Erste Schritte: Training und Vorhersage mit Keras

Colab-Logo Diese Anleitung als Notebook in Colab ausführen Logo: GitHub Notebook auf GitHub ansehen

In dieser Anleitung wird gezeigt, wie Sie mit der Keras Sequential API ein neuronales Netzwerk in AI Platform trainieren und mit diesem Modell Vorhersagen bereitstellen.

Keras ist eine allgemeine API zum Erstellen und Trainieren von Deep-Learning-Modellen. tf.keras stellt die Implementierung dieser API in TensorFlow dar.

In den ersten beiden Abschnitten der Anleitung wird ein Modell in AI Platform mit Keras-Codevorlagen trainiert, in AI Platform bereitgestellt und zum Generieren von Onlinevorhersagen verwendet.

Im letzten Teil der Anleitung wird der Trainingscode beschrieben, der für dieses Modell verwendet wird. Außerdem wird erläutert, wie Sie für die Kompatibilität des Codes mit AI Platform sorgen. Weitere Informationen zum Erstellen von Modellen für maschinelles Lernen in Keras finden Sie in den Keras-Anleitungen von TensorFlow.

Dataset

In dieser Anleitung wird das vom UC Irvine Machine Learning Repository bereitgestellte United States Census Income Dataset (US-Dataset zur Einkommenserhebung) verwendet. Das Dataset enthält Informationen zu Personen aus einer Zensusdatenbank von 1994, einschließlich Alter, Bildungsgrad, Familienstand, Beruf und ob sie mehr als 50.000 $ pro Jahr verdienen.

Ziel

Das Ziel besteht darin, mit Keras ein neuronales Deep-Learning-Netzwerk zu trainieren, das auf der Grundlage anderer Zensusinformationen einer Person (Features) vorhersagt, ob eine Person mehr als 50.000 $ pro Jahr verdient (Ziel-Label).

In dieser Anleitung geht es mehr um die Verwendung des Modells mit AI Platform als um das eigentliche Modelldesign. Sie sollten beim Erstellen eines Systems für maschinelles Lernen jedoch immer mögliche Probleme und unbeabsichtigte Folgen berücksichtigen. In der Übung zum Thema Fairness im Intensivkurs zum maschinellen Lernen erhalten Sie Informationen zu Verzerrungsquellen im Zensus-Dataset sowie zur allgemeinen Fairness beim maschinellen Lernen.

Kosten

In dieser Anleitung werden kostenpflichtige Komponenten von Google Cloud verwendet:

  • AI Platform Training
  • AI Platform Prediction
  • Cloud Storage

Informieren Sie sich über die Preise für AI Platform Training, die Preise für AI Platform Prediction und die Cloud Storage-Preise und verwenden Sie den Preisrechner, um eine Kostenschätzung anhand Ihrer prognostizierten Nutzung zu erstellen.

Hinweise

Bevor Sie ein Modell in AI Platform trainieren und bereitstellen können, müssen Sie einige Schritte ausführen:

  • Lokale Entwicklungsumgebung einrichten
  • Richten Sie ein Google Cloud-Projekt ein, für das die Abrechnungsfunktion und die erforderlichen APIs aktiviert sind.
  • Cloud Storage-Bucket zum Speichern des Trainingspakets und des trainierten Modells erstellen

Lokale Entwicklungsumgebung einrichten

Für diese Anleitung benötigen Sie Folgendes:

  • Git
  • Python 3
  • virtualenv
  • Das Google Cloud SDK

Der Google Cloud-Leitfaden zum Einrichten einer Python-Entwicklungsumgebung enthält detaillierte Anweisungen zur Erfüllung dieser Anforderungen. Die folgenden Schritte sind eine Zusammenfassung dieser Anweisungen:

  1. Installieren Sie Python 3.

  2. Installieren Sie virtualenv und erstellen Sie eine virtuelle Umgebung, die Python 3 verwendet.

  3. Aktivieren Sie die Umgebung.

  4. Führen Sie die Schritte im folgenden Abschnitt aus, um das Google Cloud SDK zu installieren.

Google Cloud-Projekt einrichten

  1. Melden Sie sich bei Ihrem Google Cloud-Konto an. Wenn Sie mit Google Cloud noch nicht vertraut sind, erstellen Sie ein Konto, um die Leistungsfähigkeit unserer Produkte in der Praxis sehen und bewerten zu können. Neukunden erhalten außerdem ein Guthaben von 300 $, um Arbeitslasten auszuführen, zu testen und bereitzustellen.
  2. Wählen Sie in der Google Cloud Console auf der Seite der Projektauswahl ein Google Cloud-Projekt aus oder erstellen Sie eines.

    Zur Projektauswahl

  3. Die Abrechnung für das Google Cloud-Projekt muss aktiviert sein.

  4. AI Platform Training & Prediction and Compute Engine APIs aktivieren.

    Aktivieren Sie die APIs

  5. Installieren Sie die Google Cloud CLI.
  6. Führen Sie folgenden Befehl aus, um die gcloud CLI zu initialisieren:

    gcloud init
  7. Wählen Sie in der Google Cloud Console auf der Seite der Projektauswahl ein Google Cloud-Projekt aus oder erstellen Sie eines.

    Zur Projektauswahl

  8. Die Abrechnung für das Google Cloud-Projekt muss aktiviert sein.

  9. AI Platform Training & Prediction and Compute Engine APIs aktivieren.

    Aktivieren Sie die APIs

  10. Installieren Sie die Google Cloud CLI.
  11. Führen Sie folgenden Befehl aus, um die gcloud CLI zu initialisieren:

    gcloud init

GCP-Konto authentifizieren

Für die Einrichtung der Authentifizierung müssen Sie einen Dienstkontoschlüssel erstellen und eine Umgebungsvariable für den Dateipfad zum Dienstkontoschlüssel festlegen.

  1. Erstellen Sie ein Dienstkonto:

    1. Wechseln Sie in der Google Cloud Console zur Seite Dienstkonto erstellen.

      Zur Seite „Dienstkonto erstellen“

    2. Geben Sie im Feld Dienstkontoname einen Namen ein.
    3. Optional: Geben Sie im Feld Dienstkontobeschreibung eine Beschreibung ein.
    4. Klicken Sie auf Erstellen.
    5. Klicken Sie auf das Feld Rolle auswählen. Wählen Sie unter Alle Rollen die Option AI Platform > AI Platform-Administrator aus.
    6. Klicken Sie auf Weitere Rolle hinzufügen.
    7. Klicken Sie auf das Feld Rolle auswählen. Wählen Sie unter Alle Rollen die Option Storage > Storage-Objekt-Administrator.

    8. Klicken Sie auf Fertig, um das Dienstkonto zu erstellen.

      Schließen Sie das Browserfenster nicht. Sie verwenden es in der nächsten Aufgabe.

  2. Erstellen Sie einen Dienstkontoschlüssel für die Authentifizierung:

    1. Klicken Sie in der Google Cloud Console auf die E-Mail-Adresse des von Ihnen erstellten Dienstkontos.
    2. Klicken Sie auf Schlüssel.
    3. Klicken Sie auf Schlüssel hinzufügen > Neuen Schlüssel erstellen.
    4. Klicken Sie auf Erstellen. Daraufhin wird eine JSON-Schlüsseldatei auf Ihren Computer heruntergeladen.
    5. Klicken Sie auf Schließen.
  3. Legen Sie die Umgebungsvariable GOOGLE_APPLICATION_CREDENTIALS auf den Pfad der JSON-Datei fest, die Ihren Dienstkontoschlüssel enthält. Diese Variable gilt nur für Ihre aktuelle Shell-Sitzung. Wenn Sie eine neue Sitzung öffnen, müssen Sie die Variable noch einmal festlegen.

