检索用于文本分类的模型评估。
代码示例
Go
如需向 AutoML Natural Language 进行身份验证,请设置应用默认凭据。 如需了解详情,请参阅为本地开发环境设置身份验证。
import (
"context"
"fmt"
"io"
automl "cloud.google.com/go/automl/apiv1"
"cloud.google.com/go/automl/apiv1/automlpb"
)
// getModelEvaluation gets a model evaluation.
func getModelEvaluation(w io.Writer, projectID string, location string, modelID string, modelEvaluationID string) error {
// projectID := "my-project-id"
// location := "us-central1"
// modelID := "TRL123456789..."
// modelEvaluationID := "123456789..."
ctx := context.Background()
client, err := automl.NewClient(ctx)
if err != nil {
return fmt.Errorf("NewClient: %w", err)
}
defer client.Close()
req := &automlpb.GetModelEvaluationRequest{
Name: fmt.Sprintf("projects/%s/locations/%s/models/%s/modelEvaluations/%s", projectID, location, modelID, modelEvaluationID),
}
evaluation, err := client.GetModelEvaluation(ctx, req)
if err != nil {
return fmt.Errorf("GetModelEvaluation: %w", err)
}
fmt.Fprintf(w, "Model evaluation name: %v\n", evaluation.GetName())
fmt.Fprintf(w, "Model annotation spec id: %v\n", evaluation.GetAnnotationSpecId())
fmt.Fprintf(w, "Create Time:\n")
fmt.Fprintf(w, "\tseconds: %v\n", evaluation.GetCreateTime().GetSeconds())
fmt.Fprintf(w, "\tnanos: %v\n", evaluation.GetCreateTime().GetNanos())
fmt.Fprintf(w, "Evaluation example count: %v\n", evaluation.GetEvaluatedExampleCount())
fmt.Fprintf(w, "Classification model evaluation metrics: %v\n", evaluation.GetClassificationEvaluationMetrics())
return nil
}
Java
如需向 AutoML Natural Language 进行身份验证,请设置应用默认凭据。 如需了解详情,请参阅为本地开发环境设置身份验证。
import com.google.cloud.automl.v1.AutoMlClient;
import com.google.cloud.automl.v1.ModelEvaluation;
import com.google.cloud.automl.v1.ModelEvaluationName;
import java.io.IOException;
class GetModelEvaluation {
static void getModelEvaluation() throws IOException {
// TODO(developer): Replace these variables before running the sample.
String projectId = "YOUR_PROJECT_ID";
String modelId = "YOUR_MODEL_ID";
String modelEvaluationId = "YOUR_MODEL_EVALUATION_ID";
getModelEvaluation(projectId, modelId, modelEvaluationId);
}
// Get a model evaluation
static void getModelEvaluation(String projectId, String modelId, String modelEvaluationId)
throws IOException {
// Initialize client that will be used to send requests. This client only needs to be created
// once, and can be reused for multiple requests. After completing all of your requests, call
// the "close" method on the client to safely clean up any remaining background resources.
try (AutoMlClient client = AutoMlClient.create()) {
// Get the full path of the model evaluation.
ModelEvaluationName modelEvaluationFullId =
ModelEvaluationName.of(projectId, "us-central1", modelId, modelEvaluationId);
// Get complete detail of the model evaluation.
ModelEvaluation modelEvaluation = client.getModelEvaluation(modelEvaluationFullId);
System.out.format("Model Evaluation Name: %s\n", modelEvaluation.getName());
System.out.format("Model Annotation Spec Id: %s", modelEvaluation.getAnnotationSpecId());
System.out.println("Create Time:");
System.out.format("\tseconds: %s\n", modelEvaluation.getCreateTime().getSeconds());
System.out.format("\tnanos: %s", modelEvaluation.getCreateTime().getNanos() / 1e9);
System.out.format(
"Evalution Example Count: %d\n", modelEvaluation.getEvaluatedExampleCount());
System.out.format(
"Classification Model Evaluation Metrics: %s\n",
modelEvaluation.getClassificationEvaluationMetrics());
}
}
}
Node.js
如需向 AutoML Natural Language 进行身份验证,请设置应用默认凭据。 如需了解详情,请参阅为本地开发环境设置身份验证。
/**
* TODO(developer): Uncomment these variables before running the sample.
*/
// const projectId = 'YOUR_PROJECT_ID';
// const location = 'us-central1';
// const modelId = 'YOUR_MODEL_ID';
// const modelEvaluationId = 'YOUR_MODEL_EVALUATION_ID';
// Imports the Google Cloud AutoML library
const {AutoMlClient} = require('@google-cloud/automl').v1;
// Instantiates a client
const client = new AutoMlClient();
async function getModelEvaluation() {
// Construct request
const request = {
name: client.modelEvaluationPath(
projectId,
location,
modelId,
modelEvaluationId
),
};
const [response] = await client.getModelEvaluation(request);
console.log(`Model evaluation name: ${response.name}`);
console.log(`Model annotation spec id: ${response.annotationSpecId}`);
console.log(`Model display name: ${response.displayName}`);
console.log('Model create time');
console.log(`\tseconds ${response.createTime.seconds}`);
console.log(`\tnanos ${response.createTime.nanos / 1e9}`);
console.log(`Evaluation example count: ${response.evaluatedExampleCount}`);
console.log(
`Classification model evaluation metrics: ${response.classificationEvaluationMetrics}`
);
}
getModelEvaluation();
Python
如需向 AutoML Natural Language 进行身份验证,请设置应用默认凭据。 如需了解详情,请参阅为本地开发环境设置身份验证。
from google.cloud import automl
# TODO(developer): Uncomment and set the following variables
# project_id = "YOUR_PROJECT_ID"
# model_id = "YOUR_MODEL_ID"
# model_evaluation_id = "YOUR_MODEL_EVALUATION_ID"
client = automl.AutoMlClient()
# Get the full path of the model evaluation.
model_path = client.model_path(project_id, "us-central1", model_id)
model_evaluation_full_id = f"{model_path}/modelEvaluations/{model_evaluation_id}"
# Get complete detail of the model evaluation.
response = client.get_model_evaluation(name=model_evaluation_full_id)
print(f"Model evaluation name: {response.name}")
print(f"Model annotation spec id: {response.annotation_spec_id}")
print(f"Create Time: {response.create_time}")
print(f"Evaluation example count: {response.evaluated_example_count}")
print(
"Classification model evaluation metrics: {}".format(
response.classification_evaluation_metrics
)
)
后续步骤
如需搜索和过滤其他 Google Cloud 产品的代码示例,请参阅 Google Cloud 示例浏览器。