STDEV Function

Computes the standard deviation across all column values of Integer or Decimal type.

The standard deviation of a set of values attempts to measure the spread in values around the mean and is used to measure confidence in statistical results. A standard deviation of zero means that all values are the same, and a small standard deviation means that the values are closely bunched together. A high value for standard deviation indicates that the numbers are spread out widely. Standard deviation is always a positive value.

Standard deviation comes in two flavors:

  • Population standard deviation computes the variance from all possible values.
  • Sample standard deviation computes from a subset or sample of all values.
  • Since Cloud Dataprep by TRIFACTA® has access to all available values, the computation for population standard deviation is used across the entire dataset.

If a row contains a missing or null value, it is not factored into the calculation. If no numeric values are detected in the input column, the function returns 0.

The square of standard deviation is variance. See VAR Function.

For a version of this function computed over a rolling window of rows, see ROLLINGSTDEV Function.

Basic Usage

pivot value:STDEV(myRating) group: postal_code limit:1

Output: Generates a two-column table containing the unique values from the postal_code column and the standard deviation of the group of values from the myRating column for the postal_code value. The limit parameter defines the maximum number of output columns.

Syntax

pivot value:STDEV(function_col_ref) [group:group_col_ref] [limit:limit_count]

ArgumentRequired?Data TypeDescription
function_col_refYstringName of column to which to apply the function

For more information on the group and limit parameters, see Pivot Transform.

For more information on syntax standards, see Language Documentation Syntax Notes.

function_col_ref

Name of the column the values of which you want to calculate the variance. Column must contain Integer or Decimal values.

  • Literal values are not supported as inputs.
  • Multiple columns and wildcards are not supported.

Usage Notes:

Required?Data TypeExample Value
YesString (column reference)myValues

Examples

This example illustrates how you can apply statistical functions to your dataset. Calculations include average (mean), max, min, standard deviation, and variance.

Source:

Students took a test and recorded the following scores. You want to perform some statistical analysis on them:

StudentScore
Anna84
Ben71
Caleb76
Danielle87
Evan85
Faith92
Gabe85
Hannah99
Ian73
Jane68

Transform:

You can use the following transforms to calculate the average (mean), minimum, and maximum scores:

derive type:single value:AVERAGE(Score) as:'avgScore'

derive type:single value:MIN(Score) as:'minScore'

derive type:single value:MAX(Score) as:'maxScore'

To apply statistical functions to your data, you can use the VAR and STDEV functions, which can be used as the basis for other statistical calculations.

derive type:single value:VAR(Score)

derive type:single value:STDEV(Score)

For each score, you can now calculate the variation of each one from the average, using the following:

derive type:single value:((Score - avg_Score) / stdev_Score) as:'stDevs'

Now, you want to apply grades based on a formula:

Gradestandard deviations from avg (stDevs)
AstDevs > 1
BstDevs > 0.5
C-1 <= stDevs <= 0.5
DstDevs < -1
FstDevs < -2

You can build the following transform using the IF function to calculate grades.

derive type:single value:IF((stDevs > 1),'A',IF((stDevs < -2),'F',IF((stDevs < -1),'D',IF((stDevs > 0.5),'B','C'))))

For more information, see IF Function.

To clean up the content, you might want to apply some formatting to the score columns. The following reformats the stdev_Score and stDevs columns to display two decimal places:

set col:stdev_Score value:NUMFORMAT(stdev_Score, '##.00')

set col:stDevs value:NUMFORMAT(stDevs, '##.00')

derive type:single value:MODE(Score) as:'modeScore'

Results:

StudentScoremodeScoreavgScoreminScoremaxScorevar_Scorestdev_ScorestDevsGrade
Anna8485826899

87.00000000000001

9.330.21C
Ben718582689987.000000000000019.33-1.18D
Caleb768582689987.000000000000019.33-0.64C
Danielle878582689987.000000000000019.330.54B
Evan858582689987.000000000000019.330.32C
Faith928582689987.000000000000019.331.07A
Gabe858582689987.000000000000019.330.32C
Hannah998582689987.000000000000019.331.82A
Ian738582689987.000000000000019.33-0.96C
Jane688582689987.000000000000019.33-1.50D

Was this page helpful? Let us know how we did:

Send feedback about...

Google Cloud Dataprep Documentation