Cloud Storage-Bucket erstellen

Wenn Sie einen Trainingsjob mit dem Cloud SDK senden, laden Sie ein Python-Paket mit Ihrem Trainingscode in einen Cloud Storage-Bucket hoch. AI Platform führt den Code aus diesem Paket aus. In dieser Anleitung speichert AI Platform das im Rahmen des Jobs trainierte Modell außerdem im selben Bucket. Sie können dann eine AI Platform-Modellversion basierend auf dieser Ausgabe erstellen, um Onlinevorhersagen bereitzustellen.

Legen Sie den Namen Ihres Cloud Storage-Buckets als Umgebungsvariable fest. Der Name muss sich von allen anderen Bucket-Namen in Cloud Storage unterscheiden:

BUCKET_NAME="your-bucket-name"

Wählen Sie eine Region aus, in der AI Platform Training und AI Platform Prediction verfügbar sind, und erstellen Sie eine weitere Umgebungsvariable. Beispiel:

REGION="us-central1"

Erstellen Sie in dieser Region einen Cloud Storage-Bucket und verwenden Sie später dieselbe Region für Training und Vorhersage. Führen Sie den folgenden Befehl aus, wenn noch kein Bucket vorhanden ist:

gsutil mb -l $REGION gs://$BUCKET_NAME

Kurzanleitung für das Training in AI Platform

In diesem Abschnitt der Anleitung wird das Senden eines Trainingsjobs an AI Platform beschrieben. Dieser Job führt einen Beispielcode aus, der Keras verwendet, um ein neuronales Deep-Learning-Netzwerk mit den US-Zensusdaten zu trainieren. Das trainierte Modell wird als TensorFlow SavedModel-Verzeichnis in Ihrem Cloud Storage-Bucket ausgegeben.

Trainingscode und Abhängigkeiten abrufen

Laden Sie zuerst den Trainingscode herunter und ändern Sie das Arbeitsverzeichnis:

# Clone the repository of AI Platform samples
git clone --depth 1 https://github.com/GoogleCloudPlatform/cloudml-samples

# Set the working directory to the sample code directory
cd cloudml-samples/census/tf-keras

Beachten Sie, dass der Trainingscode als Python-Paket im Unterverzeichnis trainer/ strukturiert ist:

# `ls` shows the working directory's contents. The `p` flag adds trailing
# slashes to subdirectory names. The `R` flag lists subdirectories recursively.
ls -pR
.:
README.md  requirements.txt  trainer/

./trainer:
__init__.py  model.py  task.py  util.py

Installieren Sie als Nächstes Python-Abhängigkeiten, um das Modell lokal zu trainieren:

pip install -r requirements.txt

Wenn Sie den Trainingsjob in AI Platform ausführen, werden Abhängigkeiten basierend auf der ausgewählten Laufzeitversion vorinstalliert.

Modell lokal trainieren

Vor dem Training in AI Platform sollten Sie den Job lokal trainieren, um die Dateistruktur und das Paket zu verifizieren.

Bei einem komplexen oder ressourcenintensiven Job empfiehlt es sich, einen kleinen Ausschnitt des Datasets lokal zu trainieren, um den Code zu verifizieren. Anschließend können Sie den Job in AI Platform ausführen, um das gesamte Dataset zu trainieren.

In diesem Beispiel wird ein relativ schneller Job für ein kleines Dataset ausgeführt. Deshalb wird für die Ausführung des lokalen Trainings und des AI Platform-Jobs derselbe Code verwendet.

Führen Sie den folgenden Befehl aus, um ein Modell lokal zu trainieren:

# This is similar to `python -m trainer.task --job-dir local-training-output`
# but it better replicates the AI Platform environment, especially
# for distributed training (not applicable here).
gcloud ai-platform local train \
  --package-path trainer \
  --module-name trainer.task \
  --job-dir local-training-output

Beobachten Sie den Trainingsfortschritt in Ihrer Shell. Am Ende exportiert die Trainingsanwendung das trainierte Modell und gibt eine Nachricht aus, die etwa so aussieht:

Model exported to:  local-training-output/keras_export/1553709223

Modell mit AI Platform trainieren

Als Nächstes senden Sie einen Trainingsjob an AI Platform. Der Dienst führt das Trainingsmodul in der Cloud aus und exportiert das trainierte Modell nach Cloud Storage.

Geben Sie Ihrem Trainingsjob zuerst einen Namen und wählen Sie ein Verzeichnis in Ihrem Cloud Storage-Bucket aus, in dem Zwischen- und Ausgabedateien gespeichert werden sollen. Diese Werte legen Sie dann als Umgebungsvariablen fest. Beispiel:

JOB_NAME="my_first_keras_job"
JOB_DIR="gs://$BUCKET_NAME/keras-job-dir"

Mit dem im Folgenden aufgeführten Befehl wird das Verzeichnis trainer/ verpackt, in das angegebene Verzeichnis --job-dir hochgeladen und AI Platform angewiesen, das Modul trainer.task aus diesem Paket auszuführen.

Durch Angabe des Flags --stream-logs haben Sie die Möglichkeit, Trainingslogs in Ihrer Shell einzusehen. In der Google Cloud Console können Sie sich auch Logs und weitere Jobdetails ansehen.

gcloud ai-platform jobs submit training $JOB_NAME \
  --package-path trainer/ \
  --module-name trainer.task \
  --region $REGION \
  --python-version 3.7 \
  --runtime-version 1.15 \
  --job-dir $JOB_DIR \
  --stream-logs

Dieser Vorgang dauert möglicherweise länger als das lokale Training, aber Sie können den Trainingsfortschritt auf ähnliche Weise in Ihrer Shell beobachten. Am Ende exportiert der Trainingsjob das trainierte Modell in Ihren Cloud Storage-Bucket und gibt eine Meldung aus, die etwa so aussieht:

INFO    2019-03-27 17:57:11 +0000   master-replica-0        Model exported to:  gs://your-bucket-name/keras-job-dir/keras_export/1553709421
INFO    2019-03-27 17:57:11 +0000   master-replica-0        Module completed; cleaning up.
INFO    2019-03-27 17:57:11 +0000   master-replica-0        Clean up finished.
INFO    2019-03-27 17:57:11 +0000   master-replica-0        Task completed successfully.

Hyperparameter-Abstimmung

Optional können Sie Hyperparameter mithilfe der enthaltenen Konfigurationsdatei hptuning_config.yaml abstimmen. Diese Datei weist AI Platform an, die Batchgröße und Lernrate für das Training über mehrere Versuche hinweg zu optimieren und damit die Accuracy zu maximieren.

In diesem Beispiel verwendet der Trainingscode einen TensorBoard-Callback, der Summary-Event-Ereignisse von TensorFlow während des Trainings erstellt. Anhand dieser Ereignisse kann AI Platform den Messwert verfolgen, den Sie optimieren möchten. Weitere Informationen zur Hyperparameter-Abstimmung in AI Platform Training erhalten Sie unter Hyperparameter-Abstimmung – Übersicht.

gcloud ai-platform jobs submit training ${JOB_NAME}_hpt \
  --config hptuning_config.yaml \
  --package-path trainer/ \
  --module-name trainer.task \
  --region $REGION \
  --python-version 3.7 \
  --runtime-version 1.15 \
  --job-dir $JOB_DIR \
  --stream-logs

Kurzanleitung für Onlinevorhersagen in AI Platform

In diesem Abschnitt wird beschrieben, wie Sie Cloud ML Engine und das trainierte Modell aus dem vorherigen Abschnitt verwenden, um die Einkommensklasse einer Person anhand anderer Zensusinformationen vorherzusagen.

