- 1.74.0 (latest)
- 1.73.0
- 1.72.0
- 1.71.1
- 1.70.0
- 1.69.0
- 1.68.0
- 1.67.1
- 1.66.0
- 1.65.0
- 1.63.0
- 1.62.0
- 1.60.0
- 1.59.0
- 1.58.0
- 1.57.0
- 1.56.0
- 1.55.0
- 1.54.1
- 1.53.0
- 1.52.0
- 1.51.0
- 1.50.0
- 1.49.0
- 1.48.0
- 1.47.0
- 1.46.0
- 1.45.0
- 1.44.0
- 1.43.0
- 1.39.0
- 1.38.1
- 1.37.0
- 1.36.4
- 1.35.0
- 1.34.0
- 1.33.1
- 1.32.0
- 1.31.1
- 1.30.1
- 1.29.0
- 1.28.1
- 1.27.1
- 1.26.1
- 1.25.0
- 1.24.1
- 1.23.0
- 1.22.1
- 1.21.0
- 1.20.0
- 1.19.1
- 1.18.3
- 1.17.1
- 1.16.1
- 1.15.1
- 1.14.0
- 1.13.1
- 1.12.1
- 1.11.0
- 1.10.0
- 1.9.0
- 1.8.1
- 1.7.1
- 1.6.2
- 1.5.0
- 1.4.3
- 1.3.0
- 1.2.0
- 1.1.1
- 1.0.1
- 0.9.0
- 0.8.0
- 0.7.1
- 0.6.0
- 0.5.1
- 0.4.0
- 0.3.1
InputMetadata(mapping=None, *, ignore_unknown_fields=False, **kwargs)
Metadata of the input of a feature.
Fields other than InputMetadata.input_baselines are applicable only for Models that are using Vertex AI-provided images for Tensorflow.
Attributes
Name | Description |
input_baselines |
Sequence[google.protobuf.struct_pb2.Value]
Baseline inputs for this feature. If no baseline is specified, Vertex AI chooses the baseline for this feature. If multiple baselines are specified, Vertex AI returns the average attributions across them in [Attributions.baseline_attribution][]. For Vertex AI-provided Tensorflow images (both 1.x and 2.x), the shape of each baseline must match the shape of the input tensor. If a scalar is provided, we broadcast to the same shape as the input tensor. For custom images, the element of the baselines must be in the same format as the feature's input in the instance[]. The schema of any single instance may be specified via Endpoint's DeployedModels' [Model's][google.cloud.aiplatform.v1beta1.DeployedModel.model] [PredictSchemata's][google.cloud.aiplatform.v1beta1.Model.predict_schemata] instance_schema_uri. |
input_tensor_name |
str
Name of the input tensor for this feature. Required and is only applicable to Vertex AI- provided images for Tensorflow. |
encoding |
google.cloud.aiplatform_v1beta1.types.ExplanationMetadata.InputMetadata.Encoding
Defines how the feature is encoded into the input tensor. Defaults to IDENTITY. |
modality |
str
Modality of the feature. Valid values are: numeric, image. Defaults to numeric. |
feature_value_domain |
google.cloud.aiplatform_v1beta1.types.ExplanationMetadata.InputMetadata.FeatureValueDomain
The domain details of the input feature value. Like min/max, original mean or standard deviation if normalized. |
indices_tensor_name |
str
Specifies the index of the values of the input tensor. Required when the input tensor is a sparse representation. Refer to Tensorflow documentation for more details: https://www.tensorflow.org/api_docs/python/tf/sparse/SparseTensor. |
dense_shape_tensor_name |
str
Specifies the shape of the values of the input if the input is a sparse representation. Refer to Tensorflow documentation for more details: https://www.tensorflow.org/api_docs/python/tf/sparse/SparseTensor. |
index_feature_mapping |
Sequence[str]
A list of feature names for each index in the input tensor. Required when the input InputMetadata.encoding is BAG_OF_FEATURES, BAG_OF_FEATURES_SPARSE, INDICATOR. |
encoded_tensor_name |
str
Encoded tensor is a transformation of the input tensor. Must be provided if choosing [Integrated Gradients attribution][ExplanationParameters.integrated_gradients_attribution] or [XRAI attribution][google.cloud.aiplatform.v1beta1.ExplanationParameters.xrai_attribution] and the input tensor is not differentiable. An encoded tensor is generated if the input tensor is encoded by a lookup table. |