- 1.85.0 (latest)
- 1.84.0
- 1.83.0
- 1.82.0
- 1.81.0
- 1.80.0
- 1.79.0
- 1.78.0
- 1.77.0
- 1.76.0
- 1.75.0
- 1.74.0
- 1.73.0
- 1.72.0
- 1.71.1
- 1.70.0
- 1.69.0
- 1.68.0
- 1.67.1
- 1.66.0
- 1.65.0
- 1.63.0
- 1.62.0
- 1.60.0
- 1.59.0
- 1.58.0
- 1.57.0
- 1.56.0
- 1.55.0
- 1.54.1
- 1.53.0
- 1.52.0
- 1.51.0
- 1.50.0
- 1.49.0
- 1.48.0
- 1.47.0
- 1.46.0
- 1.45.0
- 1.44.0
- 1.43.0
- 1.39.0
- 1.38.1
- 1.37.0
- 1.36.4
- 1.35.0
- 1.34.0
- 1.33.1
- 1.32.0
- 1.31.1
- 1.30.1
- 1.29.0
- 1.28.1
- 1.27.1
- 1.26.1
- 1.25.0
- 1.24.1
- 1.23.0
- 1.22.1
- 1.21.0
- 1.20.0
- 1.19.1
- 1.18.3
- 1.17.1
- 1.16.1
- 1.15.1
- 1.14.0
- 1.13.1
- 1.12.1
- 1.11.0
- 1.10.0
- 1.9.0
- 1.8.1
- 1.7.1
- 1.6.2
- 1.5.0
- 1.4.3
- 1.3.0
- 1.2.0
- 1.1.1
- 1.0.1
- 0.9.0
- 0.8.0
- 0.7.1
- 0.6.0
- 0.5.1
- 0.4.0
- 0.3.1
PipelineJob(mapping=None, *, ignore_unknown_fields=False, **kwargs)
An instance of a machine learning PipelineJob.
Attributes |
|
---|---|
Name | Description |
name |
str
Output only. The resource name of the PipelineJob. |
display_name |
str
The display name of the Pipeline. The name can be up to 128 characters long and can consist of any UTF-8 characters. |
create_time |
google.protobuf.timestamp_pb2.Timestamp
Output only. Pipeline creation time. |
start_time |
google.protobuf.timestamp_pb2.Timestamp
Output only. Pipeline start time. |
end_time |
google.protobuf.timestamp_pb2.Timestamp
Output only. Pipeline end time. |
update_time |
google.protobuf.timestamp_pb2.Timestamp
Output only. Timestamp when this PipelineJob was most recently updated. |
pipeline_spec |
google.protobuf.struct_pb2.Struct
The spec of the pipeline. |
state |
google.cloud.aiplatform_v1.types.PipelineState
Output only. The detailed state of the job. |
job_detail |
google.cloud.aiplatform_v1.types.PipelineJobDetail
Output only. The details of pipeline run. Not available in the list view. |
error |
google.rpc.status_pb2.Status
Output only. The error that occurred during pipeline execution. Only populated when the pipeline's state is FAILED or CANCELLED. |
labels |
MutableMapping[str, str]
The labels with user-defined metadata to organize PipelineJob. Label keys and values can be no longer than 64 characters (Unicode codepoints), can only contain lowercase letters, numeric characters, underscores and dashes. International characters are allowed. See https://goo.gl/xmQnxf for more information and examples of labels. Note there is some reserved label key for Vertex AI Pipelines. - vertex-ai-pipelines-run-billing-id , user set value
will get overrided.
|
runtime_config |
google.cloud.aiplatform_v1.types.PipelineJob.RuntimeConfig
Runtime config of the pipeline. |
encryption_spec |
google.cloud.aiplatform_v1.types.EncryptionSpec
Customer-managed encryption key spec for a pipelineJob. If set, this PipelineJob and all of its sub-resources will be secured by this key. |
service_account |
str
The service account that the pipeline workload runs as. If not specified, the Compute Engine default service account in the project will be used. See https://cloud.google.com/compute/docs/access/service-accounts#default_service_account Users starting the pipeline must have the iam.serviceAccounts.actAs permission on this service
account.
|
network |
str
The full name of the Compute Engine network __
to which the Pipeline Job's workload should be peered. For
example, projects/12345/global/networks/myVPC .
Format __
is of the form
projects/{project}/global/networks/{network} . Where
{project} is a project number, as in 12345 , and
{network} is a network name.
Private services access must already be configured for the
network. Pipeline job will apply the network configuration
to the Google Cloud resources being launched, if applied,
such as Vertex AI Training or Dataflow job. If left
unspecified, the workload is not peered with any network.
|
reserved_ip_ranges |
MutableSequence[str]
A list of names for the reserved ip ranges under the VPC network that can be used for this Pipeline Job's workload. If set, we will deploy the Pipeline Job's workload within the provided ip ranges. Otherwise, the job will be deployed to any ip ranges under the provided VPC network. Example: ['vertex-ai-ip-range']. |
template_uri |
str
A template uri from where the PipelineJob.pipeline_spec, if empty, will be downloaded. Currently, only uri from Vertex Template Registry & Gallery is supported. Reference to https://cloud.google.com/vertex-ai/docs/pipelines/create-pipeline-template. |
template_metadata |
google.cloud.aiplatform_v1.types.PipelineTemplateMetadata
Output only. Pipeline template metadata. Will fill up fields if PipelineJob.template_uri is from supported template registry. |
schedule_name |
str
Output only. The schedule resource name. Only returned if the Pipeline is created by Schedule API. |
preflight_validations |
bool
Optional. Whether to do component level validations before job creation. |
Classes
LabelsEntry
LabelsEntry(mapping=None, *, ignore_unknown_fields=False, **kwargs)
The abstract base class for a message.
Parameters | |
---|---|
Name | Description |
kwargs |
dict
Keys and values corresponding to the fields of the message. |
mapping |
Union[dict,
A dictionary or message to be used to determine the values for this message. |
ignore_unknown_fields |
Optional(bool)
If True, do not raise errors for unknown fields. Only applied if |
RuntimeConfig
RuntimeConfig(mapping=None, *, ignore_unknown_fields=False, **kwargs)
The runtime config of a PipelineJob.
Methods
PipelineJob
PipelineJob(mapping=None, *, ignore_unknown_fields=False, **kwargs)
An instance of a machine learning PipelineJob.