Modell- und Versionsressourcen in AI Platform erstellen

Erstellen Sie eine model in AI Platform und darin eine model. Sie können dann Onlinevorhersagen mit dem Modell bereitstellen, das Sie in der Kurzanleitung für das Training trainiert und exportiert haben. Die Ressource, die Ihr trainiertes Modell tatsächlich zur Bereitstellung von Vorhersagen verwendet, ist die Versionsressource. Mit dieser Struktur können Sie Ihr Modell mehrfach anpassen und neu trainieren und alle Versionen in AI Platform verwalten. Weitere Informationen erhalten Sie unter Projekte, Modelle, Versionen und Jobs .

Als Erstes erstellen Sie die Modellressource und geben Ihr einen Namen:

MODEL_NAME="my_first_keras_model"

gcloud ai-platform models create $MODEL_NAME \
  --regions $REGION
Created ml engine model [projects/your-project-id/models/my_first_keras_model].

Als Nächstes erstellen Sie die Modellversion. Der Trainingsjob aus der Kurzanleitung für das Training hat ein mit Zeitstempel versehenes TensorFlow SavedModel-Verzeichnis in Ihren Cloud Storage-Bucket exportiert. AI Platform verwendet dieses Verzeichnis, um eine Modellversion zu erstellen. Weitere Informationen zu SavedModel und AI Platform erhalten Sie unter Modelle bereitstellen.

Möglicherweise finden Sie den Pfad zu diesem Verzeichnis in den Logs Ihres Trainingsjobs. Suchen Sie nach einer Zeile, die in etwa so aussieht:

Model exported to:  gs://your-bucket-name/keras-job-dir/keras_export/1545439782

Führen Sie den folgenden Befehl aus, um das SavedModel-Verzeichnis zu ermitteln, und erstellen Sie damit eine Modellversion:

MODEL_VERSION="v1"

# Get a list of directories in the `keras_export` parent directory. Then pick
# the directory with the latest timestamp, in case you've trained multiple
# times.
SAVED_MODEL_PATH=$(gsutil ls $JOB_DIR/keras_export | head -n 1)

# Create model version based on that SavedModel directory
gcloud ai-platform versions create $MODEL_VERSION \
  --model $MODEL_NAME \
  --region $REGION \
  --runtime-version 1.15 \
  --python-version 3.7 \
  --framework tensorflow \
  --origin $SAVED_MODEL_PATH

Eingabe für die Vorhersage vorbereiten

Damit Sie stichhaltige und nützliche Vorhersagen erhalten, müssen Sie die Eingabe für die Vorhersage auf dieselbe Weise vorverarbeiten wie die Trainingsdaten. In einem Produktionssystem sollten Sie am besten eine Vorverarbeitungs-Pipeline erstellen, die beim Training und bei der Vorhersage auf dieselbe Weise verwendet werden kann.

Verwenden Sie für diese Übung den Code zum Laden der Daten des Trainingspakets, um einen zufälligen Ausschnitt der Validierungsdaten auszuwählen. Diese Daten liegen in dem Format vor, das zur Bewertung der Accuracy nach jeder Trainingsphase verwendet wurde. Sie können daher ohne weitere Vorverarbeitung zum Senden von Testvorhersagen genutzt werden.

Öffnen Sie den Python-Interpreter (python) aus Ihrem aktuellen Arbeitsverzeichnis, um die nächsten Code-Snippets auszuführen:

from trainer import util

_, _, eval_x, eval_y = util.load_data()

prediction_input = eval_x.sample(20)
prediction_targets = eval_y[prediction_input.index]

prediction_input
age workclass education_num marital_status occupation relationship race capital_gain capital_loss hours_per_week native_country
1979 0.901213 1 1.525542 2 9 0 4 -0.144792 -0.217132 -0.437544 38
2430 -0.922154 3 -0.419265 4 2 3 4 -0.144792 -0.217132 -0.034039 38
4214 -1.213893 3 -0.030304 4 10 1 4 -0.144792 -0.217132 1.579979 38
10389 -0.630415 3 0.358658 4 0 3 4 -0.144792 -0.217132 -0.679647 38
14525 -1.505632 3 -1.586149 4 7 3 0 -0.144792 -0.217132 -0.034039 38
15040 -0.119873 5 0.358658 2 2 0 4 -0.144792 -0.217132 -0.841048 38
8409 0.244801 3 1.525542 2 9 0 4 -0.144792 -0.217132 1.176475 6
10628 0.098931 1 1.525542 2 9 0 4 0.886847 -0.217132 -0.034039 38
10942 0.390670 5 -0.030304 2 4 0 4 -0.144792 -0.217132 4.727315 38
5129 1.120017 3 1.136580 2 12 0 4 -0.144792 -0.217132 -0.034039 38
2096 -1.286827 3 -0.030304 4 11 3 4 -0.144792 -0.217132 -1.648058 38
12463 -0.703350 3 -0.419265 2 7 5 4 -0.144792 4.502280 -0.437544 38
8528 0.536539 3 1.525542 4 3 4 4 -0.144792 -0.217132 -0.034039 38
7093 -1.359762 3 -0.419265 4 6 3 2 -0.144792 -0.217132 -0.034039 38
12565 0.536539 3 1.136580 0 11 2 2 -0.144792 -0.217132 -0.034039 38
5655 1.338821 3 -0.419265 2 2 0 4 -0.144792 -0.217132 -0.034039 38
2322 0.682409 3 1.136580 0 12 3 4 -0.144792 -0.217132 -0.034039 38
12652 0.025997 3 1.136580 2 11 0 4 -0.144792 -0.217132 0.369465 38
4755 -0.411611 3 -0.419265 2 11 0 4 -0.144792 -0.217132 1.176475 38
4413 0.390670 6 1.136580 4 4 1 4 -0.144792 -0.217132 -0.034039 38

Kategoriale Felder wie occupation wurden bereits in Ganzzahlen konvertiert, und zwar mit der Zuordnung, die für das Training verwendet wurde. Numerische Felder wie age wurden auf einen Z-Score skaliert. Außerdem wurden einige Felder aus den ursprünglichen Daten entfernt. Vergleichen Sie die Vorhersageeingabe mit den Rohdaten für die Beispiele:

import pandas as pd

_, eval_file_path = util.download(util.DATA_DIR)
raw_eval_data = pd.read_csv(eval_file_path,
                            names=util._CSV_COLUMNS,
                            na_values='?')

