
eBook

Hex
#FC4C02

Hex
#54585A

APIs are Di!erent
than Integration
Internet & Enterprise Technologies
Unite in a New Enterprise Foundation

By Ed Anu!

© CC BY-SA

Executive Summary | 1

All Development is API Development | 2

All development is API development because all software is built as services. Rather than using web frameworks that

invoke services and produce web pages, today’s applications are built by consuming and producing APIs.

SOA Gives Way to Micro Services Everywhere | 6

The dream of SOA has become reality in micro services architecture, with applications decomposing into sets of fine-

grained services. The motivation is primarily best practices for building scalable and reliable apps using IaaS and PaaS.

Services Governance Does Not Scale | 9

API design and development is every developer’s job. A centralized services governance process owned by a special

architectural team in IT cannot maintain an iron grip on agile and decentralized API-first architectures.

Integration “Patterns” Are Not Required in the DevOps World | 11

New API development happens in a DevOps model, leveraging IaaS and PaaS, on either public or private clouds.

Integration models rooted in appliance-heritage products have no place in the automation-centric DevOps processes.

APIs Make Agile Data Possible | 13

A key di!erence between the API-centric architecture and one based on integration technologies is the way that data

is leveraged. A casualty of the transition to an API-centric architecture is the practice of ETL (extract, transform, load).

The API Architecture is the New Application Architecture | 15

Application architecture is moving beyond the integration server/app-server pattern that has characterized much

of the last decade of web app development. Applications must embrace the four-sided model of API architecture.

Conclusion | 16

White
Table of Contents

APIs are Di!erent
than Integration

http://creativecommons.org/licenses/by-sa/4.0/

© CC BY-SA

Internet & Enterprise Technologies Unite in a New Enterprise Foundation f 1

White
Executive Summary

Many developers and architects see APIs as an

evolution and continuation of the integration-

based architectures that have long been in

use within enterprise IT.

However, this is a limited view that misses the larger

realization that APIs have become a foundational

technology for the development of robust and scalable

enterprise applications. Apps are built using APIs on the

front end to connect the user experience (UX) tier

(whether HTML5 or native mobile clients).

Apps use APIs on the backend to connect to data and

services. Apps use APIs on the sides to enable other apps

to connect to their internal data and processes. And finally,

apps themselves are built out of interconnected

“micro-services”, which are wired together via APIs.

In this eBook, we explore these ideas in detail as

well as examine some of the important implications

of the movement to the API-centric architecture

that is underway within enterprise application

development today.

APIs are Di!erent
than Integration

http://creativecommons.org/licenses/by-sa/4.0/

© CC BY-SA

Internet & Enterprise Technologies Unite in a New Enterprise Foundation f 2

White

All Development
is API Development

All development is API development because

all software is built as services. Rather than

using web frameworks that invoke services

and produce web pages, today’s applications

are built by consuming and producing APIs.

The majority of enterprise software development e!orts

are focused on building web applications using web

frameworks. Java Enterprise Edition, Microsoft .NET,

Ruby-on-Rails, PHP, and a variety of other technologies

are used to implement web applications using model-

view-controller (MVC) design patterns and page template

technologies. For a decade, starting in the late 1990s, an

entire generation of developers has spent the majority of

its time building applications in this model.

APIs move to the front end

The advent of Web 2.0 brought a renaissance to rich

client development. The incompatibilities and inconsistent

implementations of JavaScript started to ease as more

and more users updated to the latest browsers.

