Class ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Builder (2.51.0)

public static final class ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Builder extends GeneratedMessageV3.Builder<ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Builder> implements ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrixOrBuilder

Confusion matrix of the model running the classification.

Protobuf type google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfusionMatrix

Inheritance

Object > AbstractMessageLite.Builder<MessageType,BuilderType> > AbstractMessage.Builder<BuilderType> > GeneratedMessageV3.Builder > ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Builder

Static Methods

getDescriptor()

public static final Descriptors.Descriptor getDescriptor()
Returns
Type Description
Descriptor

Methods

addAllAnnotationSpecId(Iterable<String> values)

public ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Builder addAllAnnotationSpecId(Iterable<String> values)

Output only. IDs of the annotation specs used in the confusion matrix. For Tables CLASSIFICATION

prediction_type only list of [annotation_spec_display_name-s][] is populated.

repeated string annotation_spec_id = 1;

Parameter
Name Description
values Iterable<String>

The annotationSpecId to add.

Returns
Type Description
ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Builder

This builder for chaining.

addAllDisplayName(Iterable<String> values)

public ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Builder addAllDisplayName(Iterable<String> values)

Output only. Display name of the annotation specs used in the confusion matrix, as they were at the moment of the evaluation. For Tables CLASSIFICATION

prediction_type-s, distinct values of the target column at the moment of the model evaluation are populated here.

repeated string display_name = 3;

Parameter
Name Description
values Iterable<String>

The displayName to add.

Returns
Type Description
ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Builder

This builder for chaining.

addAllRow(Iterable<? extends ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Row> values)

public ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Builder addAllRow(Iterable<? extends ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Row> values)

Output only. Rows in the confusion matrix. The number of rows is equal to the size of annotation_spec_id. row[i].example_count[j] is the number of examples that have ground truth of the annotation_spec_id[i] and are predicted as annotation_spec_id[j] by the model being evaluated.

repeated .google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfusionMatrix.Row row = 2;

Parameter
Name Description
values Iterable<? extends com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Row>
Returns
Type Description
ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Builder

addAnnotationSpecId(String value)

public ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Builder addAnnotationSpecId(String value)

Output only. IDs of the annotation specs used in the confusion matrix. For Tables CLASSIFICATION

prediction_type only list of [annotation_spec_display_name-s][] is populated.

repeated string annotation_spec_id = 1;

Parameter
Name Description
value String

The annotationSpecId to add.

Returns
Type Description
ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Builder

This builder for chaining.

addAnnotationSpecIdBytes(ByteString value)

public ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Builder addAnnotationSpecIdBytes(ByteString value)

Output only. IDs of the annotation specs used in the confusion matrix. For Tables CLASSIFICATION

prediction_type only list of [annotation_spec_display_name-s][] is populated.

repeated string annotation_spec_id = 1;

Parameter
Name Description
value ByteString

The bytes of the annotationSpecId to add.

Returns
Type Description
ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Builder

This builder for chaining.

addDisplayName(String value)

public ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Builder addDisplayName(String value)

Output only. Display name of the annotation specs used in the confusion matrix, as they were at the moment of the evaluation. For Tables CLASSIFICATION

prediction_type-s, distinct values of the target column at the moment of the model evaluation are populated here.

repeated string display_name = 3;

Parameter
Name Description
value String

The displayName to add.

Returns
Type Description
ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Builder

This builder for chaining.

addDisplayNameBytes(ByteString value)

public ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Builder addDisplayNameBytes(ByteString value)

Output only. Display name of the annotation specs used in the confusion matrix, as they were at the moment of the evaluation. For Tables CLASSIFICATION

prediction_type-s, distinct values of the target column at the moment of the model evaluation are populated here.

repeated string display_name = 3;

Parameter
Name Description
value ByteString

The bytes of the displayName to add.