raw_eval_data.iloc[prediction_input.index]
age workclass fnlwgt education education_num marital_status occupation relationship race gender capital_gain capital_loss hours_per_week native_country income_bracket
1979 51 Local-Gov 99064 Masters 14 Married-civ-spouse Prof-specialty Husband White Male 0 0 35 United-States <=50K
2430 26 Private 197967 HS-grad 9 Never-married Craft-repair Own-child White Male 0 0 40 United-States <=50K
4214 22 Private 221694 Some-college 10 Never-married Protective-serv Not-in-family White Male 0 0 60 United-States <=50K
10389 30 Private 96480 Assoc-voc 11 Never-married Adm-clerical Own-child White Female 0 0 32 United-States <=50K
14525 18 Private 146225 10th 6 Never-married Other-service Own-child Amer-Indian-Eskimo Female 0 0 40 United-States <=50K
15040 37 Self-emp-not-inc 50096 Assoc-voc 11 Married-civ-spouse Craft-repair Husband White Male 0 0 30 United-States <=50K
8409 42 Private 102988 Masters 14 Married-civ-spouse Prof-specialty Husband White Male 0 0 55 Ecuador >50K
10628 40 Local-Gov 284086 Masters 14 Married-civ-spouse Prof-specialty Husband White Male 7688 0 40 United-States >50K
10942 44 Self-emp-not-inc 52505 Some-college 10 Married-civ-spouse Farming-fishing Husband White Male 0 0 99 United-States <=50K
5129 54 Privat 106728 Bachelors 13 Married-civ-spouse Tech-support Husband White Male 0 0 40 United-States <=50K
2096 21 Private 190916 Some-college 10 Never-married Sales Own-child White Female 0 0 20 United-States <=50K
12463 29 Private 197565 HS-grad 9 Married-civ-spouse Other-service Wife White Female 0 1902 35 United-States >50K
8528 46 Private 193188 Masters 14 Never-married Exec-managerial Unmarried White Male 0 0 40 United-States <=50K
7093 20 Private 273147 HS-grad 9 Never-married Machine-op-inspct Own-child Black Male 0 0 40 United-States <=50K
12565 46 Private 203653 Bachelors 13 Divorced Sales Other-relative Black Male 0 0 40 United-States <=50K
5655 57 Privat 174662 HS-grad 9 Married-civ-spouse Craft-repair Husband White Male 0 0 40 United-States <=50K
2322 48 Private 232149 Bachelors 13 Divorced Tech-support Own-child White Female 0 0 40 United-States <=50K
12652 39 Private 82521 Bachelors 13 Married-civ-spouse Sales Husband White Male 0 0 45 United-States >50K
4755 33 Private 330715 HS-grad 9 Married-civ-spouse Sales Husband White Male 0 0 55 United-States <=50K
4413 44 State-gov 128586 Bachelors 13 Never-married Farming-fishing Not-in-family White Male 0 0 40 United-States <=50K

Exportieren Sie die Vorhersageeingabe in eine durch Zeilenumbruch getrennte JSON-Datei:

import json

with open('prediction_input.json', 'w') as json_file:
  for row in prediction_input.values.tolist():
    json.dump(row, json_file)
    json_file.write('\n')

Beenden Sie den Python-Interpreter (exit()) und prüfen Sie in Ihrer Shell prediction_input.json:

cat prediction_input.json
[0.9012127751273994, 1.0, 1.525541514460902, 2.0, 9.0, 0.0, 4.0, -0.14479173735784842, -0.21713186390175285, -0.43754385253479555, 38.0]
[-0.9221541171760282, 3.0, -0.4192650914017433, 4.0, 2.0, 3.0, 4.0, -0.14479173735784842, -0.21713186390175285, -0.03403923708700391, 38.0]
[-1.2138928199445767, 3.0, -0.030303770229214273, 4.0, 10.0, 1.0, 4.0, -0.14479173735784842, -0.21713186390175285, 1.5799792247041626, 38.0]
[-0.6304154144074798, 3.0, 0.35865755094331475, 4.0, 0.0, 3.0, 4.0, -0.14479173735784842, -0.21713186390175285, -0.6796466218034705, 38.0]
[-1.5056315227131252, 3.0, -1.5861490549193304, 4.0, 7.0, 3.0, 0.0, -0.14479173735784842, -0.21713186390175285, -0.03403923708700391, 38.0]
[-0.11987268456252011, 5.0, 0.35865755094331475, 2.0, 2.0, 0.0, 4.0, -0.14479173735784842, -0.21713186390175285, -0.8410484679825871, 38.0]
[0.24480069389816542, 3.0, 1.525541514460902, 2.0, 9.0, 0.0, 4.0, -0.14479173735784842, -0.21713186390175285, 1.176474609256371, 6.0]
[0.0989313425138912, 1.0, 1.525541514460902, 2.0, 9.0, 0.0, 4.0, 0.8868473744801746, -0.21713186390175285, -0.03403923708700391, 38.0]
[0.39067004528243965, 5.0, -0.030303770229214273, 2.0, 4.0, 0.0, 4.0, -0.14479173735784842, -0.21713186390175285, 4.7273152251969375, 38.0]
[1.1200168022038106, 3.0, 1.1365801932883728, 2.0, 12.0, 0.0, 4.0, -0.14479173735784842, -0.21713186390175285, -0.03403923708700391, 38.0]
[-1.2868274956367138, 3.0, -0.030303770229214273, 4.0, 11.0, 3.0, 4.0, -0.14479173735784842, -0.21713186390175285, -1.6480576988781703, 38.0]
[-0.7033500900996169, 3.0, -0.4192650914017433, 2.0, 7.0, 5.0, 4.0, -0.14479173735784842, 4.5022796885373735, -0.43754385253479555, 38.0]
[0.5365393966667138, 3.0, 1.525541514460902, 4.0, 3.0, 4.0, 4.0, -0.14479173735784842, -0.21713186390175285, -0.03403923708700391, 38.0]
[-1.3597621713288508, 3.0, -0.4192650914017433, 4.0, 6.0, 3.0, 2.0, -0.14479173735784842, -0.21713186390175285, -0.03403923708700391, 38.0]
[0.5365393966667138, 3.0, 1.1365801932883728, 0.0, 11.0, 2.0, 2.0, -0.14479173735784842, -0.21713186390175285, -0.03403923708700391, 38.0]
[1.338820829280222, 3.0, -0.4192650914017433, 2.0, 2.0, 0.0, 4.0, -0.14479173735784842, -0.21713186390175285, -0.03403923708700391, 38.0]
[0.6824087480509881, 3.0, 1.1365801932883728, 0.0, 12.0, 3.0, 4.0, -0.14479173735784842, -0.21713186390175285, -0.03403923708700391, 38.0]
[0.0259966668217541, 3.0, 1.1365801932883728, 2.0, 11.0, 0.0, 4.0, -0.14479173735784842, -0.21713186390175285, 0.3694653783607877, 38.0]
[-0.4116113873310685, 3.0, -0.4192650914017433, 2.0, 11.0, 0.0, 4.0, -0.14479173735784842, -0.21713186390175285, 1.176474609256371, 38.0]
[0.39067004528243965, 6.0, 1.1365801932883728, 4.0, 4.0, 1.0, 4.0, -0.14479173735784842, -0.21713186390175285, -0.03403923708700391, 38.0]

Mit dem gcloud-Befehlszeilentool können durch Zeilenumbruch getrennte JSON-Dateien für die Onlinevorhersage verwendet werden. Dieses spezielle Keras-Modell erwartet eine einfache Liste von Zahlen für jedes Eingabebeispiel.

Wenn Sie Anfragen zu Onlinevorhersagen an die REST API ohne das gcloud-Tool senden, ist für AI Platform ein anderes Format erforderlich. Die Strukturierung Ihres Modells bestimmt auch, wie Sie Daten für die Vorhersage formatieren müssen. Informationen zum Formatieren von Daten für die Onlinevorhersage erhalten Sie unter Eingabedaten für Vorhersagen.

Anfrage für die Onlinevorhersage senden

Verwenden Sie gcloud zum Senden einer Anfrage für die Onlinevorhersage:

gcloud ai-platform predict \
  --model $MODEL_NAME \
  --region $REGION \
  --version $MODEL_VERSION \
  --json-instances prediction_input.json
DENSE_4
[0.6854287385940552]
[0.011786997318267822]
[0.037236183881759644]
[0.016223609447479248]
[0.0012015104293823242]
[0.23621389269828796]
[0.6174039244651794]
[0.9822691679000854]
[0.3815768361091614]
[0.6715215444564819]
[0.001094043254852295]
[0.43077391386032104]
[0.22132840752601624]
[0.004075437784194946]
[0.22736871242523193]
[0.4111979305744171]
[0.27328649163246155]
[0.6981356143951416]
[0.3309604525566101]
[0.20807647705078125]

Da die letzte Ebene des Modells zur Aktivierung eine Sigmoidfunktion verwendet, stellen Ausgabewerte zwischen 0 und 0,5 negative Vorhersagen ("<=50K") und Ausgaben zwischen 0,5 und 1 positive Vorhersagen dar (">50K").