At the same time, renewed competition in the browser

market drove more innovation and acceleration of the

implementation of web standards. HTML5 and JavaScript

made it possible for much of the interaction to run

APIs are Di!erent
than Integration

All development is API development
All development is API development
because all software is built as services.
Rather than using web frameworks that
invoke services and produce web pages,
today's applications are built by con-
suming and producing APIs. Mobile and
HTML5/JavaScript have accelerated this.

http://creativecommons.org/licenses/by-sa/4.0/

© CC BY-SA

Internet & Enterprise Technologies Unite in a New Enterprise Foundation f 3

White

All Development is API Development

in the browser rather than to be orchestrated via page-

based flows. It became necessary for the web application

developer to create APIs to allow communication

between the browser and the server. The early uses of

this were for simple interactions, such as the ubiquitous

“type-ahead” auto-completion, where the user is

prompted with words, phrases, or names as they enter

data. Each keystroke on the browser invokes an API call to

the server to retrieve the list of words with which to

prompt the user.

Over time, these techniques accumulated, with more and

more functionality that had previously been implemented

in page templates becoming replaced with API calls. The

end-result is what’s now called the “single page app” or

SPA. At this point, no user interactions are serviced via

page templates. A single web page is served and all

interactions are handled via JavaScript, which generates a

user interface via HTML5 techniques and libraries such as

jQuery. Nearly every user interaction generates API calls

to support these interactions.

As this model of web development has become common,

traditional page-based web analytics has been hampered,

and developers have had to log interactions to APIs if

they’ve wanted to have any visibility into the use of their

applications. While this was a burden at first, and

introduced a crisis to the business functions that

depended on the usage data to drive their decision-

making, developers soon found that moving to API-based

interaction analytics gave them greater abilities to

capture and analyze web usage. It became possible to

use JavaScript to observe, in much greater detail than

before, what users were doing within the applications and

where they were spending time. These analytics are then

transmitted to analytics APIs in a constant stream of

interaction data.

Mobile forces the issue

With the advent of mobile, the API-driven UX becomes

non-optional. While the web application developer could

choose the interactions to support via HTML and

JavaScript versus those driven via traditional page

templates, there was no such choice possible for mobile

developers. The mobile app represents a return to the

more strongly delineated client-server model of

development, where all interactions happen client-side

and a constant networked communications mechanism

between client and server must be maintained.

In the age of mobile, that communications mechanism

is APIs. In some cases, the same developer is charged

with building the server-side and client-side interactions,

APIs are Di!erent
than Integration

http://creativecommons.org/licenses/by-sa/4.0/

© CC BY-SA

Internet & Enterprise Technologies Unite in a New Enterprise Foundation f 4

White

APIs Open Enterprise Applications

The widespread adoption of REST, JSON,

key-based access control, and the other

basic conventions of API design means

that developers can easily build APIs into

their applications and support their usage

without undue distraction from their

central mission of application delivery.

All Development is API Development

but in other cases, such as for companies that needed to

support native iOS and Android applications, it became

necessary to have specialists building each client

implementation. Further, these specialists are often

external to the company: they can be contractors,

digital agencies, or system integrators. This means that

the application development e!ort needs to have an API

project at the heart of it, which in turn means that

application developers not only need to know how to

consume an API, but have to understand how to produce

one as well, with all the attendant issues such as API

design, API security, and API scalability.

APIs open enterprise applications

It’s not a great leap to open the rest of the application

functionality via APIs, making it possible for applications

to leverage and incorporate functionality in other

applications as needed. Integration architectures assume

that applications are developed without considering

whether to enable other applications access to their

internal data and processes. Before the conventions of

APIs were widely adopted, this was a prudent strategy.

Trying to support application-to-application integration

was an undue burden for the application developer and

was usually left as a project for another team to take on.

APIs are Di!erent
than Integration

http://creativecommons.org/licenses/by-sa/4.0/

© CC BY-SA

Internet & Enterprise Technologies Unite in a New Enterprise Foundation f 5

White

All Development is API Development

The widespread adoption of the basic conventions of

API design—RESTful design, JSON-based data, simple

versioning, and key-based access control—means that

developers can easily build APIs into their applications and

support their usage without undue distraction from their

central mission of application delivery. And because

application delivery already requires an API-centric

architecture to enable rich HTML5/JavaScript and mobile

clients, APIs will be essential elements of the project scope.

The result: when the time comes for application-to-

application integration, the need for separate integration

middleware is obviated.

