- 1.73.0 (latest)
- 1.72.0
- 1.71.1
- 1.70.0
- 1.69.0
- 1.68.0
- 1.67.1
- 1.66.0
- 1.65.0
- 1.63.0
- 1.62.0
- 1.60.0
- 1.59.0
- 1.58.0
- 1.57.0
- 1.56.0
- 1.55.0
- 1.54.1
- 1.53.0
- 1.52.0
- 1.51.0
- 1.50.0
- 1.49.0
- 1.48.0
- 1.47.0
- 1.46.0
- 1.45.0
- 1.44.0
- 1.43.0
- 1.39.0
- 1.38.1
- 1.37.0
- 1.36.4
- 1.35.0
- 1.34.0
- 1.33.1
- 1.32.0
- 1.31.1
- 1.30.1
- 1.29.0
- 1.28.1
- 1.27.1
- 1.26.1
- 1.25.0
- 1.24.1
- 1.23.0
- 1.22.1
- 1.21.0
- 1.20.0
- 1.19.1
- 1.18.3
- 1.17.1
- 1.16.1
- 1.15.1
- 1.14.0
- 1.13.1
- 1.12.1
- 1.11.0
- 1.10.0
- 1.9.0
- 1.8.1
- 1.7.1
- 1.6.2
- 1.5.0
- 1.4.3
- 1.3.0
- 1.2.0
- 1.1.1
- 1.0.1
- 0.9.0
- 0.8.0
- 0.7.1
- 0.6.0
- 0.5.1
- 0.4.0
- 0.3.1
PredictionServiceAsyncClient(*, credentials: Optional[google.auth.credentials.Credentials] = None, transport: Union[str, google.cloud.aiplatform_v1beta1.services.prediction_service.transports.base.PredictionServiceTransport] = 'grpc_asyncio', client_options: Optional[google.api_core.client_options.ClientOptions] = None, client_info: google.api_core.gapic_v1.client_info.ClientInfo = <google.api_core.gapic_v1.client_info.ClientInfo object>)
A service for online predictions and explanations.
Inheritance
builtins.object > PredictionServiceAsyncClientProperties
transport
Returns the transport used by the client instance.
Type | Description |
PredictionServiceTransport | The transport used by the client instance. |
Methods
PredictionServiceAsyncClient
PredictionServiceAsyncClient(*, credentials: Optional[google.auth.credentials.Credentials] = None, transport: Union[str, google.cloud.aiplatform_v1beta1.services.prediction_service.transports.base.PredictionServiceTransport] = 'grpc_asyncio', client_options: Optional[google.api_core.client_options.ClientOptions] = None, client_info: google.api_core.gapic_v1.client_info.ClientInfo = <google.api_core.gapic_v1.client_info.ClientInfo object>)
Instantiates the prediction service client.
Name | Description |
credentials |
Optional[google.auth.credentials.Credentials]
The authorization credentials to attach to requests. These credentials identify the application to the service; if none are specified, the client will attempt to ascertain the credentials from the environment. |
transport |
Union[str, `.PredictionServiceTransport`]
The transport to use. If set to None, a transport is chosen automatically. |
client_options |
ClientOptions
Custom options for the client. It won't take effect if a |
Type | Description |
google.auth.exceptions.MutualTlsChannelError | If mutual TLS transport creation failed for any reason. |
common_billing_account_path
common_billing_account_path(billing_account: str)
Returns a fully-qualified billing_account string.
common_folder_path
common_folder_path(folder: str)
Returns a fully-qualified folder string.
common_location_path
common_location_path(project: str, location: str)
Returns a fully-qualified location string.
common_organization_path
common_organization_path(organization: str)
Returns a fully-qualified organization string.
common_project_path
common_project_path(project: str)
Returns a fully-qualified project string.
endpoint_path
endpoint_path(project: str, location: str, endpoint: str)
Returns a fully-qualified endpoint string.
explain
explain(request: Optional[Union[google.cloud.aiplatform_v1beta1.types.prediction_service.ExplainRequest, dict]] = None, *, endpoint: Optional[str] = None, instances: Optional[Sequence[google.protobuf.struct_pb2.Value]] = None, parameters: Optional[google.protobuf.struct_pb2.Value] = None, deployed_model_id: Optional[str] = None, retry: Union[google.api_core.retry.Retry, object] = <_MethodDefault._DEFAULT_VALUE: <object object>>, timeout: Optional[float] = None, metadata: Sequence[Tuple[str, str]] = ())
Perform an online explanation.
