Computing numerical and categorical statistics

You can use Cloud Data Loss Prevention (DLP) to compute numerical and categorical numerical statistics for individual columns in BigQuery tables. Cloud DLP can calculate the following:

  • The column's minimum value
  • The column's maximum value
  • Quantile values for the column
  • A histogram of value frequencies in the column

Compute numerical statistics

You can determine minimum, maximum, and quantile values for an individual BigQuery column. To calculate these values, you configure a DlpJob, setting the NumericalStatsConfig privacy metric to the name of the column to scan. When you run the job, Cloud DLP computes statistics for the given column, returning its results in the NumericalStatsResult object. Cloud DLP can compute statistics for the following number types:

  • integer
  • float
  • date
  • datetime
  • timestamp
  • time

The statistics that a scan run returns include the minimum value, the maximum value, and 99 quantile values that partition the set of field values into 100 equal sized buckets.

Code examples

Following is sample code in several languages that demonstrates how to use Cloud DLP to calculate numerical statistics.

Java

/**
 * Calculate numerical statistics for a column in a BigQuery table using the DLP API.
 *
 * @param projectId The Google Cloud Platform project ID to run the API call under.
 * @param datasetId The BigQuery dataset to analyze.
 * @param tableId The BigQuery table to analyze.
 * @param columnName The name of the column to analyze, which must contain only numerical data.
 * @param topicId The name of the Pub/Sub topic to notify once the job completes
 * @param subscriptionId The name of the Pub/Sub subscription to use when listening for job
 *     completion status.
 */
private static void numericalStatsAnalysis(
    String projectId,
    String datasetId,
    String tableId,
    String columnName,
    String topicId,
    String subscriptionId)
    throws Exception {

  // Instantiates a client
  try (DlpServiceClient dlpServiceClient = DlpServiceClient.create()) {
    BigQueryTable bigQueryTable =
        BigQueryTable.newBuilder()
            .setTableId(tableId)
            .setDatasetId(datasetId)
            .setProjectId(projectId)
            .build();

    FieldId fieldId = FieldId.newBuilder().setName(columnName).build();

    NumericalStatsConfig numericalStatsConfig =
        NumericalStatsConfig.newBuilder().setField(fieldId).build();

    PrivacyMetric privacyMetric =
        PrivacyMetric.newBuilder().setNumericalStatsConfig(numericalStatsConfig).build();

    String topicName = String.format("projects/%s/topics/%s", projectId, topicId);

    PublishToPubSub publishToPubSub = PublishToPubSub.newBuilder().setTopic(topicName).build();

    // Create action to publish job status notifications over Google Cloud Pub/Sub
    Action action = Action.newBuilder().setPubSub(publishToPubSub).build();

    RiskAnalysisJobConfig riskAnalysisJobConfig =
        RiskAnalysisJobConfig.newBuilder()
            .setSourceTable(bigQueryTable)
            .setPrivacyMetric(privacyMetric)
            .addActions(action)
            .build();

    CreateDlpJobRequest createDlpJobRequest =
        CreateDlpJobRequest.newBuilder()
            .setParent(ProjectName.of(projectId).toString())
            .setRiskJob(riskAnalysisJobConfig)
            .build();

    DlpJob dlpJob = dlpServiceClient.createDlpJob(createDlpJobRequest);
    String dlpJobName = dlpJob.getName();

    final SettableApiFuture<Boolean> done = SettableApiFuture.create();

    // Set up a Pub/Sub subscriber to listen on the job completion status
    Subscriber subscriber =
        Subscriber.newBuilder(
                ProjectSubscriptionName.newBuilder()
                    .setProject(projectId)
                    .setSubscription(subscriptionId)
                    .build(),
          (pubsubMessage, ackReplyConsumer) -> {
            if (pubsubMessage.getAttributesCount() > 0
                && pubsubMessage.getAttributesMap().get("DlpJobName").equals(dlpJobName)) {
              // notify job completion
              done.set(true);
              ackReplyConsumer.ack();
            }
          })
            .build();
    subscriber.startAsync();

    // Wait for job completion semi-synchronously
    // For long jobs, consider using a truly asynchronous execution model such as Cloud Functions
    try {
      done.get(1, TimeUnit.MINUTES);
      Thread.sleep(500); // Wait for the job to become available
    } catch (TimeoutException e) {
      System.out.println("Unable to verify job completion.");
    }

    // Retrieve completed job status
    DlpJob completedJob =
        dlpServiceClient.getDlpJob(GetDlpJobRequest.newBuilder().setName(dlpJobName).build());

    System.out.println("Job status: " + completedJob.getState());
    AnalyzeDataSourceRiskDetails riskDetails = completedJob.getRiskDetails();
    AnalyzeDataSourceRiskDetails.NumericalStatsResult result =
        riskDetails.getNumericalStatsResult();

    System.out.printf(
        "Value range : [%.3f, %.3f]\n",
        result.getMinValue().getFloatValue(), result.getMaxValue().getFloatValue());

    int percent = 1;
    Double lastValue = null;
    for (Value quantileValue : result.getQuantileValuesList()) {
      Double currentValue = quantileValue.getFloatValue();
      if (lastValue == null || !lastValue.equals(currentValue)) {
        System.out.printf("Value at %s %% quantile : %.3f", percent, currentValue);
      }
      lastValue = currentValue;
    }
  } catch (Exception e) {
    System.out.println("Error in categoricalStatsAnalysis: " + e.getMessage());
  }
}

Node.js

// Import the Google Cloud client libraries
const DLP = require('@google-cloud/dlp');
const {PubSub} = require('@google-cloud/pubsub');

// Instantiates clients
const dlp = new DLP.DlpServiceClient();
const pubsub = new PubSub();

// The project ID to run the API call under
// const callingProjectId = process.env.GCLOUD_PROJECT;

// The project ID the table is stored under
// This may or (for public datasets) may not equal the calling project ID
// const tableProjectId = process.env.GCLOUD_PROJECT;

// The ID of the dataset to inspect, e.g. 'my_dataset'
// const datasetId = 'my_dataset';

// The ID of the table to inspect, e.g. 'my_table'
// const tableId = 'my_table';