APIs are Di!erent
than Integration

http://creativecommons.org/licenses/by-sa/4.0/

© CC BY-SA

Internet & Enterprise Technologies Unite in a New Enterprise Foundation f 6

White

SOA Gives Way to
Micro Services Everywhere

The dream of SOA has become reality in

micro services architecture, with applications

decomposing into sets of fine-grained services.

The motivations haven’t necessarily been

about generic service reuse as much as about

best practices for building scalable and reliable

applications using IaaS and PaaS.

Applications have embraced APIs on the front end for

connecting to rich clients; on the backend for integrating

with internal systems; and on the sides for enabling other

applications to access their internal data and processes.

The next phase of application architecture is to explode

the application into a set of component services, linked

together via APIs. This is the concept of the micro service

architecture, or MSA.

Resilient and scalable cloud deployment

for componentized applications

Modern Java applications are heavily componentized.

Using frameworks like Spring or Java CDI, applications

are assembled from a set of service components wired

together at runtime. The advantages are that large

complicated applications can be broken down into

components that can be developed by disparate teams,

applications can leverage and reuse existing components,

and components are interconnected without fragile

complex dependencies or tightly-coupled linkages.

However, while the benefits of the software development

principles behind these practices are inarguable, the

implementation of this type of architecture has generally

occurred in ways that are antithetical to the deployment

of resilient and scalable cloud deployments. The problem

has been that enterprises have embraced application

server deployments that have generally sought to run as

much of a componentized application as possible within

increasingly large server instances.

Heavyweight application server architectures, as

exemplified by the typical WebSphere or WebLogic

deployment, are exceedingly expensive to scale

elastically. The idea of firing up new server instances

on-demand based on fine-grained assessments of load

and traffic was not a central consideration in the design of

such servers. The loading up of all components in a single

JVM process within an application server means that the

entire application (and its container app server) is either

“up” or “down”—the latter condition being a catastrophic

application failure.

APIs are Di!erent
than Integration

http://creativecommons.org/licenses/by-sa/4.0/

© CC BY-SA

Internet & Enterprise Technologies Unite in a New Enterprise Foundation

Further, not all components in the application are under

equal load, yet they all must be scaled together. It’s

not easy to allocate additional computing resources to

a single component, nor is it easy to protect the other

components from one that is consuming large amounts

of CPU or memory resources. Of course, there is an

assortment of mechanisms for remote invocation of

components that obviates the need to run them all locally.

However these mechanisms typically attempt to hide the

fact that the invocation is remote from the application

developer.

The intent is to make it easy to invoke code that runs

locally or remotely, but the result is at best “magic,” and

at worse a system that is impossible for a developer

to debug. As a result, most developers distrust such

mechanisms and simply opt for provisioning very large

server instances where they can run as much as possible

inside the safety of the JVM.

However, because of the limitations of this approach,

most highly scalable and available cloud applications

tend to move to a networked component model where

applications are decomposed into “micro” services, which

can be deployed and scaled independently.

Decomposed services and polyglot

enterprise development

Rather than leveraging the more complicated traditional

enterprise mechanisms (whether the legacy RPC

approaches of CORBA and RMI or the cumbersome web

services protocols such as SOAP) many developers are

finding that the same lightweight API services that have

proven to be resilient, scalable, and agile for front-end,

back-end, and application-to-application scenarios can

also be leveraged for application assembly. This is the

essence of the micro services architecture.

 f 7

White

SOA Gives Way to Micro Services Everywhere

The Essence of Micro

Services Architecture

Today's developers eschew complicated

traditional enterprise mechanisms, and

find instead that the same lightweight

API services that have proven to be

resilient, scalable, and agile for front-end,

back-end, and application-to-application

scenarios can also be leveraged for

application assembly.

APIs are Di!erent
than Integration

http://creativecommons.org/licenses/by-sa/4.0/

© CC BY-SA

Internet & Enterprise Technologies Unite in a New Enterprise Foundation

Facets of Modern API

and App Architecture

App-to-client: Apps built using APIs on
the front end connect the UX tier.

