- 3.12.0 (latest)
- 3.11.0
- 3.10.0
- 3.9.0
- 3.8.0
- 3.7.0
- 3.6.0
- 3.5.0
- 3.4.0
- 3.3.0
- 3.2.0
- 3.1.0
- 3.0.0
- 2.28.0
- 2.27.0
- 2.26.0
- 2.25.0
- 2.24.0
- 2.23.0
- 2.22.0
- 2.21.0
- 2.20.0
- 2.19.0
- 2.18.0
- 2.17.0
- 2.16.0
- 2.15.0
- 2.14.0
- 2.13.0
- 2.12.0
- 2.11.0
- 2.10.0
- 2.9.0
- 2.8.0
- 2.7.0
- 2.6.0
- 2.5.0
- 2.4.0
- 2.3.0
- 2.2.0
- 2.1.0
- 2.0.0
- 1.8.0
- 1.7.0
- 1.6.0
- 1.5.0
- 1.4.0
- 1.3.0
- 1.2.0
- 1.1.0
- 1.0.0
Classes
ActiveLearningConfig
Parameters that configure the active learning pipeline. Active learning will label the data incrementally by several iterations. For every iteration, it will select a batch of data based on the sampling strategy.
AddContextArtifactsAndExecutionsRequest
Request message for [MetadataService.AddContextArtifactsAndExecutions][google.cloud.aiplatform.v1.MetadataService.AddContextArtifactsAndExecutions].
AddContextArtifactsAndExecutionsResponse
Response message for [MetadataService.AddContextArtifactsAndExecutions][google.cloud.aiplatform.v1.MetadataService.AddContextArtifactsAndExecutions].
AddContextChildrenRequest
Request message for [MetadataService.AddContextChildren][google.cloud.aiplatform.v1.MetadataService.AddContextChildren].
AddContextChildrenResponse
Response message for [MetadataService.AddContextChildren][google.cloud.aiplatform.v1.MetadataService.AddContextChildren].
AddExecutionEventsRequest
Request message for [MetadataService.AddExecutionEvents][google.cloud.aiplatform.v1.MetadataService.AddExecutionEvents].
AddExecutionEventsResponse
Response message for [MetadataService.AddExecutionEvents][google.cloud.aiplatform.v1.MetadataService.AddExecutionEvents].
AddTrialMeasurementRequest
Request message for [VizierService.AddTrialMeasurement][google.cloud.aiplatform.v1.VizierService.AddTrialMeasurement].
AnnotatedDatasetName
Resource name for the AnnotatedDataset
resource.
Annotation
Used to assign specific AnnotationSpec to a particular area of a DataItem or the whole part of the DataItem.
AnnotationName
Resource name for the Annotation
resource.
AnnotationSpec
Identifies a concept with which DataItems may be annotated with.
AnnotationSpecName
Resource name for the AnnotationSpec
resource.
Artifact
Instance of a general artifact.
Artifact.Types
Container for nested types declared in the Artifact message type.
ArtifactName
Resource name for the Artifact
resource.
Attribution
Attribution that explains a particular prediction output.
AutomaticResources
A description of resources that to large degree are decided by Vertex AI, and require only a modest additional configuration. Each Model supporting these resources documents its specific guidelines.
AutoMLDatasetName
Resource name for the AutoMLDataset
resource.
AutoMLModelName
Resource name for the AutoMLModel
resource.
AutoscalingMetricSpec
The metric specification that defines the target resource utilization (CPU utilization, accelerator's duty cycle, and so on) for calculating the desired replica count.
AvroSource
The storage details for Avro input content.
BatchCreateFeaturesOperationMetadata
Details of operations that perform batch create Features.
BatchCreateFeaturesRequest
Request message for [FeaturestoreService.BatchCreateFeatures][google.cloud.aiplatform.v1.FeaturestoreService.BatchCreateFeatures].
BatchCreateFeaturesResponse
Response message for [FeaturestoreService.BatchCreateFeatures][google.cloud.aiplatform.v1.FeaturestoreService.BatchCreateFeatures].
BatchCreateTensorboardRunsRequest
Request message for [TensorboardService.BatchCreateTensorboardRuns][google.cloud.aiplatform.v1.TensorboardService.BatchCreateTensorboardRuns].
BatchCreateTensorboardRunsResponse
Response message for [TensorboardService.BatchCreateTensorboardRuns][google.cloud.aiplatform.v1.TensorboardService.BatchCreateTensorboardRuns].
BatchCreateTensorboardTimeSeriesRequest
Request message for [TensorboardService.BatchCreateTensorboardTimeSeries][google.cloud.aiplatform.v1.TensorboardService.BatchCreateTensorboardTimeSeries].
BatchCreateTensorboardTimeSeriesResponse
Response message for [TensorboardService.BatchCreateTensorboardTimeSeries][google.cloud.aiplatform.v1.TensorboardService.BatchCreateTensorboardTimeSeries].
BatchDedicatedResources
A description of resources that are used for performing batch operations, are dedicated to a Model, and need manual configuration.
BatchImportModelEvaluationSlicesRequest
Request message for [ModelService.BatchImportModelEvaluationSlices][google.cloud.aiplatform.v1.ModelService.BatchImportModelEvaluationSlices]
BatchImportModelEvaluationSlicesResponse
Response message for [ModelService.BatchImportModelEvaluationSlices][google.cloud.aiplatform.v1.ModelService.BatchImportModelEvaluationSlices]
BatchMigrateResourcesOperationMetadata
Runtime operation information for [MigrationService.BatchMigrateResources][google.cloud.aiplatform.v1.MigrationService.BatchMigrateResources].
BatchMigrateResourcesOperationMetadata.Types
Container for nested types declared in the BatchMigrateResourcesOperationMetadata message type.
BatchMigrateResourcesOperationMetadata.Types.PartialResult
Represents a partial result in batch migration operation for one [MigrateResourceRequest][google.cloud.aiplatform.v1.MigrateResourceRequest].