// The name of the column to compute risk metrics for, e.g. 'age'
// Note that this column must be a numeric data type
// const columnName = 'firstName';

// The name of the Pub/Sub topic to notify once the job completes
// TODO(developer): create a Pub/Sub topic to use for this
// const topicId = 'MY-PUBSUB-TOPIC'

// The name of the Pub/Sub subscription to use when listening for job
// completion notifications
// TODO(developer): create a Pub/Sub subscription to use for this
// const subscriptionId = 'MY-PUBSUB-SUBSCRIPTION'

const sourceTable = {
  projectId: tableProjectId,
  datasetId: datasetId,
  tableId: tableId,
};

// Construct request for creating a risk analysis job
const request = {
  parent: dlp.projectPath(callingProjectId),
  riskJob: {
    privacyMetric: {
      numericalStatsConfig: {
        field: {
          name: columnName,
        },
      },
    },
    sourceTable: sourceTable,
    actions: [
      {
        pubSub: {
          topic: `projects/${callingProjectId}/topics/${topicId}`,
        },
      },
    ],
  },
};

// Create helper function for unpacking values
const getValue = obj => obj[Object.keys(obj)[0]];

try {
  // Run risk analysis job
  const [topicResponse] = await pubsub.topic(topicId).get();
  const subscription = await topicResponse.subscription(subscriptionId);
  const [jobsResponse] = await dlp.createDlpJob(request);
  const jobName = jobsResponse.name;
  // Watch the Pub/Sub topic until the DLP job finishes
  await new Promise((resolve, reject) => {
    const messageHandler = message => {
      if (message.attributes && message.attributes.DlpJobName === jobName) {
        message.ack();
        subscription.removeListener('message', messageHandler);
        subscription.removeListener('error', errorHandler);
        resolve(jobName);
      } else {
        message.nack();
      }
    };

    const errorHandler = err => {
      subscription.removeListener('message', messageHandler);
      subscription.removeListener('error', errorHandler);
      reject(err);
    };

    subscription.on('message', messageHandler);
    subscription.on('error', errorHandler);
  });
  setTimeout(() => {
    console.log(` Waiting for DLP job to fully complete`);
  }, 500);
  const [job] = await dlp.getDlpJob({name: jobName});
  const results = job.riskDetails.numericalStatsResult;

  console.log(
    `Value Range: [${getValue(results.minValue)}, ${getValue(
      results.maxValue
    )}]`
  );

  // Print unique quantile values
  let tempValue = null;
  results.quantileValues.forEach((result, percent) => {
    const value = getValue(result);

    // Only print new values
    if (
      tempValue !== value &&
      !(tempValue && tempValue.equals && tempValue.equals(value))
    ) {
      console.log(`Value at ${percent}% quantile: ${value}`);
      tempValue = value;
    }
  });
} catch (err) {
  console.log(`Error in numericalRiskAnalysis: ${err.message || err}`);
}

Python

def numerical_risk_analysis(project, table_project_id, dataset_id, table_id,
                            column_name, topic_id, subscription_id,
                            timeout=300):
    """Uses the Data Loss Prevention API to compute risk metrics of a column
       of numerical data in a Google BigQuery table.
    Args:
        project: The Google Cloud project id to use as a parent resource.
        table_project_id: The Google Cloud project id where the BigQuery table
            is stored.
        dataset_id: The id of the dataset to inspect.
        table_id: The id of the table to inspect.
        column_name: The name of the column to compute risk metrics for.
        topic_id: The name of the Pub/Sub topic to notify once the job
            completes.
        subscription_id: The name of the Pub/Sub subscription to use when
            listening for job completion notifications.
        timeout: The number of seconds to wait for a response from the API.

    Returns:
        None; the response from the API is printed to the terminal.
    """

    # Import the client library.
    import google.cloud.dlp

    # This sample additionally uses Cloud Pub/Sub to receive results from
    # potentially long-running operations.
    import google.cloud.pubsub

    def callback(message):
        if (message.attributes['DlpJobName'] == operation.name):
            # This is the message we're looking for, so acknowledge it.
            message.ack()

            # Now that the job is done, fetch the results and print them.
            job = dlp.get_dlp_job(operation.name)
            results = job.risk_details.numerical_stats_result
            print('Value Range: [{}, {}]'.format(
                results.min_value.integer_value,
                results.max_value.integer_value))
            prev_value = None
            for percent, result in enumerate(results.quantile_values):
                value = result.integer_value
                if prev_value != value:
                    print('Value at {}% quantile: {}'.format(
                          percent, value))
                    prev_value = value
            subscription.set_result(None)
        else:
            # This is not the message we're looking for.
            message.drop()

    # Instantiate a client.
    dlp = google.cloud.dlp.DlpServiceClient()

    # Convert the project id into a full resource id.
    parent = dlp.project_path(project)

    # Location info of the BigQuery table.
    source_table = {
        'project_id': table_project_id,
        'dataset_id': dataset_id,
        'table_id': table_id
    }

    # Tell the API where to send a notification when the job is complete.
    actions = [{
        'pub_sub': {'topic': '{}/topics/{}'.format(parent, topic_id)}
    }]

    # Configure risk analysis job
    # Give the name of the numeric column to compute risk metrics for
    risk_job = {
        'privacy_metric': {
            'numerical_stats_config': {
                'field': {
                    'name': column_name
                }
            }
        },
        'source_table': source_table,
        'actions': actions
    }

    # Create a Pub/Sub client and find the subscription. The subscription is
    # expected to already be listening to the topic.
    subscriber = google.cloud.pubsub.SubscriberClient()
    subscription_path = subscriber.subscription_path(
        project, subscription_id)
    subscription = subscriber.subscribe(subscription_path, callback)

    # Call API to start risk analysis job
    operation = dlp.create_dlp_job(parent, risk_job=risk_job)

    try:
        subscription.result(timeout=timeout)
    except TimeoutError:
        print('No event received before the timeout. Please verify that the '
              'subscription provided is subscribed to the topic provided.')
        subscription.close()

Go

import (
	"context"
	"fmt"
	"io"
	"time"

	dlp "cloud.google.com/go/dlp/apiv2"
	"cloud.google.com/go/pubsub"
	dlppb "google.golang.org/genproto/googleapis/privacy/dlp/v2"
)

