Gestione dei set di dati

Un progetto può avere più set di dati, ognuno dei quali utilizzato per addestrare un modello separato. Puoi ottenere un elenco dei set di dati disponibili e puoi eliminare i set di dati che non ti servono più.

Per informazioni sulla creazione e l'importazione dei dati al suo interno, consulta Creazione di set di dati e importazione di dati.

Elenco dei set di dati

Un progetto può includere numerosi set di dati. Questa sezione descrive come recuperare un elenco dei set di dati disponibili per un progetto.

Per visualizzare un elenco dei set di dati disponibili utilizzando l'interfaccia utente di Natural Language di AutoML, fai clic sul link Set di dati nella parte superiore del menu di navigazione a sinistra.

Per visualizzare i set di dati di un altro progetto, seleziona il progetto dall'elenco a discesa in alto a destra nella barra del titolo.

REST

Prima di utilizzare i dati della richiesta, effettua le seguenti sostituzioni:

  • project-id: l'ID del tuo progetto
  • location-id: la località per la risorsa, us-central1 per la località globale o eu per l'Unione Europea

Metodo e URL HTTP:

GET https://automl.googleapis.com/v1/projects/project-id/locations/location-id/datasets

Per inviare la richiesta, espandi una delle seguenti opzioni:

Dovresti ricevere una risposta JSON simile alla seguente:

{
  "datasets": [
    {
      "name": "projects/434039606874/locations/us-central1/datasets/356587829854924648",
      "displayName": "test_dataset",
      "createTime": "2018-04-26T18:02:59.825060Z",
      "textClassificationDatasetMetadata": {
        "classificationType": "MULTICLASS"
      }
    },
    {
      "name": "projects/434039606874/locations/us-central1/datasets/3104518874390609379",
      "displayName": "test",
      "createTime": "2017-12-16T01:10:38.328280Z",
      "textClassificationDatasetMetadata": {
        "classificationType": "MULTICLASS"
      }
    }
  ]
}

Python

Per scoprire come installare e utilizzare la libreria client per AutoML Natural Language, consulta Librerie client di AutoML Natural Language. Per maggiori informazioni, consulta la documentazione di riferimento per le API PythonAutoML Natural Language.

Per eseguire l'autenticazione con AutoML Natural Language, configura le Credenziali predefinite dell'applicazione. Per saperne di più, consulta Configurare l'autenticazione per un ambiente di sviluppo locale.

from google.cloud import automl

# TODO(developer): Uncomment and set the following variables
# project_id = "YOUR_PROJECT_ID"

client = automl.AutoMlClient()
# A resource that represents Google Cloud Platform location.
project_location = f"projects/{project_id}/locations/us-central1"

# List all the datasets available in the region.
request = automl.ListDatasetsRequest(parent=project_location, filter="")
response = client.list_datasets(request=request)

print("List of datasets:")
for dataset in response:
    print(f"Dataset name: {dataset.name}")
    print("Dataset id: {}".format(dataset.name.split("/")[-1]))
    print(f"Dataset display name: {dataset.display_name}")
    print(f"Dataset create time: {dataset.create_time}")
    print(
        "Text classification dataset metadata: {}".format(
            dataset.text_classification_dataset_metadata
        )
    )

Java

Per scoprire come installare e utilizzare la libreria client per AutoML Natural Language, consulta Librerie client di AutoML Natural Language. Per maggiori informazioni, consulta la documentazione di riferimento per le API JavaAutoML Natural Language.

Per eseguire l'autenticazione con AutoML Natural Language, configura le Credenziali predefinite dell'applicazione. Per saperne di più, consulta Configurare l'autenticazione per un ambiente di sviluppo locale.

import com.google.cloud.automl.v1.AutoMlClient;
import com.google.cloud.automl.v1.Dataset;
import com.google.cloud.automl.v1.ListDatasetsRequest;
import com.google.cloud.automl.v1.LocationName;
import java.io.IOException;

class ListDatasets {

  static void listDatasets() throws IOException {
    // TODO(developer): Replace these variables before running the sample.
    String projectId = "YOUR_PROJECT_ID";
    listDatasets(projectId);
  }