Keras-Modell von Grund auf entwickeln

Bisher haben Sie ein Modell für maschinelles Lernen in AI Platform trainiert, das trainierte Modell als Versionsressource in AI Platform bereitgestellt und über das Deployment Onlinevorhersagen abgerufen. Im nächsten Abschnitt wird die Neuerstellung des Keras-Codes beschrieben, der zum Trainieren Ihres Modells verwendet wurde. Dabei werden folgende Schritte der Entwicklung eines Modells für maschinelles Lernen zur Verwendung mit AI Platform erläutert:

  • Daten herunterladen und vorverarbeiten
  • Modell entwerfen und trainieren
  • Training visualisieren und das trainierte Modell exportieren

Sie erhalten in diesem Abschnitt einen detaillierten Einblick in die Aufgaben, die in den vorherigen Abschnitten ausgeführt wurden. Weitere Informationen zur Verwendung von tf.keras finden Sie im TensorFlow-Leitfaden zu Keras. Informationen zum Strukturieren von Code als Trainingspaket für AI Platform erhalten Sie unter Paket für eine Trainingsanwendung erstellen und im umfassenden Trainingscode, der als Python-Paket strukturiert ist.

Bibliotheken importieren und Konstanten festlegen

Importieren Sie zuerst die für das Training erforderlichen Python-Bibliotheken:

import os
from six.moves import urllib
import tempfile

import numpy as np
import pandas as pd
import tensorflow as tf

# Examine software versions
print(__import__('sys').version)
print(tf.__version__)
print(tf.keras.__version__)

Legen Sie dann einige nützliche Konstanten fest:

  • Informationen zum Herunterladen von Trainings- und Validierungsdaten
  • Informationen, die Pandas benötigt, um die Daten zu interpretieren und kategoriale Felder in numerische Merkmale zu konvertieren
  • Hyperparameter für das Training, z. B. Lernrate und Batch-Größe
### For downloading data ###

# Storage directory
DATA_DIR = os.path.join(tempfile.gettempdir(), 'census_data')

# Download options.
DATA_URL = 'https://storage.googleapis.com/cloud-samples-data/ai-platform' \
           '/census/data'
TRAINING_FILE = 'adult.data.csv'
EVAL_FILE = 'adult.test.csv'
TRAINING_URL = '%s/%s' % (DATA_URL, TRAINING_FILE)
EVAL_URL = '%s/%s' % (DATA_URL, EVAL_FILE)

### For interpreting data ###

# These are the features in the dataset.
# Dataset information: https://archive.ics.uci.edu/ml/datasets/census+income
_CSV_COLUMNS = [
    'age', 'workclass', 'fnlwgt', 'education', 'education_num',
    'marital_status', 'occupation', 'relationship', 'race', 'gender',
    'capital_gain', 'capital_loss', 'hours_per_week', 'native_country',
    'income_bracket'
]

_CATEGORICAL_TYPES = {
  'workclass': pd.api.types.CategoricalDtype(categories=[
    'Federal-gov', 'Local-gov', 'Never-worked', 'Private', 'Self-emp-inc',
    'Self-emp-not-inc', 'State-gov', 'Without-pay'
  ]),
  'marital_status': pd.api.types.CategoricalDtype(categories=[
    'Divorced', 'Married-AF-spouse', 'Married-civ-spouse',
    'Married-spouse-absent', 'Never-married', 'Separated', 'Widowed'
  ]),
  'occupation': pd.api.types.CategoricalDtype([
    'Adm-clerical', 'Armed-Forces', 'Craft-repair', 'Exec-managerial',
    'Farming-fishing', 'Handlers-cleaners', 'Machine-op-inspct',
    'Other-service', 'Priv-house-serv', 'Prof-specialty', 'Protective-serv',
    'Sales', 'Tech-support', 'Transport-moving'
  ]),
  'relationship': pd.api.types.CategoricalDtype(categories=[
    'Husband', 'Not-in-family', 'Other-relative', 'Own-child', 'Unmarried',
    'Wife'
  ]),
  'race': pd.api.types.CategoricalDtype(categories=[
    'Amer-Indian-Eskimo', 'Asian-Pac-Islander', 'Black', 'Other', 'White'
  ]),
  'native_country': pd.api.types.CategoricalDtype(categories=[
    'Cambodia', 'Canada', 'China', 'Columbia', 'Cuba', 'Dominican-Republic',
    'Ecuador', 'El-Salvador', 'England', 'France', 'Germany', 'Greece',
    'Guatemala', 'Haiti', 'Holand-Netherlands', 'Honduras', 'Hong', 'Hungary',
    'India', 'Iran', 'Ireland', 'Italy', 'Jamaica', 'Japan', 'Laos', 'Mexico',
    'Nicaragua', 'Outlying-US(Guam-USVI-etc)', 'Peru', 'Philippines', 'Poland',
    'Portugal', 'Puerto-Rico', 'Scotland', 'South', 'Taiwan', 'Thailand',
    'Trinadad&Tobago', 'United-States', 'Vietnam', 'Yugoslavia'
  ]),
  'income_bracket': pd.api.types.CategoricalDtype(categories=[
    '<=50K', '>50K'
  ])
}

# This is the label (target) we want to predict.
_LABEL_COLUMN = 'income_bracket'

### Hyperparameters for training ###

# This the training batch size
BATCH_SIZE = 128

# This is the number of epochs (passes over the full training data)
NUM_EPOCHS = 20

# Define learning rate.
LEARNING_RATE = .01

Daten herunterladen und vorverarbeiten

Daten herunterladen

Als Nächstes definieren Sie Funktionen zum Herunterladen von Trainings- und Validierungsdaten. Diese Funktionen beheben außerdem kleinere Unregelmäßigkeiten in der Datenformatierung.

def _download_and_clean_file(filename, url):
  """Downloads data from url, and makes changes to match the CSV format.

  The CSVs may use spaces after the comma delimters (non-standard) or include
  rows which do not represent well-formed examples. This function strips out
  some of these problems.

  Args:
    filename: filename to save url to
    url: URL of resource to download
  """
  temp_file, _ = urllib.request.urlretrieve(url)
  with tf.gfile.Open(temp_file, 'r') as temp_file_object:
    with tf.gfile.Open(filename, 'w') as file_object:
      for line in temp_file_object:
        line = line.strip()
        line = line.replace(', ', ',')
        if not line or ',' not in line:
          continue
        if line[-1] == '.':
          line = line[:-1]
        line += '\n'
        file_object.write(line)
  tf.gfile.Remove(temp_file)

def download(data_dir):
  """Downloads census data if it is not already present.

  Args:
    data_dir: directory where we will access/save the census data
  """
  tf.gfile.MakeDirs(data_dir)

  training_file_path = os.path.join(data_dir, TRAINING_FILE)
  if not tf.gfile.Exists(training_file_path):
    _download_and_clean_file(training_file_path, TRAINING_URL)

  eval_file_path = os.path.join(data_dir, EVAL_FILE)
  if not tf.gfile.Exists(eval_file_path):
    _download_and_clean_file(eval_file_path, EVAL_URL)

  return training_file_path, eval_file_path

Verwenden Sie diese Funktionen, um die Daten für das Training herunterzuladen und zu überprüfen, ob Sie CSV-Dateien für Training und Validierung haben:

training_file_path, eval_file_path = download(DATA_DIR)

Anschließend laden Sie diese Dateien mithilfe von Pandas und prüfen die Daten:

# This census data uses the value '?' for fields (column) that are missing data.
# We use na_values to find ? and set it to NaN values.
# https://pandas.pydata.org/pandas-docs/stable/generated/pandas.read_csv.html

train_df = pd.read_csv(training_file_path, names=_CSV_COLUMNS, na_values='?')
eval_df = pd.read_csv(eval_file_path, names=_CSV_COLUMNS, na_values='?')

