
Dedicated Server Gaming Solution | Page   1  

SolutionsCloud Platform

Dedicated Server Gaming Solution

Introduction

As the number of people who play games continues to increase, a massive amount of computing 
resources will be required to power the compelling gaming experiences. This paper presents a highly 
scalable and reliable gaming implementation that leverages Google App Engine and Google Compute 
Engine for real-time player interactions. Core game elements, such as game matchmaking and player 
customization, are powered by App Engine while Compute Engine is utilized for running dedicated game 
servers1 and common game engines.

Key points covered in this solution are:

•	 Scaling to serve hundreds to millions of players.

•	 Utilizing the Google Cloud Platform to build a fully featured game experience.

•	 Leveraging App Engine for front-end interactions and maintaining game state in the datastore.

•	 Orchestrating and autoscaling Compute Engine dedicated game servers with App Engine.

•	 Gaining business insights by analyzing massive user and game datasets.

Online gaming has grown from just a few people running game servers in their garages to millions of 
players enjoying a seamless online experience with matchmaking, in-game stores, and friend lists. These 
common game components have resulted in the development of sophisticated distributed systems 
which rival high performance computing and large scale web implementations. The fierce competition 
to develop and deliver the next “blockbuster” game or viral social sensation requires game developers 
to carefully manage their resources in order to focus on critical game components. Overprovisioning a 
cloud platform or focusing on unnecessary complexities results in significantly less human and financial 
resources to focus on gameplay or graphic assets. By utilizing Google Cloud Platform, game developers 
can focus on creating unique game experiences while taking advantage of Google’s extensive experience 
in developing distributed systems.

This solution leverages the scalability and reliability of App Engine to match players with game sessions 
running on fully managed Compute Engine game servers. App Engine is an extensible platform that can 
be used to provide required features such as user profiles, game matchmaking, in-game store, social 
communities, and mobile engagement. Ideally, App Engine can be utilized for to powering all aspects of 

1  Dedicated game servers refers to the custom binaries responsible for handling real time player interaction



Page 2 |  Dedicated Server Gaming Solution    

SolutionsCloud Platform

the online game, but developers often require access to virtual machines for running common game 
engines and software development kits (SDKs). Many aspects of this solution can also be used for a 
pure App Engine implementation, but the primary focus of this solution is the use case that requires 
dedicated game servers on Compute Engine.

The products used in this solution are:

•	 Google App Engine

	- Powers the main graphical user interface to provide game and user settings

	- Provides Matchmaking and server browsing

	- Distributes load to Compute Engine instances

	- Maintains clusters to handle player gameplay load

•	 Google Compute Engine

	- Runs custom game servers

•	 Google BigQuery

	- Analyzes massive game and user data sets

•	 Google Cloud Storage 

	- Stores game server binaries

	- Distributes game client binaries and game assets

	- Stores backup logs to process and ingest into BigQuery

Scenario

Dora has a spare moment and wants to play a few rounds of her favorite online game, Giant Robot 
Smash 5000. She opens her laptop, launches the game, and signs into her custom profile.

Before starting a competitive multiplayer match, Dora notices there are new missile launchers available 
for purchase in the game’s store. After a few quick clicks, she purchases new equipment through Google 
Wallet and configures her favorite giant walking robot.

Now Dora is ready to start a new game and save the galaxy (again) and she joins an alliance with a few 
of her friends who are currently online. The group requests to join a server running their favorite game 
mode and within a few seconds they are sitting in their mech’s cockpits, ready to accept any challenge.



Dedicated Server Gaming Solution | Page   3  

SolutionsCloud Platform

	
Figure	1.	Reference	architecture	diagram	for	an	online	gaming	solution

Key Components of the Proposed Online Gaming Solution

1 Game Server Selection

2 Player’s Game Client Connecting to Dedicated Game Server

3 In-Game Requests and Google Compute Engine Instance Health Checks

4 Autoscale Game Servers

5 Store Logs for Analysis and MapReduce 

6 Google BigQuery Analysis of Massive User and Game Datasets

Overview of the Solution

The reference architecture diagram, shown in Figure 1 below, provides a high-level overview of how 
Compute Engine and App Engine integrate to create a scalable and reliable online gaming solution. 



Page 4 |  Dedicated Server Gaming Solution    

SolutionsCloud Platform

A user starts playing a match of their favorite game by loading the local application or navigating to the 
game’s website. If it is their first time playing, all client binaries and game assets can be download from 
Cloud Storage. Although game clients for mobile devices and personal computers will vary, the core 
game features can be provided for all devices. Core features include updating user profiles, managing 
player configurations, and checking friends’ achievements. App Engine can be utilized for all these devic-
es by directly serving websites or providing a RESTful API for accessing all the required information.