// riskNumerical computes the numerical risk of the given column.
func riskNumerical(w io.Writer, projectID, dataProject, pubSubTopic, pubSubSub, datasetID, tableID, columnName string) error {
	// projectID := "my-project-id"
	// dataProject := "bigquery-public-data"
	// pubSubTopic := "dlp-risk-sample-topic"
	// pubSubSub := "dlp-risk-sample-sub"
	// datasetID := "nhtsa_traffic_fatalities"
	// tableID := "accident_2015"
	// columnName := "state_number"
	ctx := context.Background()
	client, err := dlp.NewClient(ctx)
	if err != nil {
		return fmt.Errorf("dlp.NewClient: %v", err)
	}
	// Create a PubSub Client used to listen for when the inspect job finishes.
	pubsubClient, err := pubsub.NewClient(ctx, projectID)
	if err != nil {
		return fmt.Errorf("Error creating PubSub client: %v", err)
	}
	defer pubsubClient.Close()

	// Create a PubSub subscription we can use to listen for messages.
	s, err := setupPubSub(projectID, pubSubTopic, pubSubSub)
	if err != nil {
		return fmt.Errorf("setupPubSub: %v", err)
	}

	// topic is the PubSub topic string where messages should be sent.
	topic := "projects/" + projectID + "/topics/" + pubSubTopic

	// Create a configured request.
	req := &dlppb.CreateDlpJobRequest{
		Parent: "projects/" + projectID,
		Job: &dlppb.CreateDlpJobRequest_RiskJob{
			RiskJob: &dlppb.RiskAnalysisJobConfig{
				// PrivacyMetric configures what to compute.
				PrivacyMetric: &dlppb.PrivacyMetric{
					Type: &dlppb.PrivacyMetric_NumericalStatsConfig_{
						NumericalStatsConfig: &dlppb.PrivacyMetric_NumericalStatsConfig{
							Field: &dlppb.FieldId{
								Name: columnName,
							},
						},
					},
				},
				// SourceTable describes where to find the data.
				SourceTable: &dlppb.BigQueryTable{
					ProjectId: dataProject,
					DatasetId: datasetID,
					TableId:   tableID,
				},
				// Send a message to PubSub using Actions.
				Actions: []*dlppb.Action{
					{
						Action: &dlppb.Action_PubSub{
							PubSub: &dlppb.Action_PublishToPubSub{
								Topic: topic,
							},
						},
					},
				},
			},
		},
	}
	// Create the risk job.
	j, err := client.CreateDlpJob(ctx, req)
	if err != nil {
		return fmt.Errorf("CreateDlpJob: %v", err)
	}
	fmt.Fprintf(w, "Created job: %v\n", j.GetName())

	// Wait for the risk job to finish by waiting for a PubSub message.
	ctx, cancel := context.WithCancel(ctx)
	err = s.Receive(ctx, func(ctx context.Context, msg *pubsub.Message) {
		// If this is the wrong job, do not process the result.
		if msg.Attributes["DlpJobName"] != j.GetName() {
			msg.Nack()
			return
		}
		msg.Ack()
		time.Sleep(500 * time.Millisecond)
		resp, err := client.GetDlpJob(ctx, &dlppb.GetDlpJobRequest{
			Name: j.GetName(),
		})
		if err != nil {
			fmt.Fprintf(w, "GetDlpJob: %v", err)
			return
		}
		n := resp.GetRiskDetails().GetNumericalStatsResult()
		fmt.Fprintf(w, "Value range: [%v, %v]\n", n.GetMinValue(), n.GetMaxValue())
		var tmp string
		for p, v := range n.GetQuantileValues() {
			if v.String() != tmp {
				fmt.Fprintf(w, "Value at %v quantile: %v\n", p, v)
				tmp = v.String()
			}
		}
		// Stop listening for more messages.
		cancel()
	})
	if err != nil {
		return fmt.Errorf("Recieve: %v", err)
	}
	return nil
}

PHP

/**
 * Computes risk metrics of a column of numbers in a Google BigQuery table.
 */
use Google\Cloud\Core\ExponentialBackoff;
use Google\Cloud\Dlp\V2\DlpServiceClient;
use Google\Cloud\Dlp\V2\RiskAnalysisJobConfig;
use Google\Cloud\Dlp\V2\BigQueryTable;
use Google\Cloud\Dlp\V2\DlpJob\JobState;
use Google\Cloud\PubSub\PubSubClient;
use Google\Cloud\Dlp\V2\Action;
use Google\Cloud\Dlp\V2\Action\PublishToPubSub;
use Google\Cloud\Dlp\V2\PrivacyMetric\NumericalStatsConfig;
use Google\Cloud\Dlp\V2\PrivacyMetric;
use Google\Cloud\Dlp\V2\FieldId;
use Google\Cloud\PubSub\V1\PublisherClient;

/** Uncomment and populate these variables in your code */
// $callingProjectId = 'The project ID to run the API call under';
// $dataProjectId = 'The project ID containing the target Datastore';
// $topicId = 'The name of the Pub/Sub topic to notify once the job completes';
// $subscriptionId = 'The name of the Pub/Sub subscription to use when listening for job';
// $datasetId = 'The ID of the BigQuery dataset to inspect';
// $tableId = 'The ID of the BigQuery table to inspect';
// $columnName = 'The name of the column to compute risk metrics for, e.g. "age"';

// Instantiate a client.
$dlp = new DlpServiceClient([
    'projectId' => $callingProjectId
]);
$pubsub = new PubSubClient([
    'projectId' => $callingProjectId
]);

// Construct risk analysis config
$columnField = (new FieldId())
    ->setName($columnName);

$statsConfig = (new NumericalStatsConfig())
    ->setField($columnField);

$privacyMetric = (new PrivacyMetric())
    ->setNumericalStatsConfig($statsConfig);

// Construct items to be analyzed
$bigqueryTable = (new BigQueryTable())
    ->setProjectId($dataProjectId)
    ->setDatasetId($datasetId)
    ->setTableId($tableId);