Die folgende Tabelle zeigt einen Auszug der Daten (train_df.head()) vor der Vorverarbeitung.

age workclass fnlwgt education education_num marital_status occupation relationship race gender capital_gain capital_loss hours_per_week native_country income_bracket
0 39 State-gov 77516 Bachelors 13 Never-married Adm-clerical Not-in-family White Male 2174 0 40 United-States <=50K
1 50 Self-emp-not-inc 83311 Bachelors 13 Married-civ-spouse Exec-managerial Husband White Male 0 0 13 United-States <=50K
2 38 Private 215646 HS-grad 9 Divorced Handlers-cleaners Not-in-family White Male 0 0 40 United-States <=50K
3 53 Private 234721 11th 7 Married-civ-spouse Handlers-cleaners Husband Black Male 0 0 40 United-States <=50K
4 28 Privat 338409 Bachelors 13 Married-civ-spouse Prof-specialty Wife Black Female 0 0 40 Cuba <=50K

Daten vorverarbeiten

Beim ersten Schritt der Vorverarbeitung werden bestimmte Merkmale aus den Daten entfernt und kategoriale Merkmale zur Verwendung mit Keras in numerische Werte konvertiert.

Weitere Informationen finden Sie unter Feature Engineering und Verzerrung in Daten.

UNUSED_COLUMNS = ['fnlwgt', 'education', 'gender']

def preprocess(dataframe):
  """Converts categorical features to numeric. Removes unused columns.

  Args:
    dataframe: Pandas dataframe with raw data

  Returns:
    Dataframe with preprocessed data
  """
  dataframe = dataframe.drop(columns=UNUSED_COLUMNS)

  # Convert integer valued (numeric) columns to floating point
  numeric_columns = dataframe.select_dtypes(['int64']).columns
  dataframe[numeric_columns] = dataframe[numeric_columns].astype('float32')

  # Convert categorical columns to numeric
  cat_columns = dataframe.select_dtypes(['object']).columns
  dataframe[cat_columns] = dataframe[cat_columns].apply(lambda x: x.astype(
    _CATEGORICAL_TYPES[x.name]))
  dataframe[cat_columns] = dataframe[cat_columns].apply(lambda x: x.cat.codes)
  return dataframe

prepped_train_df = preprocess(train_df)
prepped_eval_df = preprocess(eval_df)

Die folgende Tabelle prepped_train_df.head() zeigt, wie die Daten durch die Vorverarbeitung geändert wurden. Beachten Sie insbesondere, dass income_bracket, d. h., das Label, für dessen Vorhersage Sie das Modell trainieren, von <=50K und >50K in 0 und 1 geändert wurde:

age workclass education_num marital_status occupation relationship race capital_gain capital_loss hours_per_week native_country income_bracket
0 39.0 6 13.0 4 0 1 4 2174.0 0.0 40.0 38 0
1 50.0 5 13.0 2 3 0 4 0.0 0.0 13.0 38 0
2 38.0 3 9.0 0 5 1 4 0.0 0.0 40.0 38 0
3 53.0 3 7.0 2 5 0 2 0.0 0.0 40.0 38 0
4 28.0 3 13.0 2 9 5 2 0.0 0.0 40.0 4 0

Teilen Sie nun die Daten in Merkmale ("x") und Labels ("y") auf und wandeln Sie die Labelarrays in ein Format um, das Sie später mit tf.data.Dataset verwenden können.

# Split train and test data with labels.
# The pop() method will extract (copy) and remove the label column from the dataframe
train_x, train_y = prepped_train_df, prepped_train_df.pop(_LABEL_COLUMN)
eval_x, eval_y = prepped_eval_df, prepped_eval_df.pop(_LABEL_COLUMN)

# Reshape label columns for use with tf.data.Dataset
train_y = np.asarray(train_y).astype('float32').reshape((-1, 1))
eval_y = np.asarray(eval_y).astype('float32').reshape((-1, 1))

Wenn Sie die Trainingsdaten so skalieren, dass jede numerische Merkmalspalte einen Mittelwert von 0 und eine Standardabweichung von 1 enthält, lässt sich das Modell möglicherweise verbessern.

In einem Produktionssystem sollten Sie die Mittelwerte und Standardabweichungen Ihrer Trainingsdaten am besten speichern und dazu verwenden, eine identische Transformation der Testdaten bei der Vorhersage durchzuführen. Der Einfachheit halber verbinden Sie vorübergehend die Trainings- und Validierungsdaten in dieser Übung, um sie insgesamt zu skalieren:

def standardize(dataframe):
  """Scales numerical columns using their means and standard deviation to get
  z-scores: the mean of each numerical column becomes 0, and the standard
  deviation becomes 1. This can help the model converge during training.

  Args:
    dataframe: Pandas dataframe

  Returns:
    Input dataframe with the numerical columns scaled to z-scores
  """
  dtypes = list(zip(dataframe.dtypes.index, map(str, dataframe.dtypes)))
  # Normalize numeric columns.
  for column, dtype in dtypes:
      if dtype == 'float32':
          dataframe[column] -= dataframe[column].mean()
          dataframe[column] /= dataframe[column].std()
  return dataframe

# Join train_x and eval_x to normalize on overall means and standard
# deviations. Then separate them again.
all_x = pd.concat([train_x, eval_x], keys=['train', 'eval'])
all_x = standardize(all_x)
train_x, eval_x = all_x.xs('train'), all_x.xs('eval')

Die nächste Tabelle train_x.head() stellt die vollständig vorverarbeiteten Daten dar:

age workclass education_num marital_status occupation relationship race capital_gain capital_loss hours_per_week native_country
0 0.025997 6 1.136580 4 0 1 4 0.146933 -0.217132 -0.034039 38
1 0.828278 5 1.136580 2 3 0 4 -0.144792 -0.217132 -2.212964 38
2 -0.046938 3 -0.419265 0 5 1 4 -0.144792 -0.217132 -0.034039 38
3 1.047082 3 -1.197188 2 5 0 2 -0.144792 -0.217132 -0.034039 38
4 -0.776285 3 1.136580 2 9 5 2 -0.144792 -0.217132 -0.034039 4

Modell entwerfen und trainieren

Trainings- und Validierungs-Datasets

Erstellen Sie eine Eingabefunktion, mit der Sie Merkmale und Labels für das Training oder für die Validierung in ein tf.data.Dataset umwandeln:

def input_fn(features, labels, shuffle, num_epochs, batch_size):
  """Generates an input function to be used for model training.

  Args:
    features: numpy array of features used for training or inference
    labels: numpy array of labels for each example
    shuffle: boolean for whether to shuffle the data or not (set True for
      training, False for evaluation)
    num_epochs: number of epochs to provide the data for
    batch_size: batch size for training

  Returns:
    A tf.data.Dataset that can provide data to the Keras model for training or
      evaluation
  """
  if labels is None:
    inputs = features
  else:
    inputs = (features, labels)
  dataset = tf.data.Dataset.from_tensor_slices(inputs)

  if shuffle:
    dataset = dataset.shuffle(buffer_size=len(features))

  # We call repeat after shuffling, rather than before, to prevent separate
  # epochs from blending together.
  dataset = dataset.repeat(num_epochs)
  dataset = dataset.batch(batch_size)
  return dataset

Erstellen Sie als Nächstes diese Trainings- und Evaluierungs-Datasets. Verwenden Sie dazu die zuvor definierten Hyperparameter NUM_EPOCHS und BATCH_SIZE, um festzulegen, wie das Trainings-Dataset während des Trainings Beispiele für das Modell liefert. Richten Sie das Validierungs-Dataset so ein, dass alle Beispiele in einem Batch bereitgestellt werden, damit am Ende jeder Trainingsphase nur ein einziger Validierungsschritt erforderlich ist.