BatchMigrateResourcesRequest
Request message for [MigrationService.BatchMigrateResources][google.cloud.aiplatform.v1.MigrationService.BatchMigrateResources].
BatchMigrateResourcesResponse
Response message for [MigrationService.BatchMigrateResources][google.cloud.aiplatform.v1.MigrationService.BatchMigrateResources].
BatchPredictionJob
A job that uses a [Model][google.cloud.aiplatform.v1.BatchPredictionJob.model] to produce predictions on multiple [input instances][google.cloud.aiplatform.v1.BatchPredictionJob.input_config]. If predictions for significant portion of the instances fail, the job may finish without attempting predictions for all remaining instances.
BatchPredictionJob.Types
Container for nested types declared in the BatchPredictionJob message type.
BatchPredictionJob.Types.InputConfig
Configures the input to [BatchPredictionJob][google.cloud.aiplatform.v1.BatchPredictionJob]. See [Model.supported_input_storage_formats][google.cloud.aiplatform.v1.Model.supported_input_storage_formats] for Model's supported input formats, and how instances should be expressed via any of them.
BatchPredictionJob.Types.OutputConfig
Configures the output of [BatchPredictionJob][google.cloud.aiplatform.v1.BatchPredictionJob]. See [Model.supported_output_storage_formats][google.cloud.aiplatform.v1.Model.supported_output_storage_formats] for supported output formats, and how predictions are expressed via any of them.
BatchPredictionJob.Types.OutputInfo
Further describes this job's output. Supplements [output_config][google.cloud.aiplatform.v1.BatchPredictionJob.output_config].
BatchPredictionJobName
Resource name for the BatchPredictionJob
resource.
BatchReadFeatureValuesOperationMetadata
Details of operations that batch reads Feature values.
BatchReadFeatureValuesRequest
Request message for [FeaturestoreService.BatchReadFeatureValues][google.cloud.aiplatform.v1.FeaturestoreService.BatchReadFeatureValues].
BatchReadFeatureValuesRequest.Types
Container for nested types declared in the BatchReadFeatureValuesRequest message type.
BatchReadFeatureValuesRequest.Types.EntityTypeSpec
Selects Features of an EntityType to read values of and specifies read settings.
BatchReadFeatureValuesRequest.Types.PassThroughField
Describe pass-through fields in read_instance source.
BatchReadFeatureValuesResponse
Response message for [FeaturestoreService.BatchReadFeatureValues][google.cloud.aiplatform.v1.FeaturestoreService.BatchReadFeatureValues].
BatchReadTensorboardTimeSeriesDataRequest
Request message for [TensorboardService.BatchReadTensorboardTimeSeriesData][google.cloud.aiplatform.v1.TensorboardService.BatchReadTensorboardTimeSeriesData].
BatchReadTensorboardTimeSeriesDataResponse
Response message for [TensorboardService.BatchReadTensorboardTimeSeriesData][google.cloud.aiplatform.v1.TensorboardService.BatchReadTensorboardTimeSeriesData].
BigQueryDestination
The BigQuery location for the output content.
BigQuerySource
The BigQuery location for the input content.
BlurBaselineConfig
Config for blur baseline.
When enabled, a linear path from the maximally blurred image to the input image is created. Using a blurred baseline instead of zero (black image) is motivated by the BlurIG approach explained here: https://arxiv.org/abs/2004.03383
BoolArray
A list of boolean values.
CancelBatchPredictionJobRequest
Request message for [JobService.CancelBatchPredictionJob][google.cloud.aiplatform.v1.JobService.CancelBatchPredictionJob].
CancelCustomJobRequest
Request message for [JobService.CancelCustomJob][google.cloud.aiplatform.v1.JobService.CancelCustomJob].
CancelDataLabelingJobRequest
Request message for [JobService.CancelDataLabelingJob][google.cloud.aiplatform.v1.JobService.CancelDataLabelingJob].
CancelHyperparameterTuningJobRequest
Request message for [JobService.CancelHyperparameterTuningJob][google.cloud.aiplatform.v1.JobService.CancelHyperparameterTuningJob].
CancelPipelineJobRequest
Request message for [PipelineService.CancelPipelineJob][google.cloud.aiplatform.v1.PipelineService.CancelPipelineJob].
CancelTrainingPipelineRequest
Request message for [PipelineService.CancelTrainingPipeline][google.cloud.aiplatform.v1.PipelineService.CancelTrainingPipeline].
CheckTrialEarlyStoppingStateMetatdata
This message will be placed in the metadata field of a google.longrunning.Operation associated with a CheckTrialEarlyStoppingState request.
CheckTrialEarlyStoppingStateRequest
Request message for [VizierService.CheckTrialEarlyStoppingState][google.cloud.aiplatform.v1.VizierService.CheckTrialEarlyStoppingState].
CheckTrialEarlyStoppingStateResponse
Response message for [VizierService.CheckTrialEarlyStoppingState][google.cloud.aiplatform.v1.VizierService.CheckTrialEarlyStoppingState].
CompleteTrialRequest
Request message for [VizierService.CompleteTrial][google.cloud.aiplatform.v1.VizierService.CompleteTrial].
CompletionStats
Success and error statistics of processing multiple entities (for example, DataItems or structured data rows) in batch.
ContainerRegistryDestination
The Container Registry location for the container image.
ContainerSpec
The spec of a Container.
Context
Instance of a general context.
ContextName
Resource name for the Context
resource.
CreateArtifactRequest
Request message for [MetadataService.CreateArtifact][google.cloud.aiplatform.v1.MetadataService.CreateArtifact].
CreateBatchPredictionJobRequest
Request message for [JobService.CreateBatchPredictionJob][google.cloud.aiplatform.v1.JobService.CreateBatchPredictionJob].
CreateContextRequest
Request message for [MetadataService.CreateContext][google.cloud.aiplatform.v1.MetadataService.CreateContext].