App-to-backend: Apps use APIs on the
backend to connect to data and services.

App-to-app: Apps use APIs on the sides
to enable other apps to connect to their
internal data and processes.

Exploded apps: Apps themselves are built
out of interconnected “micro-services”
wired together via APIs.

 f 8

White

SOA Gives Way to Micro Services Everywhere

One final point about the emergence of the API-based

MSA architecture. In recent years, enterprise development

has moved to become “polyglot”, as PHP, Ruby-on-Rails,

Python, and node.js all find a home in the enterprise

toolbox. Because of this, many Java-only or JVM-only

architectural practices have become less compelling for

many organizations. This is one of the reasons why the

simple REST/JSON API, which can be built or consumed

from all popular languages and frameworks, has become

the foundation for modern architectures. It is also the

reason why the new “API generation” of developers

doesn’t see a connection between these practices

and classic SOA.

APIs are Di!erent
than Integration

App App

API

API API

API

Front
End

Back
End

App

Micro services

Micro services

http://creativecommons.org/licenses/by-sa/4.0/

© CC BY-SA

Internet & Enterprise Technologies Unite in a New Enterprise Foundation f 9

White

Services creation is a natural part of the

software development process; it happens

ad-hoc and it’s prolific. API design and

development is every developer’s job.

A centralized services governance process

owned by a special architectural team in

IT cannot maintain an iron grip on agile

and decentralized API-first architectures.

With the proliferation of API services as the connective

tissue between applications, frontends, backends,

and even within the application architecture itself, one

might think that service governance would have become

paramount in importance. Actually, the reverse has

happened. The majority of APIs are developed outside

of most service governance processes.

Culture and history can explain—at least in part. Much

of the early SOA implementations were done by central

architecture teams who were enamored of the elegance

of a unified architecture but who were removed from the

realities of day-to-day application development.

In addition, many of the concepts of distributed computing

that architecture teams worked with were still relatively

unfamiliar to most application teams. However, we’re now

at a point where an entire generation of developers has

come of age in the era of the internet.

The emergence of virtualization (and its descendants,

IaaS and PaaS) has led to the final breakage of the

centralized service governance model. Easy access to

server resources has allowed application developers the

freedom to build API services as they see fit. The micro

service architecture described in the previous section

is the direct result of the proliferation of virtualized

server instances. This has meant that putting an API into

production can often be done with little or no oversight.

It would be easy to criticize this API proliferation as

leading to an unmanageable situation. There are

legitimate concerns with such practices. Many APIs built

in this way will not be secured consistently across the

organization. Not all of the APIs will be designed as easily

reusable services and more than a few will be used for

tightly-coupled communications.

APIs are Di!erent
than Integration

Services Governance
Does Not Scale

http://creativecommons.org/licenses/by-sa/4.0/

© CC BY-SA

Internet & Enterprise Technologies Unite in a New Enterprise Foundation f 10

White

API governance has emerged as a new area of focus

in these situations, separate and distinct from SOA

governance. API governance concerns itself with

providing standardized conventions for documentation

and consistent security and access control mechanisms.

It exists in support of the application teams rather than

the centralized IT resources and as a consequence is not

prescriptive except in a few vital areas, such as defining

standards for security mechanisms including OAuth.

APIs are Di!erent
than IntegrationServices Governance Does Not Scale

API Governance for Application Teams

API governance concerns itself with

providing standardized conventions for

documentation and consistent security

and access control mechanisms. It exists

in support of the application teams

http://creativecommons.org/licenses/by-sa/4.0/

© CC BY-SA

Internet & Enterprise Technologies Unite in a New Enterprise Foundation f 11

White

Integration “Patterns” Are Not
Required in the DevOps World

APIs are Di!erent
than Integration

New API development happens in a DevOps

model, leveraging IaaS and PaaS, on either

public or private clouds. There is no need for a

separate “integration” product owned by a

special ops group in IT in order to satisfy the

new API use cases. Integration models rooted

in appliance-heritage products have no place

in the automation-centric DevOps processes.