Returns
Type Description
ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Builder

This builder for chaining.

addRepeatedField(Descriptors.FieldDescriptor field, Object value)

public ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Builder addRepeatedField(Descriptors.FieldDescriptor field, Object value)
Parameters
Name Description
field FieldDescriptor
value Object
Returns
Type Description
ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Builder
Overrides

addRow(ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Row value)

public ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Builder addRow(ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Row value)

Output only. Rows in the confusion matrix. The number of rows is equal to the size of annotation_spec_id. row[i].example_count[j] is the number of examples that have ground truth of the annotation_spec_id[i] and are predicted as annotation_spec_id[j] by the model being evaluated.

repeated .google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfusionMatrix.Row row = 2;

Parameter
Name Description
value ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Row
Returns
Type Description
ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Builder

addRow(ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Row.Builder builderForValue)

public ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Builder addRow(ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Row.Builder builderForValue)

Output only. Rows in the confusion matrix. The number of rows is equal to the size of annotation_spec_id. row[i].example_count[j] is the number of examples that have ground truth of the annotation_spec_id[i] and are predicted as annotation_spec_id[j] by the model being evaluated.

repeated .google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfusionMatrix.Row row = 2;

Parameter
Name Description
builderForValue ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Row.Builder
Returns
Type Description
ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Builder

addRow(int index, ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Row value)

public ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Builder addRow(int index, ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Row value)

Output only. Rows in the confusion matrix. The number of rows is equal to the size of annotation_spec_id. row[i].example_count[j] is the number of examples that have ground truth of the annotation_spec_id[i] and are predicted as annotation_spec_id[j] by the model being evaluated.

repeated .google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfusionMatrix.Row row = 2;

Parameters
Name Description
index int
value ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Row
Returns
Type Description
ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Builder

addRow(int index, ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Row.Builder builderForValue)

public ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Builder addRow(int index, ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Row.Builder builderForValue)

Output only. Rows in the confusion matrix. The number of rows is equal to the size of annotation_spec_id. row[i].example_count[j] is the number of examples that have ground truth of the annotation_spec_id[i] and are predicted as annotation_spec_id[j] by the model being evaluated.

repeated .google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfusionMatrix.Row row = 2;

Parameters
Name Description
index int
builderForValue ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Row.Builder
Returns
Type Description
ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Builder

addRowBuilder()

public ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Row.Builder addRowBuilder()

Output only. Rows in the confusion matrix. The number of rows is equal to the size of annotation_spec_id. row[i].example_count[j] is the number of examples that have ground truth of the annotation_spec_id[i] and are predicted as annotation_spec_id[j] by the model being evaluated.

repeated .google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfusionMatrix.Row row = 2;

Returns
Type Description
ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Row.Builder

addRowBuilder(int index)

public ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Row.Builder addRowBuilder(int index)

Output only. Rows in the confusion matrix. The number of rows is equal to the size of annotation_spec_id. row[i].example_count[j] is the number of examples that have ground truth of the annotation_spec_id[i] and are predicted as annotation_spec_id[j] by the model being evaluated.

repeated .google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfusionMatrix.Row row = 2;

Parameter
Name Description
index int
Returns
Type Description
ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Row.Builder

build()

public ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix build()
Returns
Type Description
ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix

buildPartial()

public ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix buildPartial()
Returns
Type Description
ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix

clear()

public ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Builder clear()
Returns
Type Description
ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Builder
Overrides

clearAnnotationSpecId()

public ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Builder clearAnnotationSpecId()

Output only. IDs of the annotation specs used in the confusion matrix. For Tables CLASSIFICATION

prediction_type only list of [annotation_spec_display_name-s][] is populated.

repeated string annotation_spec_id = 1;

Returns
Type Description
ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Builder

This builder for chaining.

clearDisplayName()

public ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Builder clearDisplayName()

Output only. Display name of the annotation specs used in the confusion matrix, as they were at the moment of the evaluation. For Tables CLASSIFICATION

prediction_type-s, distinct values of the target column at the moment of the model evaluation are populated here.

repeated string display_name = 3;

Returns
Type Description
ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Builder