CreateCustomJobRequest
Request message for [JobService.CreateCustomJob][google.cloud.aiplatform.v1.JobService.CreateCustomJob].
CreateDataLabelingJobRequest
Request message for [JobService.CreateDataLabelingJob][google.cloud.aiplatform.v1.JobService.CreateDataLabelingJob].
CreateDatasetOperationMetadata
Runtime operation information for [DatasetService.CreateDataset][google.cloud.aiplatform.v1.DatasetService.CreateDataset].
CreateDatasetRequest
Request message for [DatasetService.CreateDataset][google.cloud.aiplatform.v1.DatasetService.CreateDataset].
CreateEndpointOperationMetadata
Runtime operation information for [EndpointService.CreateEndpoint][google.cloud.aiplatform.v1.EndpointService.CreateEndpoint].
CreateEndpointRequest
Request message for [EndpointService.CreateEndpoint][google.cloud.aiplatform.v1.EndpointService.CreateEndpoint].
CreateEntityTypeOperationMetadata
Details of operations that perform create EntityType.
CreateEntityTypeRequest
Request message for [FeaturestoreService.CreateEntityType][google.cloud.aiplatform.v1.FeaturestoreService.CreateEntityType].
CreateExecutionRequest
Request message for [MetadataService.CreateExecution][google.cloud.aiplatform.v1.MetadataService.CreateExecution].
CreateFeatureOperationMetadata
Details of operations that perform create Feature.
CreateFeatureRequest
Request message for [FeaturestoreService.CreateFeature][google.cloud.aiplatform.v1.FeaturestoreService.CreateFeature].
CreateFeaturestoreOperationMetadata
Details of operations that perform create Featurestore.
CreateFeaturestoreRequest
Request message for [FeaturestoreService.CreateFeaturestore][google.cloud.aiplatform.v1.FeaturestoreService.CreateFeaturestore].
CreateHyperparameterTuningJobRequest
Request message for [JobService.CreateHyperparameterTuningJob][google.cloud.aiplatform.v1.JobService.CreateHyperparameterTuningJob].
CreateIndexEndpointOperationMetadata
Runtime operation information for [IndexEndpointService.CreateIndexEndpoint][google.cloud.aiplatform.v1.IndexEndpointService.CreateIndexEndpoint].
CreateIndexEndpointRequest
Request message for [IndexEndpointService.CreateIndexEndpoint][google.cloud.aiplatform.v1.IndexEndpointService.CreateIndexEndpoint].
CreateIndexOperationMetadata
Runtime operation information for [IndexService.CreateIndex][google.cloud.aiplatform.v1.IndexService.CreateIndex].
CreateIndexRequest
Request message for [IndexService.CreateIndex][google.cloud.aiplatform.v1.IndexService.CreateIndex].
CreateMetadataSchemaRequest
Request message for [MetadataService.CreateMetadataSchema][google.cloud.aiplatform.v1.MetadataService.CreateMetadataSchema].
CreateMetadataStoreOperationMetadata
Details of operations that perform [MetadataService.CreateMetadataStore][google.cloud.aiplatform.v1.MetadataService.CreateMetadataStore].
CreateMetadataStoreRequest
Request message for [MetadataService.CreateMetadataStore][google.cloud.aiplatform.v1.MetadataService.CreateMetadataStore].
CreateModelDeploymentMonitoringJobRequest
Request message for [JobService.CreateModelDeploymentMonitoringJob][google.cloud.aiplatform.v1.JobService.CreateModelDeploymentMonitoringJob].
CreatePipelineJobRequest
Request message for [PipelineService.CreatePipelineJob][google.cloud.aiplatform.v1.PipelineService.CreatePipelineJob].
CreateSpecialistPoolOperationMetadata
Runtime operation information for [SpecialistPoolService.CreateSpecialistPool][google.cloud.aiplatform.v1.SpecialistPoolService.CreateSpecialistPool].
CreateSpecialistPoolRequest
Request message for [SpecialistPoolService.CreateSpecialistPool][google.cloud.aiplatform.v1.SpecialistPoolService.CreateSpecialistPool].
CreateStudyRequest
Request message for [VizierService.CreateStudy][google.cloud.aiplatform.v1.VizierService.CreateStudy].
CreateTensorboardExperimentRequest
Request message for [TensorboardService.CreateTensorboardExperiment][google.cloud.aiplatform.v1.TensorboardService.CreateTensorboardExperiment].
CreateTensorboardOperationMetadata
Details of operations that perform create Tensorboard.
CreateTensorboardRequest
Request message for [TensorboardService.CreateTensorboard][google.cloud.aiplatform.v1.TensorboardService.CreateTensorboard].
CreateTensorboardRunRequest
Request message for [TensorboardService.CreateTensorboardRun][google.cloud.aiplatform.v1.TensorboardService.CreateTensorboardRun].
CreateTensorboardTimeSeriesRequest
Request message for [TensorboardService.CreateTensorboardTimeSeries][google.cloud.aiplatform.v1.TensorboardService.CreateTensorboardTimeSeries].
CreateTrainingPipelineRequest
Request message for [PipelineService.CreateTrainingPipeline][google.cloud.aiplatform.v1.PipelineService.CreateTrainingPipeline].
CreateTrialRequest
Request message for [VizierService.CreateTrial][google.cloud.aiplatform.v1.VizierService.CreateTrial].
CsvDestination
The storage details for CSV output content.
CsvSource
The storage details for CSV input content.
CustomJob
Represents a job that runs custom workloads such as a Docker container or a Python package. A CustomJob can have multiple worker pools and each worker pool can have its own machine and input spec. A CustomJob will be cleaned up once the job enters terminal state (failed or succeeded).
CustomJobName
Resource name for the CustomJob
resource.
CustomJobSpec
Represents the spec of a CustomJob. Next Id: 15
DataItem
A piece of data in a Dataset. Could be an image, a video, a document or plain text.
DataItemName
Resource name for the DataItem
resource.