  // List the datasets
  static void listDatasets(String projectId) throws IOException {
    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (AutoMlClient client = AutoMlClient.create()) {
      // A resource that represents Google Cloud Platform location.
      LocationName projectLocation = LocationName.of(projectId, "us-central1");
      ListDatasetsRequest request =
          ListDatasetsRequest.newBuilder().setParent(projectLocation.toString()).build();

      // List all the datasets available in the region by applying filter.
      System.out.println("List of datasets:");
      for (Dataset dataset : client.listDatasets(request).iterateAll()) {
        // Display the dataset information
        System.out.format("\nDataset name: %s\n", dataset.getName());
        // To get the dataset id, you have to parse it out of the `name` field. As dataset Ids are
        // required for other methods.
        // Name Form: `projects/{project_id}/locations/{location_id}/datasets/{dataset_id}`
        String[] names = dataset.getName().split("/");
        String retrievedDatasetId = names[names.length - 1];
        System.out.format("Dataset id: %s\n", retrievedDatasetId);
        System.out.format("Dataset display name: %s\n", dataset.getDisplayName());
        System.out.println("Dataset create time:");
        System.out.format("\tseconds: %s\n", dataset.getCreateTime().getSeconds());
        System.out.format("\tnanos: %s\n", dataset.getCreateTime().getNanos());
        System.out.format(
            "Text classification dataset metadata: %s\n",
            dataset.getTextClassificationDatasetMetadata());
      }
    }
  }
}

Node.js

Per scoprire come installare e utilizzare la libreria client per AutoML Natural Language, consulta Librerie client di AutoML Natural Language. Per maggiori informazioni, consulta la documentazione di riferimento per le API Node.jsAutoML Natural Language.

Per eseguire l'autenticazione con AutoML Natural Language, configura le Credenziali predefinite dell'applicazione. Per saperne di più, consulta Configurare l'autenticazione per un ambiente di sviluppo locale.

/**
 * TODO(developer): Uncomment these variables before running the sample.
 */
// const projectId = 'YOUR_PROJECT_ID';
// const location = 'us-central1';

// Imports the Google Cloud AutoML library
const {AutoMlClient} = require('@google-cloud/automl').v1;

// Instantiates a client
const client = new AutoMlClient();

async function listDatasets() {
  // Construct request
  const request = {
    parent: client.locationPath(projectId, location),
    filter: 'translation_dataset_metadata:*',
  };

  const [response] = await client.listDatasets(request);

  console.log('List of datasets:');
  for (const dataset of response) {
    console.log(`Dataset name: ${dataset.name}`);
    console.log(
      `Dataset id: ${
        dataset.name.split('/')[dataset.name.split('/').length - 1]
      }`
    );
    console.log(`Dataset display name: ${dataset.displayName}`);
    console.log('Dataset create time');
    console.log(`\tseconds ${dataset.createTime.seconds}`);
    console.log(`\tnanos ${dataset.createTime.nanos / 1e9}`);
    console.log(
      `Text classification dataset metadata: ${dataset.textClassificationDatasetMetadata}`
    );
  }
}

listDatasets();

Go

Per scoprire come installare e utilizzare la libreria client per AutoML Natural Language, consulta Librerie client di AutoML Natural Language. Per maggiori informazioni, consulta la documentazione di riferimento per le API GoAutoML Natural Language.

Per eseguire l'autenticazione con AutoML Natural Language, configura le Credenziali predefinite dell'applicazione. Per saperne di più, consulta Configurare l'autenticazione per un ambiente di sviluppo locale.

import (
	"context"
	"fmt"
	"io"

	automl "cloud.google.com/go/automl/apiv1"
	"cloud.google.com/go/automl/apiv1/automlpb"
	"google.golang.org/api/iterator"
)

