning ARRAY of type STRUCT.
	
CREATE [SECURE] FUNCTION




function_name




([sql_arg_name sql_arg_data_type[,..]])




RETURNS data_type




AS  sql_function_definition





Note: Snowflake provides secure option to restrict UDF definition and details only to authorized users (that is, users who are granted the role that owns the view).	
CREATE FUNCTION




function_name




([sql_arg_name sql_arg_data_type[,..]])




RETURNS data_type




AS  sql_function_definition





Note: Function security is not a configurable parameter in BigQuery. BigQuery supports creating IAM roles and permissions to restrict access to underlying data and function definition.


	
CREATE [OR REPLACE] FUNCTION




function_name




([sql_arg_name sql_arg_data_type[,..]])




RETURNS data_type




 [ { CALLED ON NULL INPUT | { RETURNS NULL ON NULL INPUT | STRICT } } ]




AS   sql_function_definition



	
CREATE [OR REPLACE] FUNCTION function_name




([sql_arg_name sql_arg_data_type[,..]])




RETURNS data_type




AS  sql_function_definition





Note: Function behaviour for null inputs is implicitly handled in BigQuery and need not be specified as a separate option.
	
CREATE [OR REPLACE] FUNCTION




function_name




([sql_arg_name sql_arg_data_type[,..]])




RETURNS data_type




 [VOLATILE | IMMUTABLE]




AS   sql_function_definition

	
CREATE [OR REPLACE] FUNCTION




function_name




([sql_arg_name sql_arg_data_type[,..]])




RETURNS data_type




AS  sql_function_definition





Note:Function volatility is not a configurable parameter in BigQuery. All BigQuery UDF volatility is equivalent to Snowflake's IMMUTABLE volatility (that is, it does not do database lookups or otherwise use information not directly present in its argument list).
	
CREATE [OR REPLACE] FUNCTION




function_name




([sql_arg_name sql_arg_data_type[,..]])




RETURNS data_type




AS [' | $$]




  sql_function_definition




[' | $$]



	CREATE [OR REPLACE] FUNCTION 


function_name




([sql_arg_name sql_arg_data_type[,..]])




RETURNS data_type




AS  sql_function_definition





Note: Using single quotes or a character sequence like dollar quoting ($$) is not required or supported in BigQuery. BigQuery implicitly interprets the SQL expression. 


	
CREATE [OR REPLACE] FUNCTION




function_name




([sql_arg_name sql_arg_data_type[,..]])




RETURNS data_type




 [COMMENT = '<string_literal>']




AS   sql_function_definition

	
CREATE [OR REPLACE] FUNCTION




function_name




([sql_arg_name sql_arg_data_type[,..]])




RETURNS data_type




AS  sql_function_definition





Note:Adding comments or descriptions in UDFs is currently not supported in BigQuery.
	
CREATE [OR REPLACE] FUNCTION function_name




(x integer, y integer)




RETURNS integer




AS $$




  SELECT x + y




$$





Note: Snowflake does not support ANY TYPE for SQL UDFs. However, it supports using VARIANT data types. 	
CREATE [OR REPLACE] FUNCTION function_name




(x ANY TYPE, y ANY TYPE)




AS




  SELECT x + y







Note: BigQuery supports using ANY TYPE as argument type. The function will accept an input of any type for this argument. For more information, see templated parameter in BigQuery.



BigQuery also supports the CREATE FUNCTION IF NOT EXISTSstatement
which treats the query as successful and takes no action if a function with the
same name already exists.


BigQuery's CREATE FUNCTIONstatement also supports creating
TEMPORARY or TEMP functions,
which do not have a Snowflake equivalent. See
calling UDFs
for details on executing a BigQuery persistent UDF.


DROP FUNCTION syntax


The following table addresses differences in DROP FUNCTION syntax between
Snowflake and BigQuery.


	Snowflake	BigQuery
	
DROP FUNCTION [IF EXISTS]




function_name




([arg_data_type, ... ])



	
DROP FUNCTION [IF EXISTS] dataset_name.function_name





Note: BigQuery does not require using the function's signature (argument data type) for deleting the function.



BigQuery requires that you
specify the project_name if
the function is not located in the current project.


Additional function commands


This section covers additional UDF commands supported by Snowflake that are not
directly available in BigQuery.


ALTER FUNCTION syntax


Snowflake supports the following operations using
ALTER FUNCTION
syntax.


