Esquema de BigQuery para los registros

En esta página, se detalla el formato y las reglas que se aplican cuando se enrutan entradas de registros de Cloud Logging a BigQuery.

Descripción general

Puedes enrutar entradas de registro de Cloud Logging a BigQuery mediante receptores. Cuando creas un receptor, debes definir un conjunto de datos de BigQuery como destino. Logging envía entradas de registro que coinciden con las reglas del receptor a las tablas particionadas que se crean en ese conjunto de datos de BigQuery.

Los esquemas de tablas de BigQuery para los datos recibidos de Cloud Logging se basan en la estructura del tipo LogEntry y el contenido de las cargas útiles de la entrada de registro. Cloud Logging también aplica reglas a fin de acortar los nombres de campo del esquema de BigQuery para los registros de auditoría y para ciertos campos de carga útil estructurados.

Logging recibe datos de registro de transmisión en BigQuery en lotes pequeños, lo que te permite consultar datos sin ejecutar un trabajo de carga. Para obtener más información, consulta Transmite datos a BigQuery. Para obtener información sobre los precios, consulta la sección de inserciones de transmisión que se encuentran en Precios de BigQuery: Precios de transferencia de datos.

Convenciones de nombres de campo

Existen algunas convenciones de nombres que aplican a los campos de entrada de registro cuando se envían registros a BigQuery:

  • Los nombres de los campos de entrada de registro no pueden superar los 128 caracteres.

  • Los nombres de los campos de entrada de registro solo pueden tener caracteres alfanuméricos. Los caracteres no compatibles se quitan de los nombres de campo y se reemplazan por caracteres de guion bajo. Por ejemplo, jsonPayload.foo%% se transformaría en jsonPayload.foo__.

    Los nombres de los campos de entrada de registro deben comenzar con un carácter alfanumérico, incluso después de la transformación. Se quitan los guiones bajos iniciales.

  • Para los campos de entrada de registro que forman parte del tipo LogEntry, los nombres de campo de BigQuery correspondientes son los mismos que los campos de entrada de registro.

  • Para cualquier campo de entrada de registro suministrado por el usuario, los nombres de campo de BigQuery correspondientes están normalizados a minúsculas, pero los nombres se conservan.

  • Para los campos en cargas útiles estructuradas, siempre que el especificador @type no esté presente, los nombres de campo correspondientes de BigQuery se normalizan a minúsculas, pero, por lo demás, se conservan los nombres.

    Para obtener más información sobre cargas útiles estructuradas en las que el especificador @type está presente, consulta en esta página Campos de carga útil con @type.

En los siguientes ejemplos, se muestra cómo se aplican estas convenciones de denominación:

Campo de entrada de registro Asignación de tipo LogEntry Nombre de campo de BigQuery
insertId insertId insertId
textPayload textPayload textPayload
httpRequest.status httpRequest.status httpRequest.status
httpRequest.requestMethod.GET httpRequest.requestMethod.[ABC] httpRequest.requestMethod.get
resource.labels.moduleid resource.labels.[ABC] resource.labels.moduleid
jsonPayload.MESSAGE jsonPayload.[ABC] jsonPayload.message
jsonPayload.myField.mySubfield jsonPayload.[ABC].[XYZ] jsonPayload.myfield.mysubfield

Campos de carga útil con @type

En esta sección, se analizan los nombres de campo del esquema de BigQuery especiales para entradas de registro cuyas cargas útiles contienen el especificador @type. Esto incluye las entradas de registro de auditoría enrutadas a BigQuery.

Las cargas útiles en las entradas de registro pueden contener datos estructurados. Cualquier campo estructurado puede incluir un especificador de tipo opcional en el siguiente formato:

@type: type.googleapis.com/[TYPE]

Las reglas de nomenclatura explican por qué el campo protoPayload de una entrada del registro de auditoría puede asignarse al campo del esquema de BigQuery protopayload_auditlog.

Reglas de nomenclatura para @type

Por lo general, los campos estructurados que tienen especificadores de tipo reciben nombres de campo de BigQuery que tienen un [TYPE] agregado a su nombre de campo. El valor de [TYPE] puede ser cualquier string.

Las reglas de denominación para @type solo se aplican al nivel superior de jsonPayload o protoPayload, se ignoran los campos anidados. Cuando se tratan campos de carga útil estructurada de nivel superior, Logging quita el prefijo type.googleapis.com.

En la siguiente tabla, por ejemplo, se muestra la asignación de los campos de carga útil estructurada de nivel superior a los nombres de campo de BigQuery:

Carga útil Carga útil @type Campo de carga útil Nombre de campo de BigQuery
jsonPayload (ninguna) statusCode jsonPayload.statusCode
jsonPayload type.googleapis.com/abc.Xyz statusCode jsonpayload_abc_xyz.statuscode
protoPayload (ninguno) statusCode protoPayload.statuscode
protoPayload type.googleapis.com/abc.Xyz statusCode protopayload_abc_xyz.statuscode

Algunas excepciones se aplican a las reglas anteriores para los campos con especificadores de tipo:

  • En los registros de solicitud de App Engine, el nombre de la carga útil en los registros enrutados a BigQuery es protoPayload, aunque la carga útil incluye un especificador de tipo.