If xref_deployed_model_id is specified, the corresponding DeployModel must have xref_explanation_spec populated. If xref_deployed_model_id is not specified, all DeployedModels must have xref_explanation_spec populated. Only deployed AutoML tabular Models have explanation_spec.
Name | Description |
request |
Union[google.cloud.aiplatform_v1beta1.types.ExplainRequest, dict]
The request object. Request message for PredictionService.Explain. |
endpoint |
`str`
Required. The name of the Endpoint requested to serve the explanation. Format: |
instances |
:class:`Sequence[google.protobuf.struct_pb2.Value]`
Required. The instances that are the input to the explanation call. A DeployedModel may have an upper limit on the number of instances it supports per request, and when it is exceeded the explanation call errors in case of AutoML Models, or, in case of customer created Models, the behaviour is as documented by that Model. The schema of any single instance may be specified via Endpoint's DeployedModels' [Model's][google.cloud.aiplatform.v1beta1.DeployedModel.model] [PredictSchemata's][google.cloud.aiplatform.v1beta1.Model.predict_schemata] instance_schema_uri. This corresponds to the |
parameters |
`google.protobuf.struct_pb2.Value`
The parameters that govern the prediction. The schema of the parameters may be specified via Endpoint's DeployedModels' [Model's ][google.cloud.aiplatform.v1beta1.DeployedModel.model] [PredictSchemata's][google.cloud.aiplatform.v1beta1.Model.predict_schemata] parameters_schema_uri. This corresponds to the |
deployed_model_id |
`str`
If specified, this ExplainRequest will be served by the chosen DeployedModel, overriding Endpoint.traffic_split. This corresponds to the |
retry |
google.api_core.retry.Retry
Designation of what errors, if any, should be retried. |
timeout |
float
The timeout for this request. |
metadata |
Sequence[Tuple[str, str]]
Strings which should be sent along with the request as metadata. |
Type | Description |
google.cloud.aiplatform_v1beta1.types.ExplainResponse | Response message for PredictionService.Explain. |
from_service_account_file
from_service_account_file(filename: str, *args, **kwargs)
Creates an instance of this client using the provided credentials file.
Name | Description |
filename |
str
The path to the service account private key json file. |
Type | Description |
PredictionServiceAsyncClient | The constructed client. |
from_service_account_info
from_service_account_info(info: dict, *args, **kwargs)
Creates an instance of this client using the provided credentials info.
Name | Description |
info |
dict
The service account private key info. |
Type | Description |
PredictionServiceAsyncClient | The constructed client. |
from_service_account_json
from_service_account_json(filename: str, *args, **kwargs)
Creates an instance of this client using the provided credentials file.
Name | Description |
filename |
str
The path to the service account private key json file. |
Type | Description |
PredictionServiceAsyncClient | The constructed client. |
get_transport_class
get_transport_class()
Returns an appropriate transport class.
model_path
model_path(project: str, location: str, model: str)
Returns a fully-qualified model string.
parse_common_billing_account_path
parse_common_billing_account_path(path: str)
Parse a billing_account path into its component segments.
parse_common_folder_path
parse_common_folder_path(path: str)
Parse a folder path into its component segments.
parse_common_location_path
parse_common_location_path(path: str)
Parse a location path into its component segments.
parse_common_organization_path
parse_common_organization_path(path: str)
Parse a organization path into its component segments.
parse_common_project_path
parse_common_project_path(path: str)
Parse a project path into its component segments.
parse_endpoint_path
parse_endpoint_path(path: str)
Parses a endpoint path into its component segments.
parse_model_path
parse_model_path(path: str)
Parses a model path into its component segments.
predict
predict(request: Optional[Union[google.cloud.aiplatform_v1beta1.types.prediction_service.PredictRequest, dict]] = None, *, endpoint: Optional[str] = None, instances: Optional[Sequence[google.protobuf.struct_pb2.Value]] = None, parameters: Optional[google.protobuf.struct_pb2.Value] = None, retry: Union[google.api_core.retry.Retry, object] = <_MethodDefault._DEFAULT_VALUE: <object object>>, timeout: Optional[float] = None, metadata: Sequence[Tuple[str, str]] = ())
Perform an online prediction.