	Renaming a UDF
	Converting to (or reverting from) a secure UDF
	Adding, overwriting, removing a comment for a UDF



As configuring function security and adding function comments is not available
in BigQuery, ALTER FUNCTION syntax is currently not supported. However,
the
CREATE FUNCTION
statement can be used to create a UDF with the same function definition but a
different name.


DESCRIBE FUNCTION syntax


Snowflake supports describing a UDF using
DESC[RIBE] FUNCTION
syntax. This is currently not supported in BigQuery. However, querying
UDF metadata via INFORMATION SCHEMA will be available soon as part of the
product roadmap.


SHOW USER FUNCTIONS syntax


In Snowflake,
SHOW USER FUNCTIONS
syntax can be used to list all UDFs for which users have access privileges. This
is currently not supported in BigQuery. However, querying UDF metadata
via INFORMATION SCHEMA will be available soon as part of the product roadmap.


Stored procedures


Snowflake
stored procedures
are written in JavaScript, which can execute SQL statements by calling a
JavaScript API. In BigQuery, stored procedures are defined using a
block of SQL
statements.


CREATE PROCEDURE syntax


In Snowflake, a stored procedure is executed with a
CALL command
while in BigQuery, stored procedures are
executed
like any other BigQuery function.


The following table addresses differences in stored procedure creation syntax
between Snowflake and BigQuery.


	Snowflake	BigQuery
	
CREATE [OR REPLACE] PROCEDURE




procedure_name




([arg_name arg_data_type[,..]])




RETURNS data_type




AS procedure_definition;





Note: Snowflake requires that stored procedures return a single value. Hence, return data type is a required option.	CREATE [OR REPLACE] PROCEDURE


procedure_name




([arg_mode arg_name arg_data_type[,..]])




BEGIN




procedure_definition




END;






arg_mode: IN | OUT | INOUT





Note: BigQuery doesn't support a return type for stored procedures. Also, it requires specifying argument mode for each argument passed. 
	
CREATE [OR REPLACE] PROCEDURE




procedure_name




([arg_name arg_data_type[,..]])




RETURNS data_type




AS




 $$




  javascript_code




 $$;

	
CREATE [OR REPLACE] PROCEDURE




procedure_name




([arg_name arg_data_type[,..]])




BEGIN




statement_list




END;


	
CREATE [OR REPLACE] PROCEDURE




procedure_name




([arg_name arg_data_type[,..]])




RETURNS data_type




 [{CALLED ON NULL INPUT | {RETURNS NULL ON NULL INPUT | STRICT}}]




AS procedure_definition;



	CREATE [OR REPLACE] PROCEDURE


procedure_name




([arg_name arg_data_type[,..]])




BEGIN




procedure_definition




END;





Note: Procedure behavior for null inputs is implicitly handled in BigQuery and need not be specified as a separate option.
	CREATE [OR REPLACE] PROCEDURE


procedure_name




([arg_name arg_data_type[,..]])




RETURNS data_type




 [VOLATILE | IMMUTABLE]




AS procedure_definition;

	
CREATE [OR REPLACE] PROCEDURE




procedure_name




([arg_name arg_data_type[,..]])




BEGIN




procedure_definition




END;





Note:Procedure volatility is not a configurable parameter in BigQuery. It's equivalent to Snowflake's IMMUTABLE volatility.
	CREATE [OR REPLACE] PROCEDURE


procedure_name




([arg_name arg_data_type[,..]])




RETURNS data_type




 [COMMENT = '<string_literal>']




AS   procedure_definition;

	
CREATE [OR REPLACE] PROCEDURE




procedure_name




([arg_name arg_data_type[,..]])




BEGIN




procedure_definition




END;





Note:Adding comments or descriptions in procedure definitions  is currently not supported in BigQuery.
	CREATE [OR REPLACE] PROCEDURE


procedure_name




([arg_name arg_data_type[,..]])




RETURNS data_type




 [EXECUTE AS { CALLER | OWNER }]




AS procedure_definition;





Note: Snowflake supports specifying the caller or owner of the procedure for execution	
CREATE [OR REPLACE] PROCEDURE




procedure_name




([arg_name arg_data_type[,..]])




BEGIN




procedure_definition




END;





Note: BigQuery stored procedures are always executed as the caller



BigQuery also supports the CREATE PROCEDURE IF NOT EXISTS statement
which treats the query as successful and takes no action if a function with the
same name already exists.