Integration technologies are foundational components of

many IT architectures. Orchestration and transformation

of complex back-end legacy systems are necessary

functions in many settings. In addition, there is ample

evidence that SaaS services, particularly first-generation

services such as Salesforce.com, cannot avoid the

necessity of complex integration processes in order to

connect to existing enterprise systems. However, the new

API use cases (especially those driven by mobile), as well

as new API-centric or micro-service based development

e!orts, typically have little need for integration server

technologies in order to be implemented.

Speed and agility force the issue

Although integration vendors have long touted the ease

of configuration of their products as key benefits of using

their o!erings, the reality of their usage is that they are

often deployed in “set and forget” scenarios. Integrations

are built and then left alone until some form of breakage

requires them to be updated. As a consequence, most

integration servers are attended to on an infrequent basis

and they are used by the few administrators within IT

who are knowledgeable about their capabilities. For most

enterprise developers, the integration servers are a black

box, and while application developers may be clients

of the services they expose, they seldom, if ever, get

involved in the configuration of the integrations exposed.

Many vendors have delivered their solutions in the form

of appliances—as either virtualized appliances or physical

boxes running in the datacenter. This delivery vehicle

together with the fact that that many of the users of

these technologies preferred them in appliance form

demonstrates that their role is not within the mainstream

development processes.

http://creativecommons.org/licenses/by-sa/4.0/

© CC BY-SA

Internet & Enterprise Technologies Unite in a New Enterprise Foundation f 12

White

Integration “Patterns” Are Not

Required in the DevOps World

APIs are Di!erent
than Integration

The limitations of these approaches are manifest. Not

only have these products been impossible (in the case

of a physical appliance) or at least difficult to deploy in

public or private cloud environments, but their usage is

proving to be of questionable value, especially within the

increasingly common practice of DevOps.

DevOps (a portmanteau of development and operations)

is a software development method that leverages

automation to enable agile development and streamlined

deployment processes to accelerate the release of

software to production. Initially very popular within

internet companies that needed to break down the

traditional walls between development and IT operations

in order to deliver cloud-based applications at scale,

DevOps has also become a fixture within enterprise IT for

many of the same reasons. Enterprises are embracing

the same cloud techniques as internet companies and

DevOps has proven an efficient way to reduce costs

by sharing responsibilities across development and

operations teams.

APIs: Ops at the speed of Dev

The DevOps model only works when, as much as possible,

the resources within the application tier, including APIs

and the systems they connect, can be managed by the

same common set of DevOps automation tools (such

as Chef, Puppet, Ansible, or Salt, as well as version

control services such as Git). To make this automation

possible, developers are constantly looking for ways

that application configuration can drive all aspects of

the deployment process, and integration servers, which

frequently bring manually-configured dependencies to

the application delivery process, are unwelcome sources

of breakage. Developers strongly prefer coding to a

set of APIs and taking responsibility for adapting their

applications to those APIs rather than introducing black

boxes into the dependency chain.

Consider that the principal use cases where API

development occurs today occur in the application teams

who are building the front-end technologies most likely

to be aligned with DevOps. Because most web

technologies are updated and need to be deployed

at a faster cadence than would be possible in traditional

developer-to-operations hando!s, deploying web

technologies was one of the first places where DevOps

processes became necessary.

Since mobile is inherently API-centric, this further

reinforces the idea that these use cases should not be

addressed by heavyweight integration products.

Ops at the Speed of Dev

Integration models rooted in appliance-

heritage products have no place in today’s

automation-centric DevOps processes.

http://creativecommons.org/licenses/by-sa/4.0/

© CC BY-SA

Internet & Enterprise Technologies Unite in a New Enterprise Foundation f 13

White
APIs Make Agile Data Possible

APIs are Di!erent
than Integration

The final key di!erence between the API-

centric architecture and one that depends on

integration technologies is in the way that data

is leveraged in the system. One of the first

casualties of the transition to an API-centric

architecture is the practice of ETL (extract,

transform, load).