// listDatasets lists existing datasets.
func listDatasets(w io.Writer, projectID string, location string) error {
	// projectID := "my-project-id"
	// location := "us-central1"

	ctx := context.Background()
	client, err := automl.NewClient(ctx)
	if err != nil {
		return fmt.Errorf("NewClient: %w", err)
	}
	defer client.Close()

	req := &automlpb.ListDatasetsRequest{
		Parent: fmt.Sprintf("projects/%s/locations/%s", projectID, location),
	}

	it := client.ListDatasets(ctx, req)

	// Iterate over all results
	for {
		dataset, err := it.Next()
		if err == iterator.Done {
			break
		}
		if err != nil {
			return fmt.Errorf("ListGlossaries.Next: %w", err)
		}

		fmt.Fprintf(w, "Dataset name: %v\n", dataset.GetName())
		fmt.Fprintf(w, "Dataset display name: %v\n", dataset.GetDisplayName())
		fmt.Fprintf(w, "Dataset create time:\n")
		fmt.Fprintf(w, "\tseconds: %v\n", dataset.GetCreateTime().GetSeconds())
		fmt.Fprintf(w, "\tnanos: %v\n", dataset.GetCreateTime().GetNanos())

		// Language text classification
		if metadata := dataset.GetTextClassificationDatasetMetadata(); metadata != nil {
			fmt.Fprintf(w, "Text classification dataset metadata: %v\n", metadata)
		}

	}

	return nil
}

Linguaggi aggiuntivi

C#: segui le istruzioni di configurazione di C# nella pagina delle librerie client e poi consulta la documentazione di riferimento di AutoML Natural Language per .NET.

PHP: segui le istruzioni di configurazione di PHP nella pagina delle librerie client e poi consulta la documentazione di riferimento di AutoML Natural Language per PHP.

Ruby: segui le istruzioni di configurazione di Ruby nella pagina delle librerie client e poi consulta la documentazione di riferimento di AutoML Natural Language per Ruby.

Esportare un set di dati

Puoi esportare un file CSV con tutte le informazioni di un set di dati in un bucket Cloud Storage. Il file CSV esportato ha lo stesso formato del CSV di importazione dati di addestramento.

Per esportare un set di dati:

  1. Seleziona il set di dati in cui vuoi esportare i documenti dalla pagina Set di dati.

  2. Fai clic sull'opzione Esporta dati nella parte superiore della pagina dei dettagli del set di dati.

  3. Vai al bucket Cloud Storage in cui vuoi scrivere il file CSV di esportazione.

  4. Fai clic su Esporta CSV.

    Al termine del processo di esportazione dei dati, riceverai un'email.

Python

Per scoprire come installare e utilizzare la libreria client per AutoML Natural Language, consulta Librerie client di AutoML Natural Language. Per maggiori informazioni, consulta la documentazione di riferimento per le API PythonAutoML Natural Language.

Per eseguire l'autenticazione con AutoML Natural Language, configura le Credenziali predefinite dell'applicazione. Per saperne di più, consulta Configurare l'autenticazione per un ambiente di sviluppo locale.

from google.cloud import automl

# TODO(developer): Uncomment and set the following variables
# project_id = "YOUR_PROJECT_ID"
# dataset_id = "YOUR_DATASET_ID"
# gcs_uri = "gs://YOUR_BUCKET_ID/path/to/export/"

client = automl.AutoMlClient()

# Get the full path of the dataset
dataset_full_id = client.dataset_path(project_id, "us-central1", dataset_id)

gcs_destination = automl.GcsDestination(output_uri_prefix=gcs_uri)
output_config = automl.OutputConfig(gcs_destination=gcs_destination)

response = client.export_data(name=dataset_full_id, output_config=output_config)
print(f"Dataset exported. {response.result()}")

Java

Per scoprire come installare e utilizzare la libreria client per AutoML Natural Language, consulta Librerie client di AutoML Natural Language. Per maggiori informazioni, consulta la documentazione di riferimento per le API JavaAutoML Natural Language.