  • Cloud Logging aplica algunas reglas especiales a fin de acortar los nombres de campo del esquema de BigQuery para los registros de auditoría. Esto se analiza en la sección Campos de registro de auditoría de esta página.

Ejemplo

En este ejemplo, se muestra cómo los campos de carga útil estructurados se nombran y se usan cuando se reciben en BigQuery.

Supongamos que una carga útil de la entrada de registro está estructurada de la siguiente manera:

jsonPayload: {
  @type: "type.googleapis.com/google.cloud.v1.CustomType"
    name_a: {
      sub_a: "A value"
    }
    name_b: {
      sub_b: 22
    }
  }

La asignación a los campos de BigQuery es la que se muestra a continuación:

  • El campo estructurado de nivel superior jsonPayload contiene un especificador @type. Su nombre de BigQuery es jsonpayload_v1_customtype.

  • Los campos anidados se tratan con las reglas de nombres estándar de BigQuery, ya que las reglas que especifican el tipo no se aplican a los campos anidados.

Por lo tanto, los siguientes nombres de BigQuery se definen para la carga útil de la entrada de registro:

  jsonpayload_v1_customtype
  jsonpayload_v1_customtype._type
  jsonpayload_v1_customtype.name_b
  jsonpayload_v1_customtype.name_b.sub_b
  jsonpayload_v1_customtype.name_a
  jsonpayload_v1_customtype.name_a.sub_a

Campos de registros de auditoría

Si no trabajas con registros de auditoría que se enrutan a BigQuery, puedes omitir esta sección.

Los campos de carga útil del registro de auditoría, protoPayload.request, protoPayload.response y protoPayload.metadata, tienen especificadores @type, pero se tratan como datos de JSON. Es decir, sus nombres del esquema de BigQuery son sus nombres de campo con Json agregado a ellos y contienen datos de string en formato JSON.

Los dos conjuntos de nombres de campo de carga útil del registro de auditoría se enumeran en la siguiente tabla:

Campo de entrada de registro Nombre de campo de BigQuery
protoPayload protopayload_auditlog
protopayload.metadata protopayload_auditlog.metadataJson
protoPayload.serviceData protopayload_auditlog.servicedata_v1_bigquery
Ejemplo: protopayload_auditlog.servicedata_v1_bigquery.tableInsertRequest
protoPayload.request protopayload_auditlog.requestJson
protoPayload.response protopayload_auditlog.responseJson

Ten en cuenta que la convención de nombres serviceData es específica de los registros de auditoría que generó BigQuery y que luego se enrutan de Cloud Logging a BigQuery. Esas entradas del registro de auditoría contienen un campo serviceData que tiene un especificador @type de type.googleapis.com/google.cloud.bigquery.logging.v1.auditdata.

Ejemplo

Una entrada del registro de auditoría generada por BigQuery tiene un campo con el siguiente nombre:

protoPayload.serviceData.tableInsertRequest

Si esta entrada de registro se enruta a BigQuery, ¿cómo se haría referencia al campo tableInsertRequest? Antes de acortar el nombre, el nombre del campo correspondiente en BigQuery sería el siguiente:

protopayload_google_cloud_audit_auditlog.servicedata_google_cloud_bigquery_logging_v1_auditdata.tableInsertRequest

Después de acortar el nombre, se hace referencia al mismo campo en las tablas de BigQuery de esta manera:

protopayload_auditlog.servicedata_v1_bigquery.tableInsertRequest

Tablas particionadas

En esta sección, se proporciona una descripción general de las tablas particionadas para los registros que se enrutan a BigQuery.

Cuando enrutas registros a un conjunto de datos de BigQuery, Logging crea tablas para contener las entradas de registro. Existen dos tipos de tablas mediante las cuales Logging organiza los datos que enruta: tablas fragmentadas por fecha y tablas particionadas. En ambos tipos de tabla, se dividen los datos de los registros en función de los campos timestamp de las entradas de registro. Sin embargo, hay dos diferencias fundamentales entre los tipos de tabla:

  • Rendimiento: en la tabla particionada, se divide una tabla grande en particiones más pequeñas para mejorar el rendimiento de las consultas y controlar mejor los costos de BigQuery mediante la reducción en la cantidad de bytes que se leen en una consulta.

  • Nomenclatura de la tabla: los tipos de tabla usan convenciones de nombres diferentes, como se explica en la siguiente sección.

Organización de la tabla

Las entradas de registro se dividen en tablas de BigQuery cuya organización y nombres se basan en los nombres de registro y las marcas de tiempo de las entradas.