The following section describes each of the key components of the proposed gaming solution (Fig. 1) in 
more detail:

1	 Game	Server	Selection 
Allowing players to join a game server and interact with other players is one of the most 
important components of the main interface. Matchmaking is an integral part of this gaming 
solution because it matches players with people in the same region and game modes. 
Depending on the search, performance, and scalability requirements, this solution can also be 
extended to include a full featured server browser and search capability by leveraging Google 
Cloud SQL, Search API, or Datastore.  
  

2	 Player’s	Game	Client	Connecting	to	Dedicated	Game	Server 
Once the player selects a server to join and the game client receives the dedicated server’s IP 
address, the player’s game client establishes a connection to the dedicated server running on 
Compute Engine and loads in-game assets.  
 
The Compute Engine game servers are responsible for handling all player interactions through 
low latency client server communication. Information about designing a multiplayer game server 
is beyond the scope of this paper. When designing multiplayer game servers, it is recommended 
to leverage existing game servers and software development kits. 

3	 In-Game	Requests	and	Compute	Engine	Instance	Health	Checks 
When a dedicated game server is running on Compute Engine, it may need to send in-game 
requests to App Engine. If a player has purchased items from a store or created custom game 
configurations, App Engine can serve as the source of truth for this information. Additionally, the 
dedicated game server can communicate back to App Engine to update player scores, statistics, 
and experience.  
 
 



Dedicated Server Gaming Solution | Page   5  

SolutionsCloud Platform

After a game match has completed, players can either remain on a game server for a new 
round or be redirected towards server matchmaking. Player’s scores, match statistics, and in-
game store recommendations can be displayed between matches. If a dedicated game server 
terminates unexpectedly, the game client must handle this event and redirect players towards 
server matchmaking for a new session.

4	 Autoscale Game Servers 
Autoscaling is one of the first background tasks that does not significantly affect gameplay, but 
is critical to building a scalable, fully featured game. This step indicates the dedicated game 
server autoscaling logic implemented by a developer in App Engine. As the number of players 
increases, virtual machine orchestration logic creates new dedicated servers to handle the 
increased load. Similarly, if the number of players decreases during the day, unused dedicated 
servers can be terminated to eliminate unnecessary expense. 

5	 Store Logs for Analysis and MapReduce  
Google Cloud Storage is recommended for storing files, such as server logs and output from 
MapReduce pipelines. The dedicated game servers on Compute Engine produce a significant 
amount of valuable data for understanding player behavior and troubleshooting software 
bugs. In order to store this data long-term, files should be regularly uploaded to Google Cloud 
Storage from Compute Engine Instances using a background process. If MapReduce pipelines 
are required for transforming and aggregating data, the relevant files can be downloaded from 
Google Cloud Storage and processed on additional Compute Engine instances. Output from 
the MapReduce jobs can be stored in Google Cloud Storage where it can be used as input for 
additional pipelines, ingested into Google BigQuery, or compiled into reports. 

6	 Google	BigQuery	Analysis	of	Massive	User	and	Game	Datasets	
Integrated into this solution is Google BigQuery, an ad-hoc query tool for analyzing massive 
datasets in real-time. When dedicated game servers are hosting millions of active players, 
billions of rows of useful data can be produced. Whether it is raw game logs or MapReduce 
output, the data can be ingested into Google BigQuery from Google Cloud Storage with a 
predefined schema. After ingestion has finished, SQL-like queries complete within seconds and 
can be used to obtain valuable information such as user engagement and the impact of game 
incentives. 
 



Page 6 |  Dedicated Server Gaming Solution    

SolutionsCloud Platform

Implementation Details

The following section provides implementation details for distributing player load and providing core 
game functionality required for creating a full-featured game experience. The primary focus of this 
solution is on the core scenario of distributing game servers to handle real time player interactions. This 
solution can be expanded to provide additional features as a full store and social community model, but 
they are outside of the scope of this paper. 

The following architecture diagram (Fig. 2)  is an overview which describe how a scalable, dedicated 
server gaming solution can be implemented.

Figure	2.	Implementation	Details		for	an	dedicated	server	gaming	solution



Dedicated Server Gaming Solution | Page   7  

SolutionsCloud Platform

Diagram Walkthrough and Implementation Details

1 Game	Server	Selection	Request	
Players use the game server browser to request a list of recommended game servers based 
on matchmaking criteria. This request is submitted through Cloud Endpoints which provide an 
authenticated RESTful API powered by App Engine. 