This builder for chaining.

clearField(Descriptors.FieldDescriptor field)

public ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Builder clearField(Descriptors.FieldDescriptor field)
Parameter
Name Description
field FieldDescriptor
Returns
Type Description
ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Builder
Overrides

clearOneof(Descriptors.OneofDescriptor oneof)

public ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Builder clearOneof(Descriptors.OneofDescriptor oneof)
Parameter
Name Description
oneof OneofDescriptor
Returns
Type Description
ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Builder
Overrides

clearRow()

public ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Builder clearRow()

Output only. Rows in the confusion matrix. The number of rows is equal to the size of annotation_spec_id. row[i].example_count[j] is the number of examples that have ground truth of the annotation_spec_id[i] and are predicted as annotation_spec_id[j] by the model being evaluated.

repeated .google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfusionMatrix.Row row = 2;

Returns
Type Description
ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Builder

clone()

public ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Builder clone()
Returns
Type Description
ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Builder
Overrides

getAnnotationSpecId(int index)

public String getAnnotationSpecId(int index)

Output only. IDs of the annotation specs used in the confusion matrix. For Tables CLASSIFICATION

prediction_type only list of [annotation_spec_display_name-s][] is populated.

repeated string annotation_spec_id = 1;

Parameter
Name Description
index int

The index of the element to return.

Returns
Type Description
String

The annotationSpecId at the given index.

getAnnotationSpecIdBytes(int index)

public ByteString getAnnotationSpecIdBytes(int index)

Output only. IDs of the annotation specs used in the confusion matrix. For Tables CLASSIFICATION

prediction_type only list of [annotation_spec_display_name-s][] is populated.

repeated string annotation_spec_id = 1;

Parameter
Name Description
index int

The index of the value to return.

Returns
Type Description
ByteString

The bytes of the annotationSpecId at the given index.

getAnnotationSpecIdCount()

public int getAnnotationSpecIdCount()

Output only. IDs of the annotation specs used in the confusion matrix. For Tables CLASSIFICATION

prediction_type only list of [annotation_spec_display_name-s][] is populated.

repeated string annotation_spec_id = 1;

Returns
Type Description
int

The count of annotationSpecId.

getAnnotationSpecIdList()

public ProtocolStringList getAnnotationSpecIdList()

Output only. IDs of the annotation specs used in the confusion matrix. For Tables CLASSIFICATION

prediction_type only list of [annotation_spec_display_name-s][] is populated.

repeated string annotation_spec_id = 1;

Returns
Type Description
ProtocolStringList

A list containing the annotationSpecId.

getDefaultInstanceForType()

public ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix getDefaultInstanceForType()
Returns
Type Description
ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix

getDescriptorForType()

public Descriptors.Descriptor getDescriptorForType()
Returns
Type Description
Descriptor
Overrides

getDisplayName(int index)

public String getDisplayName(int index)

Output only. Display name of the annotation specs used in the confusion matrix, as they were at the moment of the evaluation. For Tables CLASSIFICATION

prediction_type-s, distinct values of the target column at the moment of the model evaluation are populated here.

repeated string display_name = 3;

Parameter
Name Description
index int

The index of the element to return.

Returns
Type Description
String

The displayName at the given index.

getDisplayNameBytes(int index)

public ByteString getDisplayNameBytes(int index)

Output only. Display name of the annotation specs used in the confusion matrix, as they were at the moment of the evaluation. For Tables CLASSIFICATION

prediction_type-s, distinct values of the target column at the moment of the model evaluation are populated here.

repeated string display_name = 3;

Parameter
Name Description
index int

The index of the value to return.