# Pass a numpy array by using DataFrame.values
training_dataset = input_fn(features=train_x.values,
                    labels=train_y,
                    shuffle=True,
                    num_epochs=NUM_EPOCHS,
                    batch_size=BATCH_SIZE)

num_eval_examples = eval_x.shape[0]

# Pass a numpy array by using DataFrame.values
validation_dataset = input_fn(features=eval_x.values,
                    labels=eval_y,
                    shuffle=False,
                    num_epochs=NUM_EPOCHS,
                    batch_size=num_eval_examples)

Keras-Modell entwerfen

Entwerfen Sie Ihr neuronales Netz mit der Keras Sequential API.

Dieses neuronale Deep-Learning-Netzwerk hat mehrere verborgene Ebenen. Die letzte Ebene verwendet eine Sigmoid-Aktivierungsfunktion, um einen Wert zwischen 0 und 1 auszugeben:

  • Die Eingabeebene hat 100 Einheiten, die die ReLU-Aktivierungsfunktion verwenden.
  • Die verborgene Ebene hat 75 Einheiten, die die ReLU-Aktivierungsfunktion verwenden.
  • Die verborgene Ebene hat 50 Einheiten, die die ReLU-Aktivierungsfunktion verwenden.
  • Die verborgene Ebene hat 25 Einheiten, die die ReLU-Aktivierungsfunktion verwenden.
  • Die Ausgabeebene hat 1 Einheit, die eine Sigmoid-Aktivierungsfunktion verwendet.
  • Die Optimierung verwendet die binäre Kreuzentropie-Verlustfunktion, die für ein binäres Klassifizierungsproblem wie dieses geeignet ist.

Sie können diese Ebenen nach Belieben ändern, wenn Sie versuchen möchten, das Modell zu verbessern:

def create_keras_model(input_dim, learning_rate):
  """Creates Keras Model for Binary Classification.

  Args:
    input_dim: How many features the input has
    learning_rate: Learning rate for training

  Returns:
    The compiled Keras model (still needs to be trained)
  """
  Dense = tf.keras.layers.Dense
  model = tf.keras.Sequential(
    [
        Dense(100, activation=tf.nn.relu, kernel_initializer='uniform',
                input_shape=(input_dim,)),
        Dense(75, activation=tf.nn.relu),
        Dense(50, activation=tf.nn.relu),
        Dense(25, activation=tf.nn.relu),
        Dense(1, activation=tf.nn.sigmoid)
    ])

  # Custom Optimizer:
  # https://www.tensorflow.org/api_docs/python/tf/train/RMSPropOptimizer
  optimizer = tf.keras.optimizers.RMSprop(
      lr=learning_rate)

  # Compile Keras model
  model.compile(
      loss='binary_crossentropy', optimizer=optimizer, metrics=['accuracy'])
  return model

Als Nächstes erstellen Sie das Keras-Modellobjekt:

num_train_examples, input_dim = train_x.shape
print('Number of features: {}'.format(input_dim))
print('Number of examples: {}'.format(num_train_examples))

keras_model = create_keras_model(
    input_dim=input_dim,
    learning_rate=LEARNING_RATE)

Bei Prüfung des Modells mit keras_model.summary() sollte in etwa Folgendes zurückgegeben werden:

Number of features: 11
Number of examples: 32561
WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/tensorflow/python/ops/resource_variable_ops.py:435: colocate_with (from tensorflow.python.framework.ops) is deprecated and will be removed in a future version.
Instructions for updating:
Colocations handled automatically by placer.
_________________________________________________________________
Layer (type)                 Output Shape              Param #
=================================================================
dense (Dense)                (None, 100)               1200
_________________________________________________________________
dense_1 (Dense)              (None, 75)                7575
_________________________________________________________________
dense_2 (Dense)              (None, 50)                3800
_________________________________________________________________
dense_3 (Dense)              (None, 25)                1275
_________________________________________________________________
dense_4 (Dense)              (None, 1)                 26
=================================================================
Total params: 13,876
Trainable params: 13,876
Non-trainable params: 0
_________________________________________________________________

Modell trainieren und evaluieren

Definieren Sie eine Abnahme der Lernrate, um zu ermutigen, dass Modellparameter im Laufe des Trainings kleinere Änderungen vornehmen:

# Setup Learning Rate decay.
lr_decay_cb = tf.keras.callbacks.LearningRateScheduler(
    lambda epoch: LEARNING_RATE + 0.02 * (0.5 ** (1 + epoch)),
    verbose=True)

# Setup TensorBoard callback.
JOB_DIR = os.getenv('JOB_DIR')
tensorboard_cb = tf.keras.callbacks.TensorBoard(
      os.path.join(JOB_DIR, 'keras_tensorboard'),
      histogram_freq=1)

Anschließend trainieren Sie das Modell. Stellen Sie die entsprechende steps_per_epoch-Phase für das Modell bereit, damit während jeder Phase das gesamte Trainings-Dataset (mit BATCH_SIZE-Beispielen pro Schritt) trainiert wird. Außerdem sollten Sie festlegen, dass das Modell die Validierungsgenauigkeit mit einem großen Validierungsbatch am Ende jeder Phase berechnet.

history = keras_model.fit(training_dataset,
                          epochs=NUM_EPOCHS,
                          steps_per_epoch=int(num_train_examples/BATCH_SIZE),
                          validation_data=validation_dataset,
                          validation_steps=1,
                          callbacks=[lr_decay_cb, tensorboard_cb],
                          verbose=1)

Der Trainingsfortschritt kann etwa so aussehen:

WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/tensorflow/python/ops/math_ops.py:3066: to_int32 (from tensorflow.python.ops.math_ops) is deprecated and will be removed in a future version.
Instructions for updating:
Use tf.cast instead.

Epoch 00001: LearningRateScheduler reducing learning rate to 0.02.
Epoch 1/20
254/254 [==============================] - 1s 5ms/step - loss: 0.6986 - acc: 0.7893 - val_loss: 0.3894 - val_acc: 0.8329

Epoch 00002: LearningRateScheduler reducing learning rate to 0.015.
Epoch 2/20
254/254 [==============================] - 1s 4ms/step - loss: 0.3574 - acc: 0.8335 - val_loss: 0.3861 - val_acc: 0.8131

...

Epoch 00019: LearningRateScheduler reducing learning rate to 0.010000038146972657.
Epoch 19/20
254/254 [==============================] - 1s 4ms/step - loss: 0.3239 - acc: 0.8512 - val_loss: 0.3334 - val_acc: 0.8496

Epoch 00020: LearningRateScheduler reducing learning rate to 0.010000019073486329.
Epoch 20/20
254/254 [==============================] - 1s 4ms/step - loss: 0.3279 - acc: 0.8504 - val_loss: 0.3174 - val_acc: 0.8523

Training visualisieren und das trainierte Modell exportieren

Training visualisieren

Durch Importieren von matplotlib können Sie die Lernkurve des Modells während des Trainingszeitraums visualisieren. Gegebenenfalls müssen Sie "matplotlib" zuerst mit pip install matplotlib installieren.

from matplotlib import pyplot as plt

Stellen Sie den Verlust (binäre Kreuzentropie) und die Accuracy des Modells am Ende jeder Trainingsphase dar:

# Visualize History for Loss.
plt.title('Keras model loss')
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend(['training', 'validation'], loc='upper right')
plt.show()

# Visualize History for Accuracy.
plt.title('Keras model accuracy')
plt.ylabel('accuracy')
plt.xlabel('epoch')
plt.plot(history.history['acc'])
plt.plot(history.history['val_acc'])
plt.legend(['training', 'validation'], loc='lower right')
plt.show()

Mit der Zeit nimmt der Verlust ab und die Accuracy nimmt zu. Nähern sich die Werte jedoch einem stabilen Niveau an? Gibt es große Unterschiede zwischen den Trainings- und Validierungsmesswerten (ein Zeichen von Überanpassung)?