// Construct the action to run when job completes
$fullTopicId = PublisherClient::topicName($callingProjectId, $topicId);
$pubSubAction = (new PublishToPubSub())
    ->setTopic($fullTopicId);

$action = (new Action())
    ->setPubSub($pubSubAction);

// Construct risk analysis job config to run
$riskJob = (new RiskAnalysisJobConfig())
    ->setPrivacyMetric($privacyMetric)
    ->setSourceTable($bigqueryTable)
    ->setActions([$action]);

// Listen for job notifications via an existing topic/subscription.
$topic = $pubsub->topic($topicId);
$subscription = $topic->subscription($subscriptionId);

// Submit request
$parent = $dlp->projectName($callingProjectId);
$job = $dlp->createDlpJob($parent, [
    'riskJob' => $riskJob
]);

// Poll Pub/Sub using exponential backoff until job finishes
$backoff = new ExponentialBackoff(30);
$backoff->execute(function () use ($subscription, $dlp, &$job) {
    printf('Waiting for job to complete' . PHP_EOL);
    foreach ($subscription->pull() as $message) {
        if (isset($message->attributes()['DlpJobName']) &&
            $message->attributes()['DlpJobName'] === $job->getName()) {
            $subscription->acknowledge($message);
            // Get the updated job. Loop to avoid race condition with DLP API.
            do {
                $job = $dlp->getDlpJob($job->getName());
            } while ($job->getState() == JobState::RUNNING);
            return true;
        }
    }
    throw new Exception('Job has not yet completed');
});

// Helper function to convert Protobuf values to strings
$valueToString = function ($value) {
    $json = json_decode($value->serializeToJsonString(), true);
    return array_shift($json);
};

// Print finding counts
printf('Job %s status: %s' . PHP_EOL, $job->getName(), JobState::name($job->getState()));
switch ($job->getState()) {
    case JobState::DONE:
        $results = $job->getRiskDetails()->getNumericalStatsResult();
        printf(
            'Value range: [%s, %s]' . PHP_EOL,
            $valueToString($results->getMinValue()),
            $valueToString($results->getMaxValue())
        );

        // Only print unique values
        $lastValue = null;
        foreach ($results->getQuantileValues() as $percent => $quantileValue) {
            $value = $valueToString($quantileValue);
            if ($value != $lastValue) {
                printf('Value at %s quantile: %s' . PHP_EOL, $percent, $value);
                $lastValue = $value;
            }
        }

        break;
    case JobState::FAILED:
        printf('Job %s had errors:' . PHP_EOL, $job->getName());
        $errors = $job->getErrors();
        foreach ($errors as $error) {
            var_dump($error->getDetails());
        }
        break;
    default:
        print('Unexpected job state. Most likely, the job is either running or has not yet started.');
}

C#

public static object NumericalStats(
    string callingProjectId,
    string tableProjectId,
    string datasetId,
    string tableId,
    string topicId,
    string subscriptionId,
    string columnName)
{
    DlpServiceClient dlp = DlpServiceClient.Create();

    // Construct + submit the job
    var config = new RiskAnalysisJobConfig
    {
        PrivacyMetric = new PrivacyMetric
        {
            NumericalStatsConfig = new NumericalStatsConfig
            {
                Field = new FieldId { Name = columnName }
            }
        },
        SourceTable = new BigQueryTable
        {
            ProjectId = tableProjectId,
            DatasetId = datasetId,
            TableId = tableId
        },
        Actions =
        {
            new Google.Cloud.Dlp.V2.Action
            {
                PubSub = new PublishToPubSub
                {
                    Topic = $"projects/{callingProjectId}/topics/{topicId}"
                }
            }
        }
    };

    var submittedJob = dlp.CreateDlpJob(
        new CreateDlpJobRequest
        {
            ParentAsProjectName = new ProjectName(callingProjectId),
            RiskJob = config
        });

    // Listen to pub/sub for the job
    var subscriptionName = new SubscriptionName(callingProjectId, subscriptionId);
    SubscriberClient subscriber = SubscriberClient.CreateAsync(
        subscriptionName).Result;

    // SimpleSubscriber runs your message handle function on multiple
    // threads to maximize throughput.
    var done = new ManualResetEventSlim(false);
    subscriber.StartAsync((PubsubMessage message, CancellationToken cancel) =>
    {
        if (message.Attributes["DlpJobName"] == submittedJob.Name)
        {
            Thread.Sleep(500); // Wait for DLP API results to become consistent
            done.Set();
            return Task.FromResult(SubscriberClient.Reply.Ack);
        }
        else
        {
            return Task.FromResult(SubscriberClient.Reply.Nack);
        }
    });

    done.Wait(TimeSpan.FromMinutes(10)); // 10 minute timeout; may not work for large jobs
    subscriber.StopAsync(CancellationToken.None).Wait();

    // Process results
    var resultJob = dlp.GetDlpJob(
        new GetDlpJobRequest
        {
            DlpJobName = DlpJobName.Parse(submittedJob.Name)
        });

    var result = resultJob.RiskDetails.NumericalStatsResult;

    // 'UnpackValue(x)' is a prettier version of 'x.toString()'
    Console.WriteLine($"Value Range: [{DlpSamplesUtils.UnpackValue(result.MinValue)}, {DlpSamplesUtils.UnpackValue(result.MaxValue)}]");
    string lastValue = string.Empty;
    for (int quantile = 0; quantile < result.QuantileValues.Count; quantile++)
    {
        string currentValue = DlpSamplesUtils.UnpackValue(result.QuantileValues[quantile]);
        if (lastValue != currentValue)
        {
            Console.WriteLine($"Value at {quantile + 1}% quantile: {currentValue}");
        }
        lastValue = currentValue;
    }

    return 0;
}

Compute categorical numerical statistics

You can compute categorical numerical statistics for the individual histogram buckets within a BigQuery column, including:

  • Upper bound on value frequency within a given bucket
  • Lower bound on value frequency within a given bucket
  • Size of a given bucket
  • A sample of value frequencies within a given bucket (maximum 20)

To calculate these values, you configure a DlpJob, setting the CategoricalStatsConfig privacy metric to the name of the column to scan. When you run the job, Cloud DLP computes statistics for the given column, returning its results in the CategoricalStatsResult object.