DataLabelingDatasetName
Resource name for the DataLabelingDataset
resource.
DataLabelingJob
DataLabelingJob is used to trigger a human labeling job on unlabeled data from the following Dataset:
DataLabelingJobName
Resource name for the DataLabelingJob
resource.
Dataset
A collection of DataItems and Annotations on them.
DatasetName
Resource name for the Dataset
resource.
DatasetService
The service that handles the CRUD of Vertex AI Dataset and its child resources.
DatasetService.DatasetServiceBase
Base class for server-side implementations of DatasetService
DatasetService.DatasetServiceClient
Client for DatasetService
DatasetServiceClient
DatasetService client wrapper, for convenient use.
DatasetServiceClientBuilder
Builder class for DatasetServiceClient to provide simple configuration of credentials, endpoint etc.
DatasetServiceClientImpl
DatasetService client wrapper implementation, for convenient use.
DatasetServiceSettings
Settings for DatasetServiceClient instances.
DedicatedResources
A description of resources that are dedicated to a DeployedModel, and that need a higher degree of manual configuration.
DeleteArtifactRequest
Request message for [MetadataService.DeleteArtifact][google.cloud.aiplatform.v1.MetadataService.DeleteArtifact].
DeleteBatchPredictionJobRequest
Request message for [JobService.DeleteBatchPredictionJob][google.cloud.aiplatform.v1.JobService.DeleteBatchPredictionJob].
DeleteContextRequest
Request message for [MetadataService.DeleteContext][google.cloud.aiplatform.v1.MetadataService.DeleteContext].
DeleteCustomJobRequest
Request message for [JobService.DeleteCustomJob][google.cloud.aiplatform.v1.JobService.DeleteCustomJob].
DeleteDataLabelingJobRequest
Request message for [JobService.DeleteDataLabelingJob][google.cloud.aiplatform.v1.JobService.DeleteDataLabelingJob].
DeleteDatasetRequest
Request message for [DatasetService.DeleteDataset][google.cloud.aiplatform.v1.DatasetService.DeleteDataset].
DeleteEndpointRequest
Request message for [EndpointService.DeleteEndpoint][google.cloud.aiplatform.v1.EndpointService.DeleteEndpoint].
DeleteEntityTypeRequest
Request message for [FeaturestoreService.DeleteEntityTypes][].
DeleteExecutionRequest
Request message for [MetadataService.DeleteExecution][google.cloud.aiplatform.v1.MetadataService.DeleteExecution].
DeleteFeatureRequest
Request message for [FeaturestoreService.DeleteFeature][google.cloud.aiplatform.v1.FeaturestoreService.DeleteFeature].
DeleteFeaturestoreRequest
Request message for [FeaturestoreService.DeleteFeaturestore][google.cloud.aiplatform.v1.FeaturestoreService.DeleteFeaturestore].
DeleteHyperparameterTuningJobRequest
Request message for [JobService.DeleteHyperparameterTuningJob][google.cloud.aiplatform.v1.JobService.DeleteHyperparameterTuningJob].
DeleteIndexEndpointRequest
Request message for [IndexEndpointService.DeleteIndexEndpoint][google.cloud.aiplatform.v1.IndexEndpointService.DeleteIndexEndpoint].
DeleteIndexRequest
Request message for [IndexService.DeleteIndex][google.cloud.aiplatform.v1.IndexService.DeleteIndex].
DeleteMetadataStoreOperationMetadata
Details of operations that perform [MetadataService.DeleteMetadataStore][google.cloud.aiplatform.v1.MetadataService.DeleteMetadataStore].
DeleteMetadataStoreRequest
Request message for [MetadataService.DeleteMetadataStore][google.cloud.aiplatform.v1.MetadataService.DeleteMetadataStore].
DeleteModelDeploymentMonitoringJobRequest
Request message for [JobService.DeleteModelDeploymentMonitoringJob][google.cloud.aiplatform.v1.JobService.DeleteModelDeploymentMonitoringJob].
DeleteModelRequest
Request message for [ModelService.DeleteModel][google.cloud.aiplatform.v1.ModelService.DeleteModel].
DeleteModelVersionRequest
Request message for [ModelService.DeleteModelVersion][google.cloud.aiplatform.v1.ModelService.DeleteModelVersion].
DeleteOperationMetadata
Details of operations that perform deletes of any entities.
DeletePipelineJobRequest
Request message for [PipelineService.DeletePipelineJob][google.cloud.aiplatform.v1.PipelineService.DeletePipelineJob].
DeleteSpecialistPoolRequest
Request message for [SpecialistPoolService.DeleteSpecialistPool][google.cloud.aiplatform.v1.SpecialistPoolService.DeleteSpecialistPool].
DeleteStudyRequest
Request message for [VizierService.DeleteStudy][google.cloud.aiplatform.v1.VizierService.DeleteStudy].
DeleteTensorboardExperimentRequest
Request message for [TensorboardService.DeleteTensorboardExperiment][google.cloud.aiplatform.v1.TensorboardService.DeleteTensorboardExperiment].
DeleteTensorboardRequest
Request message for [TensorboardService.DeleteTensorboard][google.cloud.aiplatform.v1.TensorboardService.DeleteTensorboard].
DeleteTensorboardRunRequest
Request message for [TensorboardService.DeleteTensorboardRun][google.cloud.aiplatform.v1.TensorboardService.DeleteTensorboardRun].
DeleteTensorboardTimeSeriesRequest
Request message for [TensorboardService.DeleteTensorboardTimeSeries][google.cloud.aiplatform.v1.TensorboardService.DeleteTensorboardTimeSeries].
DeleteTrainingPipelineRequest
Request message for [PipelineService.DeleteTrainingPipeline][google.cloud.aiplatform.v1.PipelineService.DeleteTrainingPipeline].
DeleteTrialRequest
Request message for [VizierService.DeleteTrial][google.cloud.aiplatform.v1.VizierService.DeleteTrial].