Lesen Sie nach, wie Sie Ihr Modell für maschinelles Lernen verbessern können. Anschließend können Sie die Hyperparameter oder die Modellarchitektur nach Belieben anpassen und neu trainieren.

Modell für die Bereitstellung exportieren

Verwenden Sie tf.contrib.saved_model.save_keras_model, um ein TensorFlow SavedModel-Verzeichnis zu exportieren. AI Platform benötigt dieses Format, wenn Sie eine Modellversionsressource erstellen.

Da nicht alle Optimierungen in das SavedModel-Format exportiert werden können, werden während des Exportvorgangs möglicherweise Warnmeldungen angezeigt. AI Platform kann das SavedModel für Vorhersagen verwenden, sofern Sie eine Bereitstellungsgrafik erfolgreich exportieren.

# Export the model to a local SavedModel directory
export_path = tf.contrib.saved_model.save_keras_model(keras_model, 'keras_export')
print("Model exported to: ", export_path)
WARNING: The TensorFlow contrib module will not be included in TensorFlow 2.0.
For more information, please see:
  * https://github.com/tensorflow/community/blob/master/rfcs/20180907-contrib-sunset.md
  * https://github.com/tensorflow/addons
If you depend on functionality not listed there, please file an issue.

WARNING:tensorflow:This model was compiled with a Keras optimizer (<tensorflow.python.keras.optimizers.RMSprop object at 0x7fc198c4e400>) but is being saved in TensorFlow format with `save_weights`. The model's weights will be saved, but unlike with TensorFlow optimizers in the TensorFlow format the optimizer's state will not be saved.

Consider using a TensorFlow optimizer from `tf.train`.
WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/engine/network.py:1436: update_checkpoint_state (from tensorflow.python.training.checkpoint_management) is deprecated and will be removed in a future version.
Instructions for updating:
Use tf.train.CheckpointManager to manage checkpoints rather than manually editing the Checkpoint proto.
WARNING:tensorflow:Model was compiled with an optimizer, but the optimizer is not from `tf.train` (e.g. `tf.train.AdagradOptimizer`). Only the serving graph was exported. The train and evaluate graphs were not added to the SavedModel.
WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/tensorflow/python/saved_model/signature_def_utils_impl.py:205: build_tensor_info (from tensorflow.python.saved_model.utils_impl) is deprecated and will be removed in a future version.
Instructions for updating:
This function will only be available through the v1 compatibility library as tf.compat.v1.saved_model.utils.build_tensor_info or tf.compat.v1.saved_model.build_tensor_info.
INFO:tensorflow:Signatures INCLUDED in export for Classify: None
INFO:tensorflow:Signatures INCLUDED in export for Regress: None
INFO:tensorflow:Signatures INCLUDED in export for Predict: ['serving_default']
INFO:tensorflow:Signatures INCLUDED in export for Train: None
INFO:tensorflow:Signatures INCLUDED in export for Eval: None
INFO:tensorflow:No assets to save.
INFO:tensorflow:No assets to write.
INFO:tensorflow:SavedModel written to: keras_export/1553710367/saved_model.pb
Model exported to:  b'keras_export/1553710367'

Sie können ein SavedModel-Verzeichnis in Ihr lokales Dateisystem oder nach Cloud Storage exportieren, sofern Sie die erforderlichen Berechtigungen haben. In der aktuellen Umgebung haben Sie Ihr Google Cloud-Konto authentifiziert und die Umgebungsvariable GOOGLE_APPLICATION_CREDENTIALS angegeben, um den Zugriff auf Cloud Storage zu gewähren. Mit AI Platform-Trainingsjobs können Modelle auch direkt nach Cloud Storage exportiert werden, da AI Platform-Dienstkonten in ihrem eigenen Projekt Zugriff auf Cloud Storage-Buckets haben.

Versuchen Sie, einen direkten Export nach Cloud Storage auszuführen:

JOB_DIR = os.getenv('JOB_DIR')

# Export the model to a SavedModel directory in Cloud Storage
export_path = tf.contrib.saved_model.save_keras_model(keras_model, JOB_DIR + '/keras_export')
print("Model exported to: ", export_path)
WARNING:tensorflow:This model was compiled with a Keras optimizer (<tensorflow.python.keras.optimizers.RMSprop object at 0x7fc198c4e400>) but is being saved in TensorFlow format with `save_weights`. The model's weights will be saved, but unlike with TensorFlow optimizers in the TensorFlow format the optimizer's state will not be saved.

Consider using a TensorFlow optimizer from `tf.train`.
WARNING:tensorflow:Model was compiled with an optimizer, but the optimizer is not from `tf.train` (e.g. `tf.train.AdagradOptimizer`). Only the serving graph was exported. The train and evaluate graphs were not added to the SavedModel.
INFO:tensorflow:Signatures INCLUDED in export for Classify: None
INFO:tensorflow:Signatures INCLUDED in export for Regress: None
INFO:tensorflow:Signatures INCLUDED in export for Predict: ['serving_default']
INFO:tensorflow:Signatures INCLUDED in export for Train: None
INFO:tensorflow:Signatures INCLUDED in export for Eval: None
INFO:tensorflow:No assets to save.
INFO:tensorflow:No assets to write.
INFO:tensorflow:SavedModel written to: gs://your-bucket-name/keras-job-dir/keras_export/1553710379/saved_model.pb
Model exported to:  b'gs://your-bucket-name/keras-job-dir/keras_export/1553710379'

Sie können dieses Modell jetzt in AI Platform bereitstellen und Vorhersagen erstellen. Führen Sie dazu die Schritte aus der Kurzanleitung für Vorhersagen aus.

Bereinigen

Wenn Sie alle für dieses Projekt verwendeten Google Cloud-Ressourcen bereinigen möchten, können Sie das Google Cloud-Projekt löschen, das Sie für diese Anleitung verwendet haben.

Alternativ können Sie mit den folgenden Befehlen einzelne Ressourcen bereinigen:

# Delete model version resource
gcloud ai-platform versions delete $MODEL_VERSION --quiet --model $MODEL_NAME

# Delete model resource
gcloud ai-platform models delete $MODEL_NAME --quiet

# Delete Cloud Storage objects that were created
gsutil -m rm -r $JOB_DIR

# If training job is still running, cancel it
gcloud ai-platform jobs cancel $JOB_NAME --quiet

Wenn Ihr Cloud Storage-Bucket keine weiteren Objekte enthält, können Sie ihn mit gsutil rm -r gs://$BUCKET_NAME löschen.

Nächste Schritte

  • Sehen Sie sich den gesamten Trainingscode an, der in diesem Handbuch verwendet wird. Dabei wird der Code so strukturiert, dass benutzerdefinierte Hyperparameter als Befehlszeilen-Flags akzeptiert werden.
  • Weitere Informationen zum Paketerstellungscode für einen AI Platform-Trainingsjob
  • Lesen Sie nach, wie Sie ein Modell bereitstellen und für Vorhersagen verwenden.