2 Game	Server	Matchmaking	Logic 
Server matchmaking logic provides users with a list of recommended servers. Depending on 
the scale and frequency of server matchmaking requests, there are different techniques to 
implement this solution. One approach is to use App Engine background tasks to maintain a list 
of recommended servers in each datacenter and store the list in Memcache for quick retrieval. 
The logic for recommending servers depends on the type of game. Some games, for example, 
are lowest load to minimize latency, while other games need to put people in servers so there 
are a good number of people to play against. Although Memcache provides a high performance, 
distributed memory object caching system, the recommendations must also be stored in App 
Engine Datastore in order to handle Memcache evictions. The recommendation background 
tasks can be scheduled to run every minute by the App Engine Cron service. It is important for 
the background tasks to maintain a list of recommended servers for each region since players 
usually want to connect to the lowest latency server. Other server selection techniques may 
round-robin through available servers or provide a reasonably sized list to the client so it can 
identify the lowest latency servers. More complex solutions can include tasks that maintain 
player counts, load, latency, and states for all servers. Solutions can also be designed to query 
dynamically for each request. 

3 Game	Server	Matchmaking	Results	Returned 
The results from game server matchmaking are returned to the client where the player either 
selects from a list or the client automatically determines the ideal server. 

4 Game	Client	Connects	to	Dedicated	Game	Server 
The game client attempts to connect to the IP address of the selected dedicated game server. 
If the connection fails or the server is full, the client can attempt to connect to other servers 
provided or direct the player back to server matchmaking. 
 



Page 8 |  Dedicated Server Gaming Solution    

SolutionsCloud Platform

5 Game	Server	In-Game	Requests 
After players establish a connection to the dedicated game server, the server is responsible for 
handling all events from the player and providing information about other players currently in 
the match. App Engine is utilized to maintain a consistent game experience across all dedicated 
servers by handing important events and providing player information. For example, if the 
player has a custom configuration, a request to App Engine will provide information about the 
configuration and allow the player to access all purchased items. As players gain experience 
and important in-game events occur, details can be sent to App Engine in order to maintain a 
complete view of all players. An authenticated request to Cloud Endpoints and the provided 
RESTful API is an easy way to connect the game servers to App Engine. 

6 Request	Player	Configuration 
When games allow a player to purchase items or create a custom character configuration, the 
information must be maintained in a reliable and scalable database. The App Engine Datastore 
is designed to scale for web applications that serve millions of users and the underlying Google 
Megastore technology is leveraged across Google. The App Engine Datastore is recommended 
for storing all player information because it seamlessly scales as a game grows from hundred to 
millions of players. Memcache can also be leveraged to store results from frequent App Engine 
Datastore queries in order to improve performance. Since Memcache is a finite resource, smart 
usage is encouraged. If complex SQL queries are required or MySQL must be utilized for other 
reasons, Google Cloud SQL provides a fully managed and highly available relational database-
as-a-service. Although it is tightly integrated with App Engine, Google Cloud SQL is not designed 
to scale infinitely and load testing is highly recommended in order to understand real-world 
database performance.  

7 Store	Important	In-Game	Events 
Handling and storing important events, such as players gaining experience after in-game actions, 
is a critical part of creating an addictive and engaging game. Similar to requests for player 
configuration, these requests are handled by App Engine and key information can be stored in 
the App Engine Datastore. The major difference between these two types of requests is that 
in-game events can occur at a higher frequency for all active players. For example, a player’s 
configuration may only be obtained at the start of the match whereas in-game events can 
happen every time a player’s character gains experience. Although the App Engine Datastore 
can scale to handle thousands of events from millions of users, entity groups, NoSQL and 
eventual consistency must be understood in order to eliminate potential scalability concerns. 
Detailed technical discussions about these topics are located in the App Engine developer 
documentation.



Dedicated Server Gaming Solution | Page   9  

SolutionsCloud Platform

8 Server	Heartbeat	Process 
A critical component of maintaining a healthy cluster of dedicated game servers is continual 
tracking of each server’s statistics and health. Once again, Cloud Endpoints are leveraged 
to provide an authenticated RESTful API where a process running on each Compute Engine 
instance can provide utilization statistics. Hardware related information, such as CPU and RAM 
utilization, can be provided along with game specific information, such as average player latency 
and number of players active on the server.  

9 Store	Server	Health	and	Statistics 
The Heartbeat process running on each Compute Engine instance can provide a large amount 
of valuable information. Server heartbeat logic is required to parse and store relevant data. 
Information directly relevant for autoscaling, such as the number of players active on servers 
and average latency, should be cached in Memcache for quick retrieval by the autoscaling 
backend processes. Any important values should also be stored in the App Engine Datastore 
to protect against Memcache eviction. If this information is also relevant for analytics and 
maintaining server history, it is recommended to store all historical values in a separate table 
which is utilized independently of autoscaling. 

