Ispeziona un file locale
Mantieni tutto organizzato con le raccolte
Salva e classifica i contenuti in base alle tue preferenze.
Dimostra di trovare dati sensibili in un file di testo o immagine locale.
Per saperne di più
Per la documentazione dettagliata che include questo esempio di codice, consulta quanto segue:
Esempio di codice
Python
Per scoprire come installare e utilizzare la libreria client per Cloud DLP, consulta la pagina relativa alle librerie client di Cloud DLP.
Per eseguire l'autenticazione in Cloud DLP, configura le Credenziali predefinite dell'applicazione.
Per saperne di più, consulta
Configurare l'autenticazione per un ambiente di sviluppo locale.
import mimetypes # noqa: I100, E402
from typing import Optional # noqa: I100, E402
import google.cloud.dlp # noqa: F811, E402
def inspect_file(
project: str,
filename: str,
info_types: List[str],
min_likelihood: str = None,
custom_dictionaries: List[str] = None,
custom_regexes: List[str] = None,
max_findings: Optional[int] = None,
include_quote: bool = True,
mime_type: str = None,
) -> None:
"""Uses the Data Loss Prevention API to analyze a file for protected data.
Args:
project: The Google Cloud project id to use as a parent resource.
filename: The path to the file to inspect.
info_types: A list of strings representing info types to look for.
A full list of info type categories can be fetched from the API.
min_likelihood: A string representing the minimum likelihood threshold
that constitutes a match. One of: 'LIKELIHOOD_UNSPECIFIED',
'VERY_UNLIKELY', 'UNLIKELY', 'POSSIBLE', 'LIKELY', 'VERY_LIKELY'.
max_findings: The maximum number of findings to report; 0 = no maximum.
include_quote: Boolean for whether to display a quote of the detected
information in the results.
mime_type: The MIME type of the file. If not specified, the type is
inferred via the Python standard library's mimetypes module.
Returns:
None; the response from the API is printed to the terminal.
"""
# Instantiate a client.
dlp = google.cloud.dlp_v2.DlpServiceClient()
# Prepare info_types by converting the list of strings into a list of
# dictionaries (protos are also accepted).
if not info_types:
info_types = ["FIRST_NAME", "LAST_NAME", "EMAIL_ADDRESS"]
info_types = [{"name": info_type} for info_type in info_types]
# Prepare custom_info_types by parsing the dictionary word lists and
# regex patterns.
if custom_dictionaries is None:
custom_dictionaries = []
dictionaries = [
{
"info_type": {"name": f"CUSTOM_DICTIONARY_{i}"},
"dictionary": {"word_list": {"words": custom_dict.split(",")}},
}
for i, custom_dict in enumerate(custom_dictionaries)
]
if custom_regexes is None:
custom_regexes = []
regexes = [
{
"info_type": {"name": f"CUSTOM_REGEX_{i}"},
"regex": {"pattern": custom_regex},
}
for i, custom_regex in enumerate(custom_regexes)
]
custom_info_types = dictionaries + regexes
# Construct the configuration dictionary. Keys which are None may
# optionally be omitted entirely.
inspect_config = {
"info_types": info_types,
"custom_info_types": custom_info_types,
"min_likelihood": min_likelihood,
"include_quote": include_quote,
"limits": {"max_findings_per_request": max_findings},
}
# If mime_type is not specified, guess it from the filename.
if mime_type is None:
mime_guess = mimetypes.MimeTypes().guess_type(filename)
mime_type = mime_guess[0]
# Select the content type index from the list of supported types.
supported_content_types = {
None: 0, # "Unspecified"
"image/jpeg": 1,
"image/bmp": 2,
"image/png": 3,
"image/svg": 4,
"text/plain": 5,
}
content_type_index = supported_content_types.get(mime_type, 0)
# Construct the item, containing the file's byte data.
with open(filename, mode="rb") as f:
item = {"byte_item": {"type_": content_type_index, "data": f.read()}}
# Convert the project id into a full resource id.
parent = f"projects/{project}"
# Call the API.
response = dlp.inspect_content(
request={"parent": parent, "inspect_config": inspect_config, "item": item}
)
# Print out the results.
if response.result.findings:
for finding in response.result.findings:
try:
print(f"Quote: {finding.quote}")
except AttributeError:
pass
print(f"Info type: {finding.info_type.name}")
print(f"Likelihood: {finding.likelihood}")
else:
print("No findings.")
Salvo quando diversamente specificato, i contenuti di questa pagina sono concessi in base alla licenza Creative Commons Attribution 4.0, mentre gli esempi di codice sono concessi in base alla licenza Apache 2.0. Per ulteriori dettagli, consulta le norme del sito di Google Developers. Java è un marchio registrato di Oracle e/o delle sue consociate.
[{
"type": "thumb-down",
"id": "hardToUnderstand",
"label":"Difficile da capire"
},{
"type": "thumb-down",
"id": "incorrectInformationOrSampleCode",
"label":"Informazioni o codice di esempio errati"
},{
"type": "thumb-down",
"id": "missingTheInformationSamplesINeed",
"label":"Mancano le informazioni o gli esempi di cui ho bisogno"
},{
"type": "thumb-down",
"id": "translationIssue",
"label":"Problema di traduzione"
},{
"type": "thumb-down",
"id": "otherDown",
"label":"Altra"
}]
[{
"type": "thumb-up",
"id": "easyToUnderstand",
"label":"Facile da capire"
},{
"type": "thumb-up",
"id": "solvedMyProblem",
"label":"Il problema è stato risolto"
},{
"type": "thumb-up",
"id": "otherUp",
"label":"Altra"
}]