DeployedIndex
A deployment of an Index. IndexEndpoints contain one or more DeployedIndexes.
DeployedIndexAuthConfig
Used to set up the auth on the DeployedIndex's private endpoint.
DeployedIndexAuthConfig.Types
Container for nested types declared in the DeployedIndexAuthConfig message type.
DeployedIndexAuthConfig.Types.AuthProvider
Configuration for an authentication provider, including support for JSON Web Token (JWT).
DeployedIndexRef
Points to a DeployedIndex.
DeployedModel
A deployment of a Model. Endpoints contain one or more DeployedModels.
DeployedModelRef
Points to a DeployedModel.
DeployIndexOperationMetadata
Runtime operation information for [IndexEndpointService.DeployIndex][google.cloud.aiplatform.v1.IndexEndpointService.DeployIndex].
DeployIndexRequest
Request message for [IndexEndpointService.DeployIndex][google.cloud.aiplatform.v1.IndexEndpointService.DeployIndex].
DeployIndexResponse
Response message for [IndexEndpointService.DeployIndex][google.cloud.aiplatform.v1.IndexEndpointService.DeployIndex].
DeployModelOperationMetadata
Runtime operation information for [EndpointService.DeployModel][google.cloud.aiplatform.v1.EndpointService.DeployModel].
DeployModelRequest
Request message for [EndpointService.DeployModel][google.cloud.aiplatform.v1.EndpointService.DeployModel].
DeployModelResponse
Response message for [EndpointService.DeployModel][google.cloud.aiplatform.v1.EndpointService.DeployModel].
DestinationFeatureSetting
DiskSpec
Represents the spec of disk options.
DoubleArray
A list of double values.
EncryptionSpec
Represents a customer-managed encryption key spec that can be applied to a top-level resource.
Endpoint
Models are deployed into it, and afterwards Endpoint is called to obtain predictions and explanations.
EndpointName
Resource name for the Endpoint
resource.
EndpointService
A service for managing Vertex AI's Endpoints.
EndpointService.EndpointServiceBase
Base class for server-side implementations of EndpointService
EndpointService.EndpointServiceClient
Client for EndpointService
EndpointServiceClient
EndpointService client wrapper, for convenient use.
EndpointServiceClientBuilder
Builder class for EndpointServiceClient to provide simple configuration of credentials, endpoint etc.
EndpointServiceClientImpl
EndpointService client wrapper implementation, for convenient use.
EndpointServiceSettings
Settings for EndpointServiceClient instances.
EntityType
An entity type is a type of object in a system that needs to be modeled and have stored information about. For example, driver is an entity type, and driver0 is an instance of an entity type driver.
EntityTypeName
Resource name for the EntityType
resource.
EnvVar
Represents an environment variable present in a Container or Python Module.
Event
An edge describing the relationship between an Artifact and an Execution in a lineage graph.
Event.Types
Container for nested types declared in the Event message type.
ExamplesOverride
Overrides for example-based explanations.
ExamplesOverride.Types
Container for nested types declared in the ExamplesOverride message type.
ExamplesRestrictionsNamespace
Restrictions namespace for example-based explanations overrides.
Execution
Instance of a general execution.
Execution.Types
Container for nested types declared in the Execution message type.
ExecutionName
Resource name for the Execution
resource.
ExplainRequest
Request message for [PredictionService.Explain][google.cloud.aiplatform.v1.PredictionService.Explain].
ExplainResponse
Response message for [PredictionService.Explain][google.cloud.aiplatform.v1.PredictionService.Explain].
Explanation
Explanation of a prediction (provided in [PredictResponse.predictions][google.cloud.aiplatform.v1.PredictResponse.predictions]) produced by the Model on a given [instance][google.cloud.aiplatform.v1.ExplainRequest.instances].
ExplanationMetadata
Metadata describing the Model's input and output for explanation.
ExplanationMetadata.Types
Container for nested types declared in the ExplanationMetadata message type.
ExplanationMetadata.Types.InputMetadata
Metadata of the input of a feature.
Fields other than [InputMetadata.input_baselines][google.cloud.aiplatform.v1.ExplanationMetadata.InputMetadata.input_baselines] are applicable only for Models that are using Vertex AI-provided images for Tensorflow.
ExplanationMetadata.Types.InputMetadata.Types
Container for nested types declared in the InputMetadata message type.
ExplanationMetadata.Types.InputMetadata.Types.FeatureValueDomain
Domain details of the input feature value. Provides numeric information about the feature, such as its range (min, max). If the feature has been pre-processed, for example with z-scoring, then it provides information about how to recover the original feature. For example, if the input feature is an image and it has been pre-processed to obtain 0-mean and stddev = 1 values, then original_mean, and original_stddev refer to the mean and stddev of the original feature (e.g. image tensor) from which input feature (with mean = 0 and stddev = 1) was obtained.
ExplanationMetadata.Types.InputMetadata.Types.Visualization
Visualization configurations for image explanation.
ExplanationMetadata.Types.InputMetadata.Types.Visualization.Types
Container for nested types declared in the Visualization message type.
ExplanationMetadata.Types.OutputMetadata
Metadata of the prediction output to be explained.
ExplanationMetadataOverride
The [ExplanationMetadata][google.cloud.aiplatform.v1.ExplanationMetadata] entries that can be overridden at [online explanation][google.cloud.aiplatform.v1.PredictionService.Explain] time.
ExplanationMetadataOverride.Types
Container for nested types declared in the ExplanationMetadataOverride message type.
ExplanationMetadataOverride.Types.InputMetadataOverride
The [input metadata][google.cloud.aiplatform.v1.ExplanationMetadata.InputMetadata] entries to be overridden.
ExplanationParameters
Parameters to configure explaining for Model's predictions.
ExplanationSpec
Specification of Model explanation.
ExplanationSpecOverride
The [ExplanationSpec][google.cloud.aiplatform.v1.ExplanationSpec] entries that can be overridden at [online explanation][google.cloud.aiplatform.v1.PredictionService.Explain] time.
