이 문서는 AutoML Natural Language용이며 Vertex AI와는 다릅니다. Vertex AI를 사용하는 경우 Vertex AI 문서를 참조하세요.

텍스트 분류를 위한 데이터 세트 가져오기

텍스트 분류를 위한 데이터 세트를 가져옵니다.

코드 샘플

Go

import (
	"context"
	"fmt"
	"io"

	automl "cloud.google.com/go/automl/apiv1"
	automlpb "google.golang.org/genproto/googleapis/cloud/automl/v1"
)

// getDataset gets a dataset.
func getDataset(w io.Writer, projectID string, location string, datasetID string) error {
	// projectID := "my-project-id"
	// location := "us-central1"
	// datasetID := "TRL123456789..."

	ctx := context.Background()
	client, err := automl.NewClient(ctx)
	if err != nil {
		return fmt.Errorf("NewClient: %v", err)
	}
	defer client.Close()

	req := &automlpb.GetDatasetRequest{
		Name: fmt.Sprintf("projects/%s/locations/%s/datasets/%s", projectID, location, datasetID),
	}

	dataset, err := client.GetDataset(ctx, req)
	if err != nil {
		return fmt.Errorf("DeleteDataset: %v", err)
	}

	fmt.Fprintf(w, "Dataset name: %v\n", dataset.GetName())
	fmt.Fprintf(w, "Dataset display name: %v\n", dataset.GetDisplayName())
	fmt.Fprintf(w, "Dataset create time:\n")
	fmt.Fprintf(w, "\tseconds: %v\n", dataset.GetCreateTime().GetSeconds())
	fmt.Fprintf(w, "\tnanos: %v\n", dataset.GetCreateTime().GetNanos())

	// Language text classification
	if metadata := dataset.GetTextClassificationDatasetMetadata(); metadata != nil {
		fmt.Fprintf(w, "Text classification dataset metadata: %v\n", metadata)
	}

	return nil
}

자바

import com.google.cloud.automl.v1.AutoMlClient;
import com.google.cloud.automl.v1.Dataset;
import com.google.cloud.automl.v1.DatasetName;
import java.io.IOException;

class GetDataset {

  static void getDataset() throws IOException {
    // TODO(developer): Replace these variables before running the sample.
    String projectId = "YOUR_PROJECT_ID";
    String datasetId = "YOUR_DATASET_ID";
    getDataset(projectId, datasetId);
  }

  // Get a dataset
  static void getDataset(String projectId, String datasetId) throws IOException {
    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (AutoMlClient client = AutoMlClient.create()) {
      // Get the complete path of the dataset.
      DatasetName datasetFullId = DatasetName.of(projectId, "us-central1", datasetId);
      Dataset dataset = client.getDataset(datasetFullId);

      // Display the dataset information
      System.out.format("Dataset name: %s\n", dataset.getName());
      // To get the dataset id, you have to parse it out of the `name` field. As dataset Ids are
      // required for other methods.
      // Name Form: `projects/{project_id}/locations/{location_id}/datasets/{dataset_id}`
      String[] names = dataset.getName().split("/");
      String retrievedDatasetId = names[names.length - 1];
      System.out.format("Dataset id: %s\n", retrievedDatasetId);
      System.out.format("Dataset display name: %s\n", dataset.getDisplayName());
      System.out.println("Dataset create time:");
      System.out.format("\tseconds: %s\n", dataset.getCreateTime().getSeconds());
      System.out.format("\tnanos: %s\n", dataset.getCreateTime().getNanos());
      System.out.format(
          "Text classification dataset metadata: %s\n",
          dataset.getTextClassificationDatasetMetadata());
    }
  }
}

Python

from google.cloud import automl

# TODO(developer): Uncomment and set the following variables
# project_id = "YOUR_PROJECT_ID"
# dataset_id = "YOUR_DATASET_ID"

client = automl.AutoMlClient()
# Get the full path of the dataset
dataset_full_id = client.dataset_path(project_id, "us-central1", dataset_id)
dataset = client.get_dataset(name=dataset_full_id)

# Display the dataset information
print("Dataset name: {}".format(dataset.name))
print("Dataset id: {}".format(dataset.name.split("/")[-1]))
print("Dataset display name: {}".format(dataset.display_name))
print("Dataset create time: {}".format(dataset.create_time))
print(
    "Text classification dataset metadata: {}".format(
        dataset.text_classification_dataset_metadata
    )
)

다음 단계

다른 Google Cloud 제품의 코드 샘플을 검색하고 필터링하려면 Google Cloud 샘플 브라우저를 참조하세요.