In a pre-API architecture, many organizations find it

necessary to have teams dedicated to extracting data

by reverse engineering an app’s internal structures and

accessing databases directly, bypassing application logic.

In an API-centric architecture, every app is responsible for

exposing its data in a structured way via APIs. The

extraction phase can be eliminated and transformation is

greatly simplified as a result. Another common practice is

to provide an analytics API to the application developer;

they can push data to it in the appropriate places in

their code. Often times, both techniques will be used,

allowing analytics systems to easily harvest or pull

data from various applications out of their APIs as well as

enabling the individual applications to push data into the

analytics system.

One aspect of the API-centric architecture that is

particular relevant to discussions of data is related to

the movement of interaction functionality into the client

tier, as is the case with HTML5 and mobile. This clean

separation of concerns means that most user interactions

occur over the API channel rather than within web page

presentation. As a consequence, the metadata about

context, such as user identity and interaction intent, can

be derived by observing and inspecting the API traffic.

Integration-centric architectures only cared about

connecting systems together, and in most cases context

was lost. However, the API-centric architecture allows

context to be captured for business and operational

purpose; a stream of contextual data can be sent to

business intelligence systems and the signaling for

operational monitoring systems helps ensure the overall

health of the systems.

http://creativecommons.org/licenses/by-sa/4.0/

© CC BY-SA

Internet & Enterprise Technologies Unite in a New Enterprise Foundation f 14

White

APIs Make Agile Data Possible

Context-Aware and

Predictive Applications

An API-centric architecture leverages

the API-based pull and push of

application data to feed predictive

intelligence engines, which

communicate back to the application

via APIs to drive actions.

APIs are Di!erent
than Integration

Taking this one step further, this contextual data can

be used to drive context-aware applications, enabling

the complete feedback loop. Personalization and

recommendations are common examples of this,

as are decision-support dashboards utilized by customer

service personnel.

To make this happen, the API-centric architecture

leverages the pull and push of application data to feed

predictive intelligence engines that then communicate

back to the application via APIs. With an integration-

based architecture, wiring up this kind of feedback loop

would be cumbersome at best.

But with an API-centric architecture, applications can

easily deliver the necessary data to the predictive

analytics system and application developers can

very easily leverage the resulting feedback to build

individualized user experiences by constructing and

presenting UX elements tailored to the specific user.

http://creativecommons.org/licenses/by-sa/4.0/

© CC BY-SA

Internet & Enterprise Technologies Unite in a New Enterprise Foundation f 15

White

APIs are Di!erent
than Integration

The API Architecture is the
New Application Architecture

As business drives the demand for

contextually-aware, highly personalized,

predictive applications, delivered to new types

of clients, and which are built in tighter and

tighter timeframes and deployed at ever

higher levels of scale, the application

architecture has to move beyond the

integration server/application-server pattern

that has characterized much of the last decade

of web application development.

Applications must embrace the four-sided model of API

architecture—app-to-client, app-to-backend, app-to-app,

and the exploded app built from micro-service APIs.

Once this happens, then not only can the application be

built in an agile fashion, deployed at scale, and support

any form of future front-ends, it can also easily be

connected to every other application inside and outside

the enterprise. It can also easily share the relevant

data with analytics systems, and in turn, deliver back

data-driven, contextually-relevant actions based on

real-time feedback loops driven from those same

analytics systems.
API Architecture: The New

Application Architecture

Build applications in an agile fashion

Deploy applications at scale

Future-proof for front-end technology

Connect to every other application

inside and outside the enterprise

Personalize and recommend

with context-aware and

predictive applications

http://creativecommons.org/licenses/by-sa/4.0/

© CC BY-SA

Internet & Enterprise Technologies Unite in a New Enterprise Foundation f 16

White
Conclusion

APIs are Di!erent
than Integration

As expectations of apps reach new heights

and businesses are challenged with providing

the right content and capabilities at just the

right moment for the right person on any

number of devices, application architecture

has to move beyond the integration server/

application-server pattern formed during the

last decade of web application development.