DROP PROCEDURE syntax


The following table addresses differences in DROP FUNCTION syntax between
Snowflake and BigQuery.


	Snowflake	BigQuery
	
DROP PROCEDURE [IF EXISTS]




procedure_name




([arg_data_type, ... ])



	
DROP PROCEDURE [IF EXISTS] dataset_name.procedure_name





Note: BigQuery does not require using procedure's signature (argument data type) for deleting the procedure.



BigQuery requires that you
specify the project_name if
the procedure is not located in the current project.


Additional procedure commands


Snowflake provides additional commands like
ALTER PROCEDURE,
DESC[RIBE] PROCEDURE,
and
SHOW PROCEDURES
to manage the stored procedures. These are currently not supported in
BigQuery.


Metadata and transaction SQL statements


	Snowflake	BigQuery
	
BEGIN [ { WORK | TRANSACTION } ] [ NAME <name> ];

START_TRANSACTION [ name <name> ];

	BigQuery always uses Snapshot Isolation. For details, see Consistency guarantees elsewhere in this document.
	
COMMIT;

	Not used in BigQuery.
	
ROLLBACK;

	Not used in BigQuery
	
SHOW LOCKS [ IN ACCOUNT ];
SHOW TRANSACTIONS [ IN ACCOUNT ];

Note: If the user has the ACCOUNTADMIN role, the user can see locks/transactions for all users in the account.

	Not used in BigQuery.



Multi-statement and multi-line SQL statements


Both Snowflake and BigQuery support transactions (sessions)
and therefore support statements separated by semicolons that are consistently
executed together. For more information, see
Multi-statement transactions.


Metadata columns for staged files


Snowflake automatically generates metadata for files in internal and external
stages. This metadata can be
queried and
loaded
into a table alongside regular data columns. The following metadata columns can
be utilized:


	METADATA$FILENAME
	METADATA$FILE_ROW_NUMBER



Consistency guarantees and transaction isolation


Both Snowflake and BigQuery are atomic—that is, ACID-compliant on a
per-mutation level across many rows.


Transactions


Each Snowflake transaction is assigned a unique start time (includes
milliseconds) that is set as the transaction ID. Snowflake only supports the
READ COMMITTED
isolation level. However, a statement can see changes made by another statement
if they are both in the same transaction - even though those changes are not
committed yet. Snowflake transactions acquire locks on resources (tables) when
that resource is being modified. Users can adjust the maximum time a blocked
statement will wait until the statement times out. DML statements are
autocommitted if the
AUTOCOMMIT
parameter is turned on.


BigQuery also
supports transactions.
BigQuery helps ensure
optimistic concurrency control
(first to commit wins) with
snapshot isolation, in which
a query reads the last committed data before the query starts. This approach
guarantees the same level of consistency on a per-row, per-mutation basis and
across rows within the same DML statement, yet avoids deadlocks. In the case of
multiple DML updates against the same table, BigQuery switches to
pessimistic concurrency control.
Load jobs can run completely independently and append to tables. However,
BigQuery does not yet provide an explicit transaction boundary or
session.


Rollback


If a Snowflake transaction's session is unexpectedly terminated before the
transaction is committed or rolled back, the transaction is left in a detached
state. The user should run SYSTEM$ABORT_TRANSACTION to abort the detached
transaction or Snowflake will roll back the detached transaction after four idle
hours. If a deadlock occurs, Snowflake detects the deadlock and selects the more
recent statement to roll back. If the DML statement in an explicitly opened
transaction fails, the changes are rolled back, but the transaction is kept open
until it is committed or rolled back. DDL statements in Snowflake cannot be
rolled back as they are autocommitted.


BigQuery supports the
ROLLBACK TRANSACTION statement.
There is no ABORT statement 
in BigQuery.


Database limits


Always check the BigQuery public documentation for
the latest quotas and limits. Many quotas for large-volume users can be raised
by contacting the Cloud Support team.


All Snowflake accounts have soft-limits set by default. Soft-limits are set
during account creation and can vary. Many Snowflake soft-limits can be raised
through the Snowflake account team or a support ticket.


The following table shows a comparison of the Snowflake and BigQuery
database limits.


	Limit	Snowflake	BigQuery
	Size of query text	1 MB	1 MB
	Maximum number of concurrent queries	XS Warehouse - 8

S Warehouse - 16

M Warehouse - 32

L Warehouse - 64

XL Warehouse - 128	100
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