Returns
Type Description
ByteString

The bytes of the displayName at the given index.

getDisplayNameCount()

public int getDisplayNameCount()

Output only. Display name of the annotation specs used in the confusion matrix, as they were at the moment of the evaluation. For Tables CLASSIFICATION

prediction_type-s, distinct values of the target column at the moment of the model evaluation are populated here.

repeated string display_name = 3;

Returns
Type Description
int

The count of displayName.

getDisplayNameList()

public ProtocolStringList getDisplayNameList()

Output only. Display name of the annotation specs used in the confusion matrix, as they were at the moment of the evaluation. For Tables CLASSIFICATION

prediction_type-s, distinct values of the target column at the moment of the model evaluation are populated here.

repeated string display_name = 3;

Returns
Type Description
ProtocolStringList

A list containing the displayName.

getRow(int index)

public ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Row getRow(int index)

Output only. Rows in the confusion matrix. The number of rows is equal to the size of annotation_spec_id. row[i].example_count[j] is the number of examples that have ground truth of the annotation_spec_id[i] and are predicted as annotation_spec_id[j] by the model being evaluated.

repeated .google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfusionMatrix.Row row = 2;

Parameter
Name Description
index int
Returns
Type Description
ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Row

getRowBuilder(int index)

public ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Row.Builder getRowBuilder(int index)

Output only. Rows in the confusion matrix. The number of rows is equal to the size of annotation_spec_id. row[i].example_count[j] is the number of examples that have ground truth of the annotation_spec_id[i] and are predicted as annotation_spec_id[j] by the model being evaluated.

repeated .google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfusionMatrix.Row row = 2;

Parameter
Name Description
index int
Returns
Type Description
ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Row.Builder

getRowBuilderList()

public List<ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Row.Builder> getRowBuilderList()

Output only. Rows in the confusion matrix. The number of rows is equal to the size of annotation_spec_id. row[i].example_count[j] is the number of examples that have ground truth of the annotation_spec_id[i] and are predicted as annotation_spec_id[j] by the model being evaluated.

repeated .google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfusionMatrix.Row row = 2;

Returns
Type Description
List<Builder>

getRowCount()

public int getRowCount()

Output only. Rows in the confusion matrix. The number of rows is equal to the size of annotation_spec_id. row[i].example_count[j] is the number of examples that have ground truth of the annotation_spec_id[i] and are predicted as annotation_spec_id[j] by the model being evaluated.

repeated .google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfusionMatrix.Row row = 2;

Returns
Type Description
int

getRowList()

public List<ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Row> getRowList()

Output only. Rows in the confusion matrix. The number of rows is equal to the size of annotation_spec_id. row[i].example_count[j] is the number of examples that have ground truth of the annotation_spec_id[i] and are predicted as annotation_spec_id[j] by the model being evaluated.

repeated .google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfusionMatrix.Row row = 2;

Returns
Type Description
List<Row>

getRowOrBuilder(int index)

public ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.RowOrBuilder getRowOrBuilder(int index)

Output only. Rows in the confusion matrix. The number of rows is equal to the size of annotation_spec_id. row[i].example_count[j] is the number of examples that have ground truth of the annotation_spec_id[i] and are predicted as annotation_spec_id[j] by the model being evaluated.

repeated .google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfusionMatrix.Row row = 2;

Parameter
Name Description
index int
Returns
Type Description
ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.RowOrBuilder

getRowOrBuilderList()

public List<? extends ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.RowOrBuilder> getRowOrBuilderList()

Output only. Rows in the confusion matrix. The number of rows is equal to the size of annotation_spec_id. row[i].example_count[j] is the number of examples that have ground truth of the annotation_spec_id[i] and are predicted as annotation_spec_id[j] by the model being evaluated.

repeated .google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfusionMatrix.Row row = 2;