Per eseguire l'autenticazione con AutoML Natural Language, configura le Credenziali predefinite dell'applicazione. Per saperne di più, consulta Configurare l'autenticazione per un ambiente di sviluppo locale.

import com.google.cloud.automl.v1.AutoMlClient;
import com.google.cloud.automl.v1.DatasetName;
import com.google.cloud.automl.v1.GcsDestination;
import com.google.cloud.automl.v1.OutputConfig;
import com.google.protobuf.Empty;
import java.io.IOException;
import java.util.concurrent.ExecutionException;

class ExportDataset {

  static void exportDataset() throws IOException, ExecutionException, InterruptedException {
    // TODO(developer): Replace these variables before running the sample.
    String projectId = "YOUR_PROJECT_ID";
    String datasetId = "YOUR_DATASET_ID";
    String gcsUri = "gs://BUCKET_ID/path_to_export/";
    exportDataset(projectId, datasetId, gcsUri);
  }

  // Export a dataset to a GCS bucket
  static void exportDataset(String projectId, String datasetId, String gcsUri)
      throws IOException, ExecutionException, InterruptedException {
    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (AutoMlClient client = AutoMlClient.create()) {
      // Get the complete path of the dataset.
      DatasetName datasetFullId = DatasetName.of(projectId, "us-central1", datasetId);
      GcsDestination gcsDestination =
          GcsDestination.newBuilder().setOutputUriPrefix(gcsUri).build();

      // Export the dataset to the output URI.
      OutputConfig outputConfig =
          OutputConfig.newBuilder().setGcsDestination(gcsDestination).build();

      System.out.println("Processing export...");
      Empty response = client.exportDataAsync(datasetFullId, outputConfig).get();
      System.out.format("Dataset exported. %s\n", response);
    }
  }
}

Node.js

Per scoprire come installare e utilizzare la libreria client per AutoML Natural Language, consulta Librerie client di AutoML Natural Language. Per maggiori informazioni, consulta la documentazione di riferimento per le API Node.jsAutoML Natural Language.

Per eseguire l'autenticazione con AutoML Natural Language, configura le Credenziali predefinite dell'applicazione. Per saperne di più, consulta Configurare l'autenticazione per un ambiente di sviluppo locale.

/**
 * TODO(developer): Uncomment these variables before running the sample.
 */
// const projectId = 'YOUR_PROJECT_ID';
// const location = 'us-central1';
// const datasetId = 'YOUR_DATASET_ID';
// const gcsUri = 'gs://BUCKET_ID/path_to_export/';

// Imports the Google Cloud AutoML library
const {AutoMlClient} = require('@google-cloud/automl').v1;

// Instantiates a client
const client = new AutoMlClient();

async function exportDataset() {
  // Construct request
  const request = {
    name: client.datasetPath(projectId, location, datasetId),
    outputConfig: {
      gcsDestination: {
        outputUriPrefix: gcsUri,
      },
    },
  };

  const [operation] = await client.exportData(request);
  // Wait for operation to complete.
  const [response] = await operation.promise();
  console.log(`Dataset exported: ${response}`);
}

exportDataset();

Go

Per scoprire come installare e utilizzare la libreria client per AutoML Natural Language, consulta Librerie client di AutoML Natural Language. Per maggiori informazioni, consulta la documentazione di riferimento per le API GoAutoML Natural Language.

Per eseguire l'autenticazione con AutoML Natural Language, configura le Credenziali predefinite dell'applicazione. Per saperne di più, consulta Configurare l'autenticazione per un ambiente di sviluppo locale.

import (
	"context"
	"fmt"
	"io"

	automl "cloud.google.com/go/automl/apiv1"
	"cloud.google.com/go/automl/apiv1/automlpb"
)

// exportDataset exports a dataset.
func exportDataset(w io.Writer, projectID string, location string, datasetID string, outputURI string) error {
	// projectID := "my-project-id"
	// location := "us-central1"
	// datasetID := "TRL123456789..."
	// outputURI := "gs://BUCKET_ID/path_to_export/"

	ctx := context.Background()
	client, err := automl.NewClient(ctx)
	if err != nil {
		return fmt.Errorf("NewClient: %w", err)
	}
	defer client.Close()