10 Autoscale	Dedicated	Game	Servers	and	Maintain	a	Healthy	Cluster 
Although there are many approaches to autoscaling Compute Engine resources with respect to 
player load, the common component involves running a scheduled task every minute with App 
Engine Cron service. The ideal number of virtual machines can be calculated by a predetermined 
schedule or by analyzing the number of available positions in game servers or player latency. 
The other important input to autoscaling is determining the currently active healthy machine 
count by pulling recent heartbeat process data from Memcache or the App Engine Datastore. 
The difference between the ideal and current number of game servers can be utilized to create 
or delete instances. Additionally, any unhealthy servers should be configured to eliminate them 
from server selection and delete the instances once there are no players on the server. If game 
servers need to be migrated between different Compute Engine zones, the autoscaling logic can 
be used to create instances in the new zone while terminating vacant instances in the old zone. 
This is a very high-level overview of autoscaling game servers and it is strongly recommended 
to carefully implement the scaling algorithms. Focus on avoiding issues such as overshoot and 
noisy responses. Compute Engine servers are billed hourly, so in order to reduce unnecessary 
costs from unused Compute Engine instances, avoid the constant creation and deletion of 
instances. 
 



Page 10 |  Dedicated Server Gaming Solution    

SolutionsCloud Platform

11 Create	and	Delete	Dedicated	Game	Servers 
Once a game server must be deleted or created, a task is added to an App Engine task queue. 
A separate background task is responsible for pulling server maintenance tasks and executing 
Compute Engine API calls. Additional backends can be added if the number of required API 
calls increases beyond the limits of a single backend. If there are few Compute Engine API calls, 
the server maintenance can be handled by a scheduled tasks to reduce App Engine resource 
utilization. It is recommended to include a timestamp with every server maintenance task in 
order to create alerts if a backlog develops in the system. Push queues can be used as an 
alternative to pull queues and it is recommend to run load tests in order to understand how 
each autoscaling system responds under heavy utilization. Although Google does not provide a 
load testing service, common open source technology can be run on Compute Engine or third 
party services can be utilized for extensive load testing. 

12 Store	Logs	in	Google	Cloud	Storage 
From in-game server logs recording every player’s actions and movements to end-game 
statistics, many log files are generated on each game server, from in-game server logs recording 
every player’s actions and movements to end-game statistics. These files can be copied to 
Google Cloud Storage using a background process running at regular intervals. If critical data 
is stored in the files, they should be stored on persistent disk in order to prevent data loss if 
an instance terminates before the copy process has completed. Otherwise, storing files on 
ephemeral disk provides a lower cost alternative, but the disk will be deleted immediately 
after an instance terminates. Regardless of disk choice, it is always recommended to have an 
automated copy process for maintaining all logs and statistics in Google Cloud Storage. 

13 Transform	and	Process	Log	Files	
After collecting a large amount of raw log data from servers, the log files need to be cleaned, 
augmented with additional data, and aggregated to different levels. MapReduce or Extract, 
Transform, and Load tools can be leveraged to create data that can either be used for user 
facing features, such as store item recommendations, or ingested into Google BigQuery for 
analysis. 

14 Reporting	and	Analytics	 
Google BigQuery is an important part of a gaming solution as it allows ad-hoc analysis of massive 
datasets containing user and game information. For example, it can be used to determine the 
impact of gameplay incentives, such as store sales or double experience weekends, on user 
retention and engagement. Additionally, Google BigQuery maintains consistent performance as 
data scales to terabytes and billions of rows.



Dedicated Server Gaming Solution | Page   11  

SolutionsCloud Platform

Sample App 

A sample application which demonstrates the high level concepts of this solution is available and it can 
be utilized as working reference. The core functionality of the sample application is as follows:

•	 Client queries App Engine for an IP address of a dedicated game server

•	 Client starts a new game by connecting to a game server running on Compute Engine

•	 Administrators can create and delete game servers from App Engine Administration UI

•	 Compute Engine instances report load levels to App Engine periodically

•	 Administrators can view load levels of all game server Compute Engine instances

•	 App Engine automatically adds new instances to the cluster if the cluster exceeds a max load 
threshold

Please visit this site to check if the downloadable sample app, a tutorial, and more details about this app 
will become available.

Conclusion

This solution demonstrates how developers can scale their online game to support millions of players 
while providing a full-featured gaming experience. By leveraging multiple components of the Google 
Cloud Platform, developers gain the scalability and reliability of App Engine while running industry 
standard game servers on Compute Engine. This allows game developers to quickly launch, iterate, and 
scale while simultaneously focusing on delivering a great game.