Code examples

Following is sample code in several languages that demonstrates how to use Cloud DLP to calculate categorical statistics.

Java

/**
 * Calculate categorical statistics for a column in a BigQuery table using the DLP API.
 *
 * @param projectId The Google Cloud Platform project ID to run the API call under.
 * @param datasetId The BigQuery dataset to analyze.
 * @param tableId The BigQuery table to analyze.
 * @param columnName The name of the column to analyze, which need not contain numerical data.
 * @param topicId The name of the Pub/Sub topic to notify once the job completes
 * @param subscriptionId The name of the Pub/Sub subscription to use when listening for job
 *     completion status.
 */
private static void categoricalStatsAnalysis(
    String projectId,
    String datasetId,
    String tableId,
    String columnName,
    String topicId,
    String subscriptionId) {

  // Instantiates a client
  try (DlpServiceClient dlpServiceClient = DlpServiceClient.create()) {

    FieldId fieldId = FieldId.newBuilder().setName(columnName).build();

    CategoricalStatsConfig categoricalStatsConfig =
        CategoricalStatsConfig.newBuilder().setField(fieldId).build();

    BigQueryTable bigQueryTable =
        BigQueryTable.newBuilder()
            .setProjectId(projectId)
            .setDatasetId(datasetId)
            .setTableId(tableId)
            .build();

    PrivacyMetric privacyMetric =
        PrivacyMetric.newBuilder().setCategoricalStatsConfig(categoricalStatsConfig).build();

    ProjectTopicName topicName = ProjectTopicName.of(projectId, topicId);

    PublishToPubSub publishToPubSub =
        PublishToPubSub.newBuilder().setTopic(topicName.toString()).build();

    // Create action to publish job status notifications over Google Cloud Pub/Sub
    Action action = Action.newBuilder().setPubSub(publishToPubSub).build();

    RiskAnalysisJobConfig riskAnalysisJobConfig =
        RiskAnalysisJobConfig.newBuilder()
            .setSourceTable(bigQueryTable)
            .setPrivacyMetric(privacyMetric)
            .addActions(action)
            .build();

    CreateDlpJobRequest createDlpJobRequest =
        CreateDlpJobRequest.newBuilder()
            .setParent(ProjectName.of(projectId).toString())
            .setRiskJob(riskAnalysisJobConfig)
            .build();

    DlpJob dlpJob = dlpServiceClient.createDlpJob(createDlpJobRequest);
    String dlpJobName = dlpJob.getName();

    final SettableApiFuture<Boolean> done = SettableApiFuture.create();

    // Set up a Pub/Sub subscriber to listen on the job completion status
    Subscriber subscriber =
        Subscriber.newBuilder(
                ProjectSubscriptionName.newBuilder()
                    .setProject(projectId)
                    .setSubscription(subscriptionId)
                    .build(),
          (pubsubMessage, ackReplyConsumer) -> {
            if (pubsubMessage.getAttributesCount() > 0
                && pubsubMessage.getAttributesMap().get("DlpJobName").equals(dlpJobName)) {
              // notify job completion
              done.set(true);
              ackReplyConsumer.ack();
            }
          })
            .build();
    subscriber.startAsync();

    // Wait for job completion semi-synchronously
    // For long jobs, consider using a truly asynchronous execution model such as Cloud Functions
    try {
      done.get(1, TimeUnit.MINUTES);
      Thread.sleep(500); // Wait for the job to become available
    } catch (TimeoutException e) {
      System.out.println("Unable to verify job completion.");
    }

    // Retrieve completed job status
    DlpJob completedJob =
        dlpServiceClient.getDlpJob(GetDlpJobRequest.newBuilder().setName(dlpJobName).build());

    System.out.println("Job status: " + completedJob.getState());
    AnalyzeDataSourceRiskDetails riskDetails = completedJob.getRiskDetails();
    AnalyzeDataSourceRiskDetails.CategoricalStatsResult result =
        riskDetails.getCategoricalStatsResult();

    for (CategoricalStatsHistogramBucket bucket :
        result.getValueFrequencyHistogramBucketsList()) {
      System.out.printf(
          "Most common value occurs %d time(s).\n", bucket.getValueFrequencyUpperBound());
      System.out.printf(
          "Least common value occurs %d time(s).\n", bucket.getValueFrequencyLowerBound());
      for (ValueFrequency valueFrequency : bucket.getBucketValuesList()) {
        System.out.printf(
            "Value %s occurs %d time(s).\n",
            valueFrequency.getValue().toString(), valueFrequency.getCount());
      }
    }
  } catch (Exception e) {
    System.out.println("Error in categoricalStatsAnalysis: " + e.getMessage());
  }
}

Node.js

// Import the Google Cloud client libraries
const DLP = require('@google-cloud/dlp');
const {PubSub} = require('@google-cloud/pubsub');

// Instantiates clients
const dlp = new DLP.DlpServiceClient();
const pubsub = new PubSub();

// The project ID to run the API call under
// const callingProjectId = process.env.GCLOUD_PROJECT;

// The project ID the table is stored under
// This may or (for public datasets) may not equal the calling project ID
// const tableProjectId = process.env.GCLOUD_PROJECT;

// The ID of the dataset to inspect, e.g. 'my_dataset'
// const datasetId = 'my_dataset';

// The ID of the table to inspect, e.g. 'my_table'
// const tableId = 'my_table';

// The name of the Pub/Sub topic to notify once the job completes
// TODO(developer): create a Pub/Sub topic to use for this
// const topicId = 'MY-PUBSUB-TOPIC'

// The name of the Pub/Sub subscription to use when listening for job
// completion notifications
// TODO(developer): create a Pub/Sub subscription to use for this
// const subscriptionId = 'MY-PUBSUB-SUBSCRIPTION'

// The name of the column to compute risk metrics for, e.g. 'firstName'
// const columnName = 'firstName';

const sourceTable = {
  projectId: tableProjectId,
  datasetId: datasetId,
  tableId: tableId,
};