	req := &automlpb.ExportDataRequest{
		Name: fmt.Sprintf("projects/%s/locations/%s/datasets/%s", projectID, location, datasetID),
		OutputConfig: &automlpb.OutputConfig{
			Destination: &automlpb.OutputConfig_GcsDestination{
				GcsDestination: &automlpb.GcsDestination{
					OutputUriPrefix: outputURI,
				},
			},
		},
	}

	op, err := client.ExportData(ctx, req)
	if err != nil {
		return fmt.Errorf("ExportData: %w", err)
	}
	fmt.Fprintf(w, "Processing operation name: %q\n", op.Name())

	if err := op.Wait(ctx); err != nil {
		return fmt.Errorf("Wait: %w", err)
	}

	fmt.Fprintf(w, "Dataset exported.\n")

	return nil
}

Linguaggi aggiuntivi

C#: segui le istruzioni di configurazione di C# nella pagina delle librerie client e poi consulta la documentazione di riferimento di AutoML Natural Language per .NET.

PHP: segui le istruzioni di configurazione di PHP nella pagina delle librerie client e poi consulta la documentazione di riferimento di AutoML Natural Language per PHP.

Ruby: segui le istruzioni di configurazione di Ruby nella pagina delle librerie client e poi consulta la documentazione di riferimento di AutoML Natural Language per Ruby.

Eliminazione di un set di dati

Per eliminare un set di dati nell'interfaccia utente di AutoML Natural Language:

  1. Fai clic sul menu con tre puntini all'estrema destra del set di dati da eliminare e seleziona Elimina set di dati.

  2. Fai clic su Elimina nella finestra di dialogo di conferma.

REST

Prima di utilizzare i dati della richiesta, effettua le seguenti sostituzioni:

  • project-id: l'ID del tuo progetto
  • location-id: la località per la risorsa, us-central1 per la località globale o eu per l'Unione Europea
  • dataset-id: l'ID del tuo set di dati

Metodo e URL HTTP:

DELETE https://automl.googleapis.com/v1/projects/project-id/locations/location-id/datasets/dataset-id

Per inviare la richiesta, espandi una delle seguenti opzioni:

Dovresti ricevere una risposta JSON simile alla seguente:

{
  "name": "projects/434039606874/locations/us-central1/operations/4422270194425422927",
  "metadata": {
    "@type": "type.googleapis.com/google.cloud.automl.v1beta1.OperationMetadata",
    "progressPercentage": 100,
    "createTime": "2018-04-27T02:33:02.479200Z",
    "updateTime": "2018-04-27T02:35:17.309060Z"
  },
  "done": true,
  "response": {
    "@type": "type.googleapis.com/google.protobuf.Empty"
  }
}

Python

Per scoprire come installare e utilizzare la libreria client per AutoML Natural Language, consulta Librerie client di AutoML Natural Language. Per maggiori informazioni, consulta la documentazione di riferimento per le API PythonAutoML Natural Language.

Per eseguire l'autenticazione con AutoML Natural Language, configura le Credenziali predefinite dell'applicazione. Per saperne di più, consulta Configurare l'autenticazione per un ambiente di sviluppo locale.

from google.cloud import automl

# TODO(developer): Uncomment and set the following variables
# project_id = "YOUR_PROJECT_ID"
# dataset_id = "YOUR_DATASET_ID"

client = automl.AutoMlClient()
# Get the full path of the dataset
dataset_full_id = client.dataset_path(project_id, "us-central1", dataset_id)
response = client.delete_dataset(name=dataset_full_id)

print(f"Dataset deleted. {response.result()}")

Java

Per scoprire come installare e utilizzare la libreria client per AutoML Natural Language, consulta Librerie client di AutoML Natural Language. Per maggiori informazioni, consulta la documentazione di riferimento per le API JavaAutoML Natural Language.