Rather than using web frameworks that invoke services

and produce web pages, today’s applications are built

by consuming and producing APIs. Applications have

embraced APIs on the front end for connecting to rich

clients; on the backend for integrating with internal

systems; on the sides for enabling other applications to

access their internal data and processes; and within

as applications are composed of a set of component

services, linked together with APIs.

An API-centric architecture has several

important implications for today’s enterprise:

• Built for agility, scale and communication

An API- centric architecture enables applications to be

built in an agile fashion, future-proofed for new front-

end technology, deployed at scale, and easily

connected to other applications and systems inside

and outside the enterprise.

• Demise of the centralized service

governance model

 The rise of virtualization, IaaS, and PaaS as well as a

generation of internet developers with easy access to

server resources, have all led to the demise of the

centralized service governance model. SOA

governance, which focused on centralized IT resources,

has ceded ground to API governance, which focuses on

supporting the application teams and agile and

decentralized API-first architectures.

http://creativecommons.org/licenses/by-sa/4.0/

© CC BY-SA

Internet & Enterprise Technologies Unite in a New Enterprise Foundation f 17

White

Conclusion
APIs are Di!erent
than Integration

• Integration models rooted in appliance-heritage

products have no place in the automation-centric

DevOps processes

 New API use cases (especially those driven by mobile),

as well as new API-centric and micro-service based

development e!orts, typically have little need for

integration server technologies. As a result, heavyweight

integration products have given way to a model where

resources (including APIs and the systems they

connect) are managed within the application tier by

a set of DevOps automation tools designed for today’s

agile enterprise.

• APIs make agile data possible and ETL obsolete

 In an API-centric architecture, ETL (extract, transform,

load) becomes obsolete. Instead, every app is

responsible for exposing its data in a structured way

via APIs. Furthermore, the API-based pull and push of

application data enables a complete feedback loop,

and feeds predictive intelligence engines, which can

communicate back to the application via APIs to

drive actions.

Enterprises can no longer a!ord to view APIs as simply

an extension and evolution of integration-based

architectures that have long been in use within

enterprise IT. APIs and API-centric architecture have

become the foundational technology necessary for the

development and deployment of robust and scalable

enterprise applications.

http://creativecommons.org/licenses/by-sa/4.0/

© CC BY-SA

Internet & Enterprise Technologies Unite in a New Enterprise Foundation f 18

White
About Apigee

About the Author

APIs are Di!erent
than Integration

Apigee provides the leading technology platform for

digital acceleration. Through APIs and big data, Apigee

delivers the scale, insight, and agility any business

needs to compete in today’s digital world. Apigee

customers include global enterprises such as

Walgreens, eBay, Shell, Live Nation, Kaiser Permanente,

and Sears. To learn more, go to apigee.com.

Ed Anu! is a leader in product and technology strategy

at Apigee with direct responsibility for mobile and

developer products. A respected technologist, a proven

innovator, and an experienced entrepreneur, Ed has

designed and created innovative consumer

and enterprise products, defined product strategy

at early-stage and publicly traded companies, and

founded and sold several technology companies.

Share this eBook

http://creativecommons.org/licenses/by-sa/4.0/
http://twitter.com/intent/tweet?text=APIs%20!%20=%20Integration%20http://bit.ly/1lpsQEt
http://www.linkedin.com/cws/share?url=https://pages.apigee.com/ebook-apis-are-different-than-integration-reg.html
http://www.facebook.com/sharer/sharer.php?u=https://pages.apigee.com/ebook-apis-are-different-than-integration-reg.html?%20utm_medium=website&utm_campaign=eBook