Name | Description |
request |
Union[google.cloud.aiplatform_v1beta1.types.PredictRequest, dict]
The request object. Request message for PredictionService.Predict. |
endpoint |
`str`
Required. The name of the Endpoint requested to serve the prediction. Format: |
instances |
:class:`Sequence[google.protobuf.struct_pb2.Value]`
Required. The instances that are the input to the prediction call. A DeployedModel may have an upper limit on the number of instances it supports per request, and when it is exceeded the prediction call errors in case of AutoML Models, or, in case of customer created Models, the behaviour is as documented by that Model. The schema of any single instance may be specified via Endpoint's DeployedModels' [Model's][google.cloud.aiplatform.v1beta1.DeployedModel.model] [PredictSchemata's][google.cloud.aiplatform.v1beta1.Model.predict_schemata] instance_schema_uri. This corresponds to the |
parameters |
`google.protobuf.struct_pb2.Value`
The parameters that govern the prediction. The schema of the parameters may be specified via Endpoint's DeployedModels' [Model's ][google.cloud.aiplatform.v1beta1.DeployedModel.model] [PredictSchemata's][google.cloud.aiplatform.v1beta1.Model.predict_schemata] parameters_schema_uri. This corresponds to the |
retry |
google.api_core.retry.Retry
Designation of what errors, if any, should be retried. |
timeout |
float
The timeout for this request. |
metadata |
Sequence[Tuple[str, str]]
Strings which should be sent along with the request as metadata. |
Type | Description |
google.cloud.aiplatform_v1beta1.types.PredictResponse | Response message for PredictionService.Predict. |
raw_predict
raw_predict(request: Optional[Union[google.cloud.aiplatform_v1beta1.types.prediction_service.RawPredictRequest, dict]] = None, *, endpoint: Optional[str] = None, http_body: Optional[google.api.httpbody_pb2.HttpBody] = None, retry: Union[google.api_core.retry.Retry, object] = <_MethodDefault._DEFAULT_VALUE: <object object>>, timeout: Optional[float] = None, metadata: Sequence[Tuple[str, str]] = ())
Perform an online prediction with arbitrary http payload.
Name | Description |
request |
Union[google.cloud.aiplatform_v1beta1.types.RawPredictRequest, dict]
The request object. Request message for PredictionService.RawPredict. |
endpoint |
`str`
Required. The name of the Endpoint requested to serve the prediction. Format: |
http_body |
`google.api.httpbody_pb2.HttpBody`
The prediction input. Supports HTTP headers and arbitrary data payload. A DeployedModel may have an upper limit on the number of instances it supports per request. When this limit it is exceeded for an AutoML model, the RawPredict method returns an error. When this limit is exceeded for a custom-trained model, the behavior varies depending on the model. You can specify the schema for each instance in the predict_schemata.instance_schema_uri field when you create a Model. This schema applies when you deploy the |
retry |
google.api_core.retry.Retry
Designation of what errors, if any, should be retried. |
timeout |
float
The timeout for this request. |
metadata |
Sequence[Tuple[str, str]]
Strings which should be sent along with the request as metadata. |
Type | Description |
google.api.httpbody_pb2.HttpBody | Message that represents an arbitrary HTTP body. It should only be used for payload formats that can't be represented as JSON, such as raw binary or an HTML page. This message can be used both in streaming and non-streaming API methods in the request as well as the response. It can be used as a top-level request field, which is convenient if one wants to extract parameters from either the URL or HTTP template into the request fields and also want access to the raw HTTP body. Example: message GetResourceRequest { // A unique request id. string request_id = 1; // The raw HTTP body is bound to this field. google.api.HttpBody http_body = 2; } service ResourceService { rpc GetResource(GetResourceRequest) returns (google.api.HttpBody); rpc UpdateResource(google.api.HttpBody) returns (google.protobuf.Empty); } Example with streaming methods: service CaldavService { rpc GetCalendar(stream google.api.HttpBody) returns (stream google.api.HttpBody); rpc UpdateCalendar(stream google.api.HttpBody) returns (stream google.api.HttpBody); } Use of this type only changes how the request and response bodies are handled, all other features will continue to work unchanged. |