// Construct request for creating a risk analysis job
const request = {
  parent: dlp.projectPath(callingProjectId),
  riskJob: {
    privacyMetric: {
      categoricalStatsConfig: {
        field: {
          name: columnName,
        },
      },
    },
    sourceTable: sourceTable,
    actions: [
      {
        pubSub: {
          topic: `projects/${callingProjectId}/topics/${topicId}`,
        },
      },
    ],
  },
};

// Create helper function for unpacking values
const getValue = obj => obj[Object.keys(obj)[0]];

try {
  // Run risk analysis job
  const [topicResponse] = await pubsub.topic(topicId).get();
  const subscription = await topicResponse.subscription(subscriptionId);
  const [jobsResponse] = await dlp.createDlpJob(request);
  const jobName = jobsResponse.name;
  // Watch the Pub/Sub topic until the DLP job finishes
  await new Promise((resolve, reject) => {
    const messageHandler = message => {
      if (message.attributes && message.attributes.DlpJobName === jobName) {
        message.ack();
        subscription.removeListener('message', messageHandler);
        subscription.removeListener('error', errorHandler);
        resolve(jobName);
      } else {
        message.nack();
      }
    };

    const errorHandler = err => {
      subscription.removeListener('message', messageHandler);
      subscription.removeListener('error', errorHandler);
      reject(err);
    };

    subscription.on('message', messageHandler);
    subscription.on('error', errorHandler);
  });
  setTimeout(() => {
    console.log(` Waiting for DLP job to fully complete`);
  }, 500);
  const [job] = await dlp.getDlpJob({name: jobName});
  const histogramBuckets =
    job.riskDetails.categoricalStatsResult.valueFrequencyHistogramBuckets;
  histogramBuckets.forEach((histogramBucket, histogramBucketIdx) => {
    console.log(`Bucket ${histogramBucketIdx}:`);

    // Print bucket stats
    console.log(
      `  Most common value occurs ${histogramBucket.valueFrequencyUpperBound} time(s)`
    );
    console.log(
      `  Least common value occurs ${histogramBucket.valueFrequencyLowerBound} time(s)`
    );

    // Print bucket values
    console.log(`${histogramBucket.bucketSize} unique values total.`);
    histogramBucket.bucketValues.forEach(valueBucket => {
      console.log(
        `  Value ${getValue(valueBucket.value)} occurs ${
          valueBucket.count
        } time(s).`
      );
    });
  });
} catch (err) {
  console.log(`Error in categoricalRiskAnalysis: ${err.message || err}`);
}

Python

def categorical_risk_analysis(project, table_project_id, dataset_id, table_id,
                              column_name, topic_id, subscription_id,
                              timeout=300):
    """Uses the Data Loss Prevention API to compute risk metrics of a column
       of categorical data in a Google BigQuery table.
    Args:
        project: The Google Cloud project id to use as a parent resource.
        table_project_id: The Google Cloud project id where the BigQuery table
            is stored.
        dataset_id: The id of the dataset to inspect.
        table_id: The id of the table to inspect.
        column_name: The name of the column to compute risk metrics for.
        topic_id: The name of the Pub/Sub topic to notify once the job
            completes.
        subscription_id: The name of the Pub/Sub subscription to use when
            listening for job completion notifications.
        timeout: The number of seconds to wait for a response from the API.

    Returns:
        None; the response from the API is printed to the terminal.
    """

    # Import the client library.
    import google.cloud.dlp

    # This sample additionally uses Cloud Pub/Sub to receive results from
    # potentially long-running operations.
    import google.cloud.pubsub

    def callback(message):
        if (message.attributes['DlpJobName'] == operation.name):
            # This is the message we're looking for, so acknowledge it.
            message.ack()

            # Now that the job is done, fetch the results and print them.
            job = dlp.get_dlp_job(operation.name)
            histogram_buckets = (job.risk_details
                                    .categorical_stats_result
                                    .value_frequency_histogram_buckets)
            # Print bucket stats
            for i, bucket in enumerate(histogram_buckets):
                print('Bucket {}:'.format(i))
                print('   Most common value occurs {} time(s)'.format(
                    bucket.value_frequency_upper_bound))
                print('   Least common value occurs {} time(s)'.format(
                    bucket.value_frequency_lower_bound))
                print('   {} unique values total.'.format(
                    bucket.bucket_size))
                for value in bucket.bucket_values:
                    print('   Value {} occurs {} time(s)'.format(
                        value.value.integer_value, value.count))
            subscription.set_result(None)
        else:
            # This is not the message we're looking for.
            message.drop()

    # Instantiate a client.
    dlp = google.cloud.dlp.DlpServiceClient()

    # Convert the project id into a full resource id.
    parent = dlp.project_path(project)

    # Location info of the BigQuery table.
    source_table = {
        'project_id': table_project_id,
        'dataset_id': dataset_id,
        'table_id': table_id
    }

    # Tell the API where to send a notification when the job is complete.
    actions = [{
        'pub_sub': {'topic': '{}/topics/{}'.format(parent, topic_id)}
    }]

    # Configure risk analysis job
    # Give the name of the numeric column to compute risk metrics for
    risk_job = {
        'privacy_metric': {
            'categorical_stats_config': {
                'field': {
                    'name': column_name
                }
            }
        },
        'source_table': source_table,
        'actions': actions
    }

    # Create a Pub/Sub client and find the subscription. The subscription is
    # expected to already be listening to the topic.
    subscriber = google.cloud.pubsub.SubscriberClient()
    subscription_path = subscriber.subscription_path(
        project, subscription_id)
    subscription = subscriber.subscribe(subscription_path, callback)

    # Call API to start risk analysis job
    operation = dlp.create_dlp_job(parent, risk_job=risk_job)

    try:
        subscription.result(timeout=timeout)
    except TimeoutError:
        print('No event received before the timeout. Please verify that the '
              'subscription provided is subscribed to the topic provided.')
        subscription.close()

Go

import (
	"context"
	"fmt"
	"io"
	"time"

	dlp "cloud.google.com/go/dlp/apiv2"
	"cloud.google.com/go/pubsub"
	dlppb "google.golang.org/genproto/googleapis/privacy/dlp/v2"
)