Los nombres de las tablas llevan el sufijo de la fecha de calendario de la marca de tiempo UTC de la entrada de registro mediante el formato básico ISO 8601 (AAAAMMDD).

En la siguiente tabla, se muestran ejemplos sobre cómo se asignan los nombres de registros y las marcas de tiempo de muestra a los nombres de tablas en BigQuery:

Nombre del registro Entrada de registro timestamp Nombre de la tabla de BigQuery
(fragmentada por fecha)
Nombre de tabla de BigQuery
(particionada)
syslog 2017-05-23T18:19:22.135Z syslog_20170523 syslog
apache-access 2017-01-01T00:00:00.000Z apache_access_20170101 apache_access
compute.googleapis.com/activity_log 2017-12-31T23:59:59.999Z compute_googleapis_com_activity_log_20171231 compute_googleapis_com_activity_log

Crea tablas particionadas

Cuando creas un receptor para enrutar tus registros a BigQuery, puedes usar tablas fragmentadas por fecha o tablas particionadas. La selección predeterminada es una tabla fragmentada por fecha.

Para obtener instrucciones mediante Google Cloud Console, consulta Configura y administra receptores.

Para obtener instrucciones mediante la herramienta de línea de comandos de gcloud, consulta gcloud logging sinks create.

Discrepancias en el esquema

La primera entrada de registro que recibe BigQuery determina el esquema para la tabla de BigQuery de destino. BigQuery crea una tabla cuyas columnas se basan en los campos de la primera entrada de registro y sus tipos.

Una desigualdad del esquema ocurre cuando se escriben entradas de registro en la tabla de destino y se produce cualquiera de los siguientes errores:

  • Una entrada de registro posterior cambia el tipo de campo para un campo existente en la tabla.

    Por ejemplo, si el campo jsonPayload.user_id de la entrada de registro inicial es string, esa entrada de registro genera una tabla con un tipo de string para ese campo. Si luego comienzas a generar registros jsonPayload.user_id como array, eso provoca un error de coincidencia del esquema.

  • Los campos nuevos se agregan a una entrada de registro y eso hace que la cantidad de columnas en la tabla de destino supere el límite de columnas de BigQuery. Para obtener más información sobre el límite de columnas, consulta Cuotas y límites de BigQuery.

Cuando BigQuery identifica una discrepancia de esquema, crea una tabla dentro del conjunto de datos correspondiente para almacenar la información de error. El tipo de tabla determina el nombre de la tabla. Para las tablas fragmentadas por fecha, el formato de nombre es export_errors_YYYYMMDD. Para las tablas particionadas, el formato de nombre es export_errors. Para obtener más información, consulta Organización de la tabla.

Cuando se enrutan las entradas de registro, Logging envía mensajes como un lote a BigQuery. BigQuery usa las siguientes reglas para determinar en qué tabla se escriben las entradas de registro en el lote actual de mensajes:

  • Cuando se produce un cambio de tipo de campo, solo se escriben en la tabla de errores aquellas entradas de registro que generaron una discrepancia del esquema. Las entradas de registro en el lote actual de mensajes que no provocan una discrepancia de esquema se escriben en la tabla de destino original.

  • Cuando se excede el límite de columna, todas las entradas de registro en el lote actual de mensajes se escriben en la tabla de error.

La tabla de errores contiene datos de LogEntry y la información sobre la falta de coincidencia:

  • LogEntry escritos en la tabla de error:

    • logName
    • timestamp
    • receiveTimestamp
    • severity
    • insertId
    • trace
    • resource.type
  • Información de desigualdad del esquema escrita en la tabla de error:

    • Ruta de acceso completa a los recursos para el receptor de registros
    • El mensaje de error completo que muestra BigQuery
    • La entrada de registro completa; sin embargo, la entrada de registro se convierte de JSON en una string

Logging comunica las discrepancias del esquema con el proyecto de Cloud que contiene el receptor de enrutamiento de las siguientes maneras:

  • Los propietarios del proyecto reciben un correo electrónico. Los detalles incluyen el ID del proyecto de Google Cloud, el nombre del receptor y el destino.
  • En la página Actividad de Google Cloud Console, se muestra un error, Stackdriver Config error. Los detalles incluyen el nombre y el destino del receptor, y un vínculo a un ejemplo de una entrada de registro que causó el error.
  • La métrica basada en registros del sistema exports/error_count informa la cantidad total de entradas de registro que no se enrutaron debido a errores.

Si deseas corregir las discrepancias por tipo de campo para las entradas de registro posteriores, corrige el tipo de campo a fin de que coincida con el esquema actual. También puedes cambiar el nombre de la tabla o los parámetros del receptor para que Logging vuelva a crear la tabla en un conjunto de datos diferente. Para obtener instrucciones, consulta Configure and manage sinks.

Vea sus registros

A fin de obtener instrucciones para ver los registros enrutados en BigQuery, consulta Visualiza registros en destinos de receptores.