- 1.104.0 (latest)
- 1.103.0
- 1.102.0
- 1.101.0
- 1.100.0
- 1.99.0
- 1.98.0
- 1.97.0
- 1.96.0
- 1.95.1
- 1.94.0
- 1.93.1
- 1.92.0
- 1.91.0
- 1.90.0
- 1.89.0
- 1.88.0
- 1.87.0
- 1.86.0
- 1.85.0
- 1.84.0
- 1.83.0
- 1.82.0
- 1.81.0
- 1.80.0
- 1.79.0
- 1.78.0
- 1.77.0
- 1.76.0
- 1.75.0
- 1.74.0
- 1.73.0
- 1.72.0
- 1.71.1
- 1.70.0
- 1.69.0
- 1.68.0
- 1.67.1
- 1.66.0
- 1.65.0
- 1.63.0
- 1.62.0
- 1.60.0
- 1.59.0
- 1.58.0
- 1.57.0
- 1.56.0
- 1.55.0
- 1.54.1
- 1.53.0
- 1.52.0
- 1.51.0
- 1.50.0
- 1.49.0
- 1.48.0
- 1.47.0
- 1.46.0
- 1.45.0
- 1.44.0
- 1.43.0
- 1.39.0
- 1.38.1
- 1.37.0
- 1.36.4
- 1.35.0
- 1.34.0
- 1.33.1
- 1.32.0
- 1.31.1
- 1.30.1
- 1.29.0
- 1.28.1
- 1.27.1
- 1.26.1
- 1.25.0
- 1.24.1
- 1.23.0
- 1.22.1
- 1.21.0
- 1.20.0
- 1.19.1
- 1.18.3
- 1.17.1
- 1.16.1
- 1.15.1
- 1.14.0
- 1.13.1
- 1.12.1
- 1.11.0
- 1.10.0
- 1.9.0
- 1.8.1
- 1.7.1
- 1.6.2
- 1.5.0
- 1.4.3
- 1.3.0
- 1.2.0
- 1.1.1
- 1.0.1
- 0.9.0
- 0.8.0
- 0.7.1
- 0.6.0
- 0.5.1
- 0.4.0
- 0.3.1
FeatureGroup(mapping=None, *, ignore_unknown_fields=False, **kwargs)
Vertex AI Feature Group.
.. _oneof: https://proto-plus-python.readthedocs.io/en/stable/fields.html#oneofs-mutually-exclusive-fields
Attributes |
|
---|---|
Name | Description |
big_query |
google.cloud.aiplatform_v1beta1.types.FeatureGroup.BigQuery
Indicates that features for this group come from BigQuery Table/View. By default treats the source as a sparse time series source. The BigQuery source table or view must have at least one entity ID column and a column named feature_timestamp .
This field is a member of oneof _ source .
|
name |
str
Identifier. Name of the FeatureGroup. Format: projects/{project}/locations/{location}/featureGroups/{featureGroup}
|
create_time |
google.protobuf.timestamp_pb2.Timestamp
Output only. Timestamp when this FeatureGroup was created. |
update_time |
google.protobuf.timestamp_pb2.Timestamp
Output only. Timestamp when this FeatureGroup was last updated. |
etag |
str
Optional. Used to perform consistent read-modify-write updates. If not set, a blind "overwrite" update happens. |
labels |
MutableMapping[str, str]
Optional. The labels with user-defined metadata to organize your FeatureGroup. Label keys and values can be no longer than 64 characters (Unicode codepoints), can only contain lowercase letters, numeric characters, underscores and dashes. International characters are allowed. See https://goo.gl/xmQnxf for more information on and examples of labels. No more than 64 user labels can be associated with one FeatureGroup(System labels are excluded)." System reserved label keys are prefixed with "aiplatform.googleapis.com/" and are immutable. |
description |
str
Optional. Description of the FeatureGroup. |
service_agent_type |
google.cloud.aiplatform_v1beta1.types.FeatureGroup.ServiceAgentType
Optional. Service agent type used during jobs under a FeatureGroup. By default, the Vertex AI Service Agent is used. When using an IAM Policy to isolate this FeatureGroup within a project, a separate service account should be provisioned by setting this field to SERVICE_AGENT_TYPE_FEATURE_GROUP . This will generate a
separate service account to access the BigQuery source
table.
|
service_account_email |
str
Output only. A Service Account unique to this FeatureGroup. The role bigquery.dataViewer should be granted to this service account to allow Vertex AI Feature Store to access source data while running jobs under this FeatureGroup. |
Classes
BigQuery
BigQuery(mapping=None, *, ignore_unknown_fields=False, **kwargs)
Input source type for BigQuery Tables and Views.
LabelsEntry
LabelsEntry(mapping=None, *, ignore_unknown_fields=False, **kwargs)
The abstract base class for a message.
Parameters | |
---|---|
Name | Description |
kwargs |
dict
Keys and values corresponding to the fields of the message. |
mapping |
Union[dict,
A dictionary or message to be used to determine the values for this message. |
ignore_unknown_fields |
Optional(bool)
If True, do not raise errors for unknown fields. Only applied if |
ServiceAgentType
ServiceAgentType(value)
Service agent type used during jobs under a FeatureGroup.
Methods
FeatureGroup
FeatureGroup(mapping=None, *, ignore_unknown_fields=False, **kwargs)
Vertex AI Feature Group.
.. _oneof: https://proto-plus-python.readthedocs.io/en/stable/fields.html#oneofs-mutually-exclusive-fields