// riskCategorical computes the categorical risk of the given data.
func riskCategorical(w io.Writer, projectID, dataProject, pubSubTopic, pubSubSub, datasetID, tableID, columnName string) error {
	// projectID := "my-project-id"
	// dataProject := "bigquery-public-data"
	// pubSubTopic := "dlp-risk-sample-topic"
	// pubSubSub := "dlp-risk-sample-sub"
	// datasetID := "nhtsa_traffic_fatalities"
	// tableID := "accident_2015"
	// columnName := "state_number"
	ctx := context.Background()
	client, err := dlp.NewClient(ctx)
	if err != nil {
		return fmt.Errorf("dlp.NewClient: %v", err)
	}
	// Create a PubSub Client used to listen for when the inspect job finishes.
	pubsubClient, err := pubsub.NewClient(ctx, projectID)
	if err != nil {
		return fmt.Errorf("Error creating PubSub client: %v", err)
	}
	defer pubsubClient.Close()

	// Create a PubSub subscription we can use to listen for messages.
	s, err := setupPubSub(projectID, pubSubTopic, pubSubSub)
	if err != nil {
		return fmt.Errorf("setupPubSub: %v", err)
	}

	// topic is the PubSub topic string where messages should be sent.
	topic := "projects/" + projectID + "/topics/" + pubSubTopic

	// Create a configured request.
	req := &dlppb.CreateDlpJobRequest{
		Parent: "projects/" + projectID,
		Job: &dlppb.CreateDlpJobRequest_RiskJob{
			RiskJob: &dlppb.RiskAnalysisJobConfig{
				// PrivacyMetric configures what to compute.
				PrivacyMetric: &dlppb.PrivacyMetric{
					Type: &dlppb.PrivacyMetric_CategoricalStatsConfig_{
						CategoricalStatsConfig: &dlppb.PrivacyMetric_CategoricalStatsConfig{
							Field: &dlppb.FieldId{
								Name: columnName,
							},
						},
					},
				},
				// SourceTable describes where to find the data.
				SourceTable: &dlppb.BigQueryTable{
					ProjectId: dataProject,
					DatasetId: datasetID,
					TableId:   tableID,
				},
				// Send a message to PubSub using Actions.
				Actions: []*dlppb.Action{
					{
						Action: &dlppb.Action_PubSub{
							PubSub: &dlppb.Action_PublishToPubSub{
								Topic: topic,
							},
						},
					},
				},
			},
		},
	}
	// Create the risk job.
	j, err := client.CreateDlpJob(ctx, req)
	if err != nil {
		return fmt.Errorf("CreateDlpJob: %v", err)
	}
	fmt.Fprintf(w, "Created job: %v\n", j.GetName())

	// Wait for the risk job to finish by waiting for a PubSub message.
	ctx, cancel := context.WithCancel(ctx)
	err = s.Receive(ctx, func(ctx context.Context, msg *pubsub.Message) {
		// If this is the wrong job, do not process the result.
		if msg.Attributes["DlpJobName"] != j.GetName() {
			msg.Nack()
			return
		}
		msg.Ack()
		time.Sleep(500 * time.Millisecond)
		resp, err := client.GetDlpJob(ctx, &dlppb.GetDlpJobRequest{
			Name: j.GetName(),
		})
		if err != nil {
			fmt.Fprintf(w, "GetDlpJob: %v", err)
			return
		}
		h := resp.GetRiskDetails().GetCategoricalStatsResult().GetValueFrequencyHistogramBuckets()
		for i, b := range h {
			fmt.Fprintf(w, "Histogram bucket %v\n", i)
			fmt.Fprintf(w, "  Most common value occurs %v times\n", b.GetValueFrequencyUpperBound())
			fmt.Fprintf(w, "  Least common value occurs %v times\n", b.GetValueFrequencyLowerBound())
			fmt.Fprintf(w, "  %v unique values total\n", b.GetBucketSize())
			for _, v := range b.GetBucketValues() {
				fmt.Fprintf(w, "    Value %v occurs %v times\n", v.GetValue(), v.GetCount())
			}
		}
		// Stop listening for more messages.
		cancel()
	})
	if err != nil {
		return fmt.Errorf("Recieve: %v", err)
	}
	return nil
}

PHP

/**
 * Computes risk metrics of a column of data in a Google BigQuery table.
 */
use Google\Cloud\Core\ExponentialBackoff;
use Google\Cloud\Dlp\V2\DlpServiceClient;
use Google\Cloud\Dlp\V2\RiskAnalysisJobConfig;
use Google\Cloud\Dlp\V2\BigQueryTable;
use Google\Cloud\Dlp\V2\DlpJob\JobState;
use Google\Cloud\Dlp\V2\Action;
use Google\Cloud\Dlp\V2\Action\PublishToPubSub;
use Google\Cloud\Dlp\V2\PrivacyMetric\CategoricalStatsConfig;
use Google\Cloud\Dlp\V2\PrivacyMetric;
use Google\Cloud\Dlp\V2\FieldId;
use Google\Cloud\PubSub\PubSubClient;

/** Uncomment and populate these variables in your code */
// $callingProjectId = 'The project ID to run the API call under';
// $dataProjectId = 'The project ID containing the target Datastore';
// $topicId = 'The name of the Pub/Sub topic to notify once the job completes';
// $subscriptionId = 'The name of the Pub/Sub subscription to use when listening for job';
// $datasetId = 'The ID of the dataset to inspect';
// $tableId = 'The ID of the table to inspect';
// $columnName = 'The name of the column to compute risk metrics for, e.g. "age"';

// Instantiate a client.
$dlp = new DlpServiceClient([
    'projectId' => $callingProjectId,
]);
$pubsub = new PubSubClient([
    'projectId' => $callingProjectId,
]);
$topic = $pubsub->topic($topicId);

// Construct risk analysis config
$columnField = (new FieldId())
    ->setName($columnName);

$statsConfig = (new CategoricalStatsConfig())
    ->setField($columnField);

$privacyMetric = (new PrivacyMetric())
    ->setCategoricalStatsConfig($statsConfig);

// Construct items to be analyzed
$bigqueryTable = (new BigQueryTable())
    ->setProjectId($dataProjectId)
    ->setDatasetId($datasetId)
    ->setTableId($tableId);