Returns
Type Description
List<? extends com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.RowOrBuilder>

internalGetFieldAccessorTable()

protected GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable()
Returns
Type Description
FieldAccessorTable
Overrides

isInitialized()

public final boolean isInitialized()
Returns
Type Description
boolean
Overrides

mergeFrom(ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix other)

public ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Builder mergeFrom(ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix other)
Parameter
Name Description
other ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix
Returns
Type Description
ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Builder

mergeFrom(CodedInputStream input, ExtensionRegistryLite extensionRegistry)

public ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Builder mergeFrom(CodedInputStream input, ExtensionRegistryLite extensionRegistry)
Parameters
Name Description
input CodedInputStream
extensionRegistry ExtensionRegistryLite
Returns
Type Description
ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Builder
Overrides
Exceptions
Type Description
IOException

mergeFrom(Message other)

public ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Builder mergeFrom(Message other)
Parameter
Name Description
other Message
Returns
Type Description
ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Builder
Overrides

mergeUnknownFields(UnknownFieldSet unknownFields)

public final ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Builder mergeUnknownFields(UnknownFieldSet unknownFields)
Parameter
Name Description
unknownFields UnknownFieldSet
Returns
Type Description
ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Builder
Overrides

removeRow(int index)

public ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Builder removeRow(int index)

Output only. Rows in the confusion matrix. The number of rows is equal to the size of annotation_spec_id. row[i].example_count[j] is the number of examples that have ground truth of the annotation_spec_id[i] and are predicted as annotation_spec_id[j] by the model being evaluated.

repeated .google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfusionMatrix.Row row = 2;

Parameter
Name Description
index int
Returns
Type Description
ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Builder

setAnnotationSpecId(int index, String value)

public ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Builder setAnnotationSpecId(int index, String value)

Output only. IDs of the annotation specs used in the confusion matrix. For Tables CLASSIFICATION

prediction_type only list of [annotation_spec_display_name-s][] is populated.

repeated string annotation_spec_id = 1;

Parameters
Name Description
index int

The index to set the value at.

value String

The annotationSpecId to set.

Returns
Type Description
ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Builder

This builder for chaining.

setDisplayName(int index, String value)

public ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Builder setDisplayName(int index, String value)

Output only. Display name of the annotation specs used in the confusion matrix, as they were at the moment of the evaluation. For Tables CLASSIFICATION

prediction_type-s, distinct values of the target column at the moment of the model evaluation are populated here.

repeated string display_name = 3;

Parameters
Name Description
index int

The index to set the value at.

value String

The displayName to set.

Returns
Type Description
ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Builder

This builder for chaining.

setField(Descriptors.FieldDescriptor field, Object value)

public ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Builder setField(Descriptors.FieldDescriptor field, Object value)
Parameters
Name Description
field FieldDescriptor
value Object
Returns
Type Description
ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Builder
Overrides

setRepeatedField(Descriptors.FieldDescriptor field, int index, Object value)

public ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Builder setRepeatedField(Descriptors.FieldDescriptor field, int index, Object value)
Parameters
Name Description
field FieldDescriptor
index int
value Object
Returns
Type Description
ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Builder
Overrides

setRow(int index, ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Row value)

public ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Builder setRow(int index, ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Row value)

Output only. Rows in the confusion matrix. The number of rows is equal to the size of annotation_spec_id. row[i].example_count[j] is the number of examples that have ground truth of the annotation_spec_id[i] and are predicted as annotation_spec_id[j] by the model being evaluated.

repeated .google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfusionMatrix.Row row = 2;

Parameters
Name Description
index int
value ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Row
Returns
Type Description
ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Builder

setRow(int index, ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Row.Builder builderForValue)

public ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Builder setRow(int index, ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Row.Builder builderForValue)

Output only. Rows in the confusion matrix. The number of rows is equal to the size of annotation_spec_id. row[i].example_count[j] is the number of examples that have ground truth of the annotation_spec_id[i] and are predicted as annotation_spec_id[j] by the model being evaluated.

repeated .google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfusionMatrix.Row row = 2;

Parameters
Name Description
index int
builderForValue ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Row.Builder
Returns
Type Description
ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Builder

setUnknownFields(UnknownFieldSet unknownFields)

public final ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Builder setUnknownFields(UnknownFieldSet unknownFields)
Parameter
Name Description
unknownFields UnknownFieldSet
Returns
Type Description
ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Builder
Overrides