ExportDataConfig
Describes what part of the Dataset is to be exported, the destination of the export and how to export.
ExportDataOperationMetadata
Runtime operation information for [DatasetService.ExportData][google.cloud.aiplatform.v1.DatasetService.ExportData].
ExportDataRequest
Request message for [DatasetService.ExportData][google.cloud.aiplatform.v1.DatasetService.ExportData].
ExportDataResponse
Response message for [DatasetService.ExportData][google.cloud.aiplatform.v1.DatasetService.ExportData].
ExportFeatureValuesOperationMetadata
Details of operations that exports Features values.
ExportFeatureValuesRequest
Request message for [FeaturestoreService.ExportFeatureValues][google.cloud.aiplatform.v1.FeaturestoreService.ExportFeatureValues].
ExportFeatureValuesRequest.Types
Container for nested types declared in the ExportFeatureValuesRequest message type.
ExportFeatureValuesRequest.Types.FullExport
Describes exporting all historical Feature values of all entities of the EntityType between [start_time, end_time].
ExportFeatureValuesRequest.Types.SnapshotExport
Describes exporting the latest Feature values of all entities of the EntityType between [start_time, snapshot_time].
ExportFeatureValuesResponse
Response message for [FeaturestoreService.ExportFeatureValues][google.cloud.aiplatform.v1.FeaturestoreService.ExportFeatureValues].
ExportModelOperationMetadata
Details of [ModelService.ExportModel][google.cloud.aiplatform.v1.ModelService.ExportModel] operation.
ExportModelOperationMetadata.Types
Container for nested types declared in the ExportModelOperationMetadata message type.
ExportModelOperationMetadata.Types.OutputInfo
Further describes the output of the ExportModel. Supplements [ExportModelRequest.OutputConfig][google.cloud.aiplatform.v1.ExportModelRequest.OutputConfig].
ExportModelRequest
Request message for [ModelService.ExportModel][google.cloud.aiplatform.v1.ModelService.ExportModel].
ExportModelRequest.Types
Container for nested types declared in the ExportModelRequest message type.
ExportModelRequest.Types.OutputConfig
Output configuration for the Model export.
ExportModelResponse
Response message of [ModelService.ExportModel][google.cloud.aiplatform.v1.ModelService.ExportModel] operation.
ExportTensorboardTimeSeriesDataRequest
Request message for [TensorboardService.ExportTensorboardTimeSeriesData][google.cloud.aiplatform.v1.TensorboardService.ExportTensorboardTimeSeriesData].
ExportTensorboardTimeSeriesDataResponse
Response message for [TensorboardService.ExportTensorboardTimeSeriesData][google.cloud.aiplatform.v1.TensorboardService.ExportTensorboardTimeSeriesData].
Feature
Feature Metadata information that describes an attribute of an entity type. For example, apple is an entity type, and color is a feature that describes apple.
Feature.Types
Container for nested types declared in the Feature message type.
Feature.Types.MonitoringStatsAnomaly
A list of historical [Snapshot Analysis][FeaturestoreMonitoringConfig.SnapshotAnalysis] or [Import Feature Analysis] [FeaturestoreMonitoringConfig.ImportFeatureAnalysis] stats requested by user, sorted by [FeatureStatsAnomaly.start_time][google.cloud.aiplatform.v1.FeatureStatsAnomaly.start_time] descending.
Feature.Types.MonitoringStatsAnomaly.Types
Container for nested types declared in the MonitoringStatsAnomaly message type.
FeatureName
Resource name for the Feature
resource.
FeatureNoiseSigma
Noise sigma by features. Noise sigma represents the standard deviation of the gaussian kernel that will be used to add noise to interpolated inputs prior to computing gradients.
FeatureNoiseSigma.Types
Container for nested types declared in the FeatureNoiseSigma message type.
FeatureNoiseSigma.Types.NoiseSigmaForFeature
Noise sigma for a single feature.
FeatureSelector
Selector for Features of an EntityType.
FeatureStatsAnomaly
Stats and Anomaly generated at specific timestamp for specific Feature. The start_time and end_time are used to define the time range of the dataset that current stats belongs to, e.g. prediction traffic is bucketed into prediction datasets by time window. If the Dataset is not defined by time window, start_time = end_time. Timestamp of the stats and anomalies always refers to end_time. Raw stats and anomalies are stored in stats_uri or anomaly_uri in the tensorflow defined protos. Field data_stats contains almost identical information with the raw stats in Vertex AI defined proto, for UI to display.
Featurestore
Vertex AI Feature Store provides a centralized repository for organizing, storing, and serving ML features. The Featurestore is a top-level container for your features and their values.
Featurestore.Types
Container for nested types declared in the Featurestore message type.
Featurestore.Types.OnlineServingConfig
OnlineServingConfig specifies the details for provisioning online serving resources.
Featurestore.Types.OnlineServingConfig.Types
Container for nested types declared in the OnlineServingConfig message type.
Featurestore.Types.OnlineServingConfig.Types.Scaling
Online serving scaling configuration. If min_node_count and max_node_count are set to the same value, the cluster will be configured with the fixed number of node (no auto-scaling).
FeaturestoreMonitoringConfig
Configuration of how features in Featurestore are monitored.
FeaturestoreMonitoringConfig.Types
Container for nested types declared in the FeaturestoreMonitoringConfig message type.
FeaturestoreMonitoringConfig.Types.ImportFeaturesAnalysis
Configuration of the Featurestore's ImportFeature Analysis Based Monitoring. This type of analysis generates statistics for values of each Feature imported by every [ImportFeatureValues][] operation.
FeaturestoreMonitoringConfig.Types.ImportFeaturesAnalysis.Types
Container for nested types declared in the ImportFeaturesAnalysis message type.
FeaturestoreMonitoringConfig.Types.SnapshotAnalysis
Configuration of the Featurestore's Snapshot Analysis Based Monitoring. This type of analysis generates statistics for each Feature based on a snapshot of the latest feature value of each entities every monitoring_interval.