// Construct the action to run when job completes
$pubSubAction = (new PublishToPubSub())
    ->setTopic($topic->name());

$action = (new Action())
    ->setPubSub($pubSubAction);

// Construct risk analysis job config to run
$riskJob = (new RiskAnalysisJobConfig())
    ->setPrivacyMetric($privacyMetric)
    ->setSourceTable($bigqueryTable)
    ->setActions([$action]);

// Submit request
$parent = $dlp->projectName($callingProjectId);
$job = $dlp->createDlpJob($parent, [
    'riskJob' => $riskJob
]);

// Listen for job notifications via an existing topic/subscription.
$subscription = $topic->subscription($subscriptionId);

// Poll Pub/Sub using exponential backoff until job finishes
$backoff = new ExponentialBackoff(30);
$backoff->execute(function () use ($subscription, $dlp, &$job) {
    printf('Waiting for job to complete' . PHP_EOL);
    foreach ($subscription->pull() as $message) {
        if (isset($message->attributes()['DlpJobName']) &&
            $message->attributes()['DlpJobName'] === $job->getName()) {
            $subscription->acknowledge($message);
            // Get the updated job. Loop to avoid race condition with DLP API.
            do {
                $job = $dlp->getDlpJob($job->getName());
            } while ($job->getState() == JobState::RUNNING);
            return true;
        }
    }
    throw new Exception('Job has not yet completed');
});

// Print finding counts
printf('Job %s status: %s' . PHP_EOL, $job->getName(), JobState::name($job->getState()));
switch ($job->getState()) {
    case JobState::DONE:
        $histBuckets = $job->getRiskDetails()->getCategoricalStatsResult()->getValueFrequencyHistogramBuckets();

        foreach ($histBuckets as $bucketIndex => $histBucket) {
            // Print bucket stats
            printf('Bucket %s:' . PHP_EOL, $bucketIndex);
            printf('  Most common value occurs %s time(s)' . PHP_EOL, $histBucket->getValueFrequencyUpperBound());
            printf('  Least common value occurs %s time(s)' . PHP_EOL, $histBucket->getValueFrequencyLowerBound());
            printf('  %s unique value(s) total.', $histBucket->getBucketSize());

            // Print bucket values
            foreach ($histBucket->getBucketValues() as $percent => $quantile) {
                printf(
                    '  Value %s occurs %s time(s).' . PHP_EOL,
                    $quantile->getValue()->serializeToJsonString(),
                    $quantile->getCount()
                );
            }
        }

        break;
    case JobState::FAILED:
        $errors = $job->getErrors();
        printf('Job %s had errors:' . PHP_EOL, $job->getName());
        foreach ($errors as $error) {
            var_dump($error->getDetails());
        }
        break;
    default:
        printf('Unexpected job state.');
}

C#

public static object CategoricalStats(
    string callingProjectId,
    string tableProjectId,
    string datasetId,
    string tableId,
    string topicId,
    string subscriptionId,
    string columnName)
{
    DlpServiceClient dlp = DlpServiceClient.Create();

    // Construct + submit the job
    RiskAnalysisJobConfig config = new RiskAnalysisJobConfig
    {
        PrivacyMetric = new PrivacyMetric
        {
            CategoricalStatsConfig = new CategoricalStatsConfig()
            {
                Field = new FieldId { Name = columnName }
            }
        },
        SourceTable = new BigQueryTable
        {
            ProjectId = tableProjectId,
            DatasetId = datasetId,
            TableId = tableId
        },
        Actions = {
            new Google.Cloud.Dlp.V2.Action
            {
                PubSub = new PublishToPubSub
                {
                    Topic = $"projects/{callingProjectId}/topics/{topicId}"
                }
            }
        }
    };

    var submittedJob = dlp.CreateDlpJob(new CreateDlpJobRequest
    {
        ParentAsProjectName = new ProjectName(callingProjectId),
        RiskJob = config
    });

    // Listen to pub/sub for the job
    var subscriptionName = new SubscriptionName(callingProjectId, subscriptionId);
    SubscriberClient subscriber = SubscriberClient.CreateAsync(
        subscriptionName).Result;

    // SimpleSubscriber runs your message handle function on multiple
    // threads to maximize throughput.
    var done = new ManualResetEventSlim(false);
    subscriber.StartAsync((PubsubMessage message, CancellationToken cancel) =>
    {
        if (message.Attributes["DlpJobName"] == submittedJob.Name)
        {
            Thread.Sleep(500); // Wait for DLP API results to become consistent
            done.Set();
            return Task.FromResult(SubscriberClient.Reply.Ack);
        }
        else
        {
            return Task.FromResult(SubscriberClient.Reply.Nack);
        }
    });

    done.Wait(TimeSpan.FromMinutes(10)); // 10 minute timeout; may not work for large jobs
    subscriber.StopAsync(CancellationToken.None).Wait();

    // Process results
    var resultJob = dlp.GetDlpJob(new GetDlpJobRequest
    {
        DlpJobName = DlpJobName.Parse(submittedJob.Name)
    });

    var result = resultJob.RiskDetails.CategoricalStatsResult;

    for (int bucketIdx = 0; bucketIdx < result.ValueFrequencyHistogramBuckets.Count; bucketIdx++)
    {
        var bucket = result.ValueFrequencyHistogramBuckets[bucketIdx];
        Console.WriteLine($"Bucket {bucketIdx}");
        Console.WriteLine($"  Most common value occurs {bucket.ValueFrequencyUpperBound} time(s).");
        Console.WriteLine($"  Least common value occurs {bucket.ValueFrequencyLowerBound} time(s).");
        Console.WriteLine($"  {bucket.BucketSize} unique value(s) total.");

        foreach (var bucketValue in bucket.BucketValues)
        {
            // 'UnpackValue(x)' is a prettier version of 'x.toString()'
            Console.WriteLine($"  Value {DlpSamplesUtils.UnpackValue(bucketValue.Value)} occurs {bucketValue.Count} time(s).");
        }
    }

    return 0;
}

หน้านี้มีประโยชน์ไหม โปรดแสดงความคิดเห็น