Per eseguire l'autenticazione con AutoML Natural Language, configura le Credenziali predefinite dell'applicazione. Per saperne di più, consulta Configurare l'autenticazione per un ambiente di sviluppo locale.

import com.google.cloud.automl.v1.AutoMlClient;
import com.google.cloud.automl.v1.DatasetName;
import com.google.protobuf.Empty;
import java.io.IOException;
import java.util.concurrent.ExecutionException;

class DeleteDataset {

  static void deleteDataset() throws IOException, ExecutionException, InterruptedException {
    // TODO(developer): Replace these variables before running the sample.
    String projectId = "YOUR_PROJECT_ID";
    String datasetId = "YOUR_DATASET_ID";
    deleteDataset(projectId, datasetId);
  }

  // Delete a dataset
  static void deleteDataset(String projectId, String datasetId)
      throws IOException, ExecutionException, InterruptedException {
    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (AutoMlClient client = AutoMlClient.create()) {
      // Get the full path of the dataset.
      DatasetName datasetFullId = DatasetName.of(projectId, "us-central1", datasetId);
      Empty response = client.deleteDatasetAsync(datasetFullId).get();
      System.out.format("Dataset deleted. %s\n", response);
    }
  }
}

Node.js

Per scoprire come installare e utilizzare la libreria client per AutoML Natural Language, consulta Librerie client di AutoML Natural Language. Per maggiori informazioni, consulta la documentazione di riferimento per le API Node.jsAutoML Natural Language.

Per eseguire l'autenticazione con AutoML Natural Language, configura le Credenziali predefinite dell'applicazione. Per saperne di più, consulta Configurare l'autenticazione per un ambiente di sviluppo locale.

/**
 * TODO(developer): Uncomment these variables before running the sample.
 */
// const projectId = 'YOUR_PROJECT_ID';
// const location = 'us-central1';
// const datasetId = 'YOUR_DATASET_ID';

// Imports the Google Cloud AutoML library
const {AutoMlClient} = require('@google-cloud/automl').v1;

// Instantiates a client
const client = new AutoMlClient();

async function deleteDataset() {
  // Construct request
  const request = {
    name: client.datasetPath(projectId, location, datasetId),
  };

  const [operation] = await client.deleteDataset(request);

  // Wait for operation to complete.
  const [response] = await operation.promise();
  console.log(`Dataset deleted: ${response}`);
}

deleteDataset();

Go

Per scoprire come installare e utilizzare la libreria client per AutoML Natural Language, consulta Librerie client di AutoML Natural Language. Per maggiori informazioni, consulta la documentazione di riferimento per le API GoAutoML Natural Language.

Per eseguire l'autenticazione con AutoML Natural Language, configura le Credenziali predefinite dell'applicazione. Per saperne di più, consulta Configurare l'autenticazione per un ambiente di sviluppo locale.

import (
	"context"
	"fmt"
	"io"

	automl "cloud.google.com/go/automl/apiv1"
	"cloud.google.com/go/automl/apiv1/automlpb"
)

// deleteDataset deletes a dataset.
func deleteDataset(w io.Writer, projectID string, location string, datasetID string) error {
	// projectID := "my-project-id"
	// location := "us-central1"
	// datasetID := "TRL123456789..."

	ctx := context.Background()
	client, err := automl.NewClient(ctx)
	if err != nil {
		return fmt.Errorf("NewClient: %w", err)
	}
	defer client.Close()

	req := &automlpb.DeleteDatasetRequest{
		Name: fmt.Sprintf("projects/%s/locations/%s/datasets/%s", projectID, location, datasetID),
	}

	op, err := client.DeleteDataset(ctx, req)
	if err != nil {
		return fmt.Errorf("DeleteDataset: %w", err)
	}
	fmt.Fprintf(w, "Processing operation name: %q\n", op.Name())

	if err := op.Wait(ctx); err != nil {
		return fmt.Errorf("Wait: %w", err)
	}

	fmt.Fprintf(w, "Dataset deleted.\n")

	return nil
}

Linguaggi aggiuntivi

C#: segui le istruzioni di configurazione di C# nella pagina delle librerie client e poi consulta la documentazione di riferimento di AutoML Natural Language per .NET.

PHP: segui le istruzioni di configurazione di PHP nella pagina delle librerie client e poi consulta la documentazione di riferimento di AutoML Natural Language per PHP.

Ruby: segui le istruzioni di configurazione di Ruby nella pagina delle librerie client e poi consulta la documentazione di riferimento di AutoML Natural Language per Ruby.