FeaturestoreMonitoringConfig.Types.ThresholdConfig
The config for Featurestore Monitoring threshold.
FeaturestoreName
Resource name for the Featurestore
resource.
FeaturestoreOnlineServingService
A service for serving online feature values.
FeaturestoreOnlineServingService.FeaturestoreOnlineServingServiceBase
Base class for server-side implementations of FeaturestoreOnlineServingService
FeaturestoreOnlineServingService.FeaturestoreOnlineServingServiceClient
Client for FeaturestoreOnlineServingService
FeaturestoreOnlineServingServiceClient
FeaturestoreOnlineServingService client wrapper, for convenient use.
FeaturestoreOnlineServingServiceClient.StreamingReadFeatureValuesStream
Server streaming methods for StreamingReadFeatureValues(StreamingReadFeatureValuesRequest, CallSettings).
FeaturestoreOnlineServingServiceClientBuilder
Builder class for FeaturestoreOnlineServingServiceClient to provide simple configuration of credentials, endpoint etc.
FeaturestoreOnlineServingServiceClientImpl
FeaturestoreOnlineServingService client wrapper implementation, for convenient use.
FeaturestoreOnlineServingServiceSettings
Settings for FeaturestoreOnlineServingServiceClient instances.
FeaturestoreService
The service that handles CRUD and List for resources for Featurestore.
FeaturestoreService.FeaturestoreServiceBase
Base class for server-side implementations of FeaturestoreService
FeaturestoreService.FeaturestoreServiceClient
Client for FeaturestoreService
FeaturestoreServiceClient
FeaturestoreService client wrapper, for convenient use.
FeaturestoreServiceClientBuilder
Builder class for FeaturestoreServiceClient to provide simple configuration of credentials, endpoint etc.
FeaturestoreServiceClientImpl
FeaturestoreService client wrapper implementation, for convenient use.
FeaturestoreServiceSettings
Settings for FeaturestoreServiceClient instances.
FeatureValue
Value for a feature.
FeatureValue.Types
Container for nested types declared in the FeatureValue message type.
FeatureValue.Types.Metadata
Metadata of feature value.
FeatureValueDestination
A destination location for Feature values and format.
FeatureValueList
Container for list of values.
FilterSplit
Assigns input data to training, validation, and test sets based on the given filters, data pieces not matched by any filter are ignored. Currently only supported for Datasets containing DataItems. If any of the filters in this message are to match nothing, then they can be set as '-' (the minus sign).
Supported only for unstructured Datasets.
FractionSplit
Assigns the input data to training, validation, and test sets as per the
given fractions. Any of training_fraction
, validation_fraction
and
test_fraction
may optionally be provided, they must sum to up to 1. If the
provided ones sum to less than 1, the remainder is assigned to sets as
decided by Vertex AI. If none of the fractions are set, by default roughly
80% of data is used for training, 10% for validation, and 10% for test.
GcsDestination
The Google Cloud Storage location where the output is to be written to.
GcsSource
The Google Cloud Storage location for the input content.
GenericOperationMetadata
Generic Metadata shared by all operations.
GetAnnotationSpecRequest
Request message for [DatasetService.GetAnnotationSpec][google.cloud.aiplatform.v1.DatasetService.GetAnnotationSpec].
GetArtifactRequest
Request message for [MetadataService.GetArtifact][google.cloud.aiplatform.v1.MetadataService.GetArtifact].
GetBatchPredictionJobRequest
Request message for [JobService.GetBatchPredictionJob][google.cloud.aiplatform.v1.JobService.GetBatchPredictionJob].
GetContextRequest
Request message for [MetadataService.GetContext][google.cloud.aiplatform.v1.MetadataService.GetContext].
GetCustomJobRequest
Request message for [JobService.GetCustomJob][google.cloud.aiplatform.v1.JobService.GetCustomJob].
GetDataLabelingJobRequest
Request message for [JobService.GetDataLabelingJob][google.cloud.aiplatform.v1.JobService.GetDataLabelingJob].
GetDatasetRequest
Request message for [DatasetService.GetDataset][google.cloud.aiplatform.v1.DatasetService.GetDataset].
GetEndpointRequest
Request message for [EndpointService.GetEndpoint][google.cloud.aiplatform.v1.EndpointService.GetEndpoint]
GetEntityTypeRequest
Request message for [FeaturestoreService.GetEntityType][google.cloud.aiplatform.v1.FeaturestoreService.GetEntityType].
GetExecutionRequest
Request message for [MetadataService.GetExecution][google.cloud.aiplatform.v1.MetadataService.GetExecution].
GetFeatureRequest
Request message for [FeaturestoreService.GetFeature][google.cloud.aiplatform.v1.FeaturestoreService.GetFeature].
GetFeaturestoreRequest
Request message for [FeaturestoreService.GetFeaturestore][google.cloud.aiplatform.v1.FeaturestoreService.GetFeaturestore].
GetHyperparameterTuningJobRequest
Request message for [JobService.GetHyperparameterTuningJob][google.cloud.aiplatform.v1.JobService.GetHyperparameterTuningJob].
GetIndexEndpointRequest
Request message for [IndexEndpointService.GetIndexEndpoint][google.cloud.aiplatform.v1.IndexEndpointService.GetIndexEndpoint]
GetIndexRequest
Request message for [IndexService.GetIndex][google.cloud.aiplatform.v1.IndexService.GetIndex]
GetMetadataSchemaRequest
Request message for [MetadataService.GetMetadataSchema][google.cloud.aiplatform.v1.MetadataService.GetMetadataSchema].
GetMetadataStoreRequest
Request message for [MetadataService.GetMetadataStore][google.cloud.aiplatform.v1.MetadataService.GetMetadataStore].
GetModelDeploymentMonitoringJobRequest
Request message for [JobService.GetModelDeploymentMonitoringJob][google.cloud.aiplatform.v1.JobService.GetModelDeploymentMonitoringJob].
GetModelEvaluationRequest
Request message for [ModelService.GetModelEvaluation][google.cloud.aiplatform.v1.ModelService.GetModelEvaluation].
GetModelEvaluationSliceRequest
Request message for [ModelService.GetModelEvaluationSlice][google.cloud.aiplatform.v1.ModelService.GetModelEvaluationSlice].
GetModelRequest
Request message for [ModelService.GetModel][google.cloud.aiplatform.v1.ModelService.GetModel].
GetPipelineJobRequest
Request message for [PipelineService.GetPipelineJob][google.cloud.aiplatform.v1.PipelineService.GetPipelineJob].
GetSpecialistPoolRequest
Request message for [SpecialistPoolService.GetSpecialistPool][google.cloud.aiplatform.v1.SpecialistPoolService.GetSpecialistPool].
GetStudyRequest
Request message for [VizierService.GetStudy][google.cloud.aiplatform.v1.VizierService.GetStudy].
GetTensorboardExperimentRequest
Request message for [TensorboardService.GetTensorboardExperiment][google.cloud.aiplatform.v1.TensorboardService.GetTensorboardExperiment].
GetTensorboardRequest
Request message for [TensorboardService.GetTensorboard][google.cloud.aiplatform.v1.TensorboardService.GetTensorboard].
GetTensorboardRunRequest
Request message for [TensorboardService.GetTensorboardRun][google.cloud.aiplatform.v1.TensorboardService.GetTensorboardRun].
GetTensorboardTimeSeriesRequest
Request message for [TensorboardService.GetTensorboardTimeSeries][google.cloud.aiplatform.v1.TensorboardService.GetTensorboardTimeSeries].
GetTrainingPipelineRequest
Request message for [PipelineService.GetTrainingPipeline][google.cloud.aiplatform.v1.PipelineService.GetTrainingPipeline].
GetTrialRequest
Request message for [VizierService.GetTrial][google.cloud.aiplatform.v1.VizierService.GetTrial].
HyperparameterTuningJob
Represents a HyperparameterTuningJob. A HyperparameterTuningJob has a Study specification and multiple CustomJobs with identical CustomJob specification.
HyperparameterTuningJobName
Resource name for the HyperparameterTuningJob
resource.
IdMatcher
Matcher for Features of an EntityType by Feature ID.
ImportDataConfig
Describes the location from where we import data into a Dataset, together with the labels that will be applied to the DataItems and the Annotations.
ImportDataOperationMetadata
Runtime operation information for [DatasetService.ImportData][google.cloud.aiplatform.v1.DatasetService.ImportData].
ImportDataRequest
Request message for [DatasetService.ImportData][google.cloud.aiplatform.v1.DatasetService.ImportData].
ImportDataResponse
Response message for [DatasetService.ImportData][google.cloud.aiplatform.v1.DatasetService.ImportData].
ImportFeatureValuesOperationMetadata
Details of operations that perform import Feature values.
ImportFeatureValuesRequest
Request message for [FeaturestoreService.ImportFeatureValues][google.cloud.aiplatform.v1.FeaturestoreService.ImportFeatureValues].
ImportFeatureValuesRequest.Types
Container for nested types declared in the ImportFeatureValuesRequest message type.
ImportFeatureValuesRequest.Types.FeatureSpec
Defines the Feature value(s) to import.
ImportFeatureValuesResponse
Response message for [FeaturestoreService.ImportFeatureValues][google.cloud.aiplatform.v1.FeaturestoreService.ImportFeatureValues].
ImportModelEvaluationRequest
Request message for [ModelService.ImportModelEvaluation][google.cloud.aiplatform.v1.ModelService.ImportModelEvaluation]
Index
A representation of a collection of database items organized in a way that allows for approximate nearest neighbor (a.k.a ANN) algorithms search.
IndexEndpoint
Indexes are deployed into it. An IndexEndpoint can have multiple DeployedIndexes.
IndexEndpointName
Resource name for the IndexEndpoint
resource.
IndexEndpointService
A service for managing Vertex AI's IndexEndpoints.
IndexEndpointService.IndexEndpointServiceBase
Base class for server-side implementations of IndexEndpointService
IndexEndpointService.IndexEndpointServiceClient
Client for IndexEndpointService
IndexEndpointServiceClient
IndexEndpointService client wrapper, for convenient use.
IndexEndpointServiceClientBuilder
Builder class for IndexEndpointServiceClient to provide simple configuration of credentials, endpoint etc.
IndexEndpointServiceClientImpl
IndexEndpointService client wrapper implementation, for convenient use.
IndexEndpointServiceSettings
Settings for IndexEndpointServiceClient instances.
IndexName
Resource name for the Index
resource.
IndexPrivateEndpoints
IndexPrivateEndpoints proto is used to provide paths for users to send requests via private endpoints (e.g. private service access, private service connect). To send request via private service access, use match_grpc_address. To send request via private service connect, use service_attachment.
IndexService
A service for creating and managing Vertex AI's Index resources.
IndexService.IndexServiceBase
Base class for server-side implementations of IndexService
IndexService.IndexServiceClient
Client for IndexService
IndexServiceClient
IndexService client wrapper, for convenient use.
IndexServiceClientBuilder
Builder class for IndexServiceClient to provide simple configuration of credentials, endpoint etc.
IndexServiceClientImpl
IndexService client wrapper implementation, for convenient use.
IndexServiceSettings
Settings for IndexServiceClient instances.
InputDataConfig
Specifies Vertex AI owned input data to be used for training, and possibly evaluating, the Model.
Int64Array
A list of int64 values.
IntegratedGradientsAttribution
An attribution method that computes the Aumann-Shapley value taking advantage of the model's fully differentiable structure. Refer to this paper for more details: https://arxiv.org/abs/1703.01365
JobService
A service for creating and managing Vertex AI's jobs.
JobService.JobServiceBase